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Normal-appearing white matter (NAWM) surrounding white matter hyperintensities

(WMHs), frequently known as the WMH penumbra, is associated with subtle white

matter injury and has a high risk for future conversion to WMHs. The goal of this

study was to define WMH penumbras and to further explore whether the diffusion

and perfusion parameters of these penumbras could better reflect cognitive function

alterations than WMHs in subjects with subcortical vascular mild cognitive impairment

(svMCI). Seventy-three svMCI subjects underwent neuropsychological assessments and

3T MRI scans, including diffusion tensor imaging (DTI) and arterial spin labeling (ASL). To

determine the extent of cerebral blood flow (CBF) and DTI penumbras. A NAWM layer

mask was generated for periventricular WMHs (PVWMHs) and deep WMHs (DWMHs)

separately. Mean values of CBF, fractional anisotropy (FA), mean diffusivity (MD) within the

WMHs and their corresponding NAWM layer masks were computed and compared using

paired t-tests. Pearson’s partial correlations were used to assess the relations of themean

CBF, FA, andMD values within the corresponding penumbras with composite z-scores of

global cognition and four cognitive domains controlling for age, sex, and education. For

both PVWMHs and DWMHs, the CBF penumbras were wider than the DTI penumbras.

Only the mean FA value of the PVWMH-FA penumbra was correlated with the composite

z-scores of global cognition before correction (r = 0.268, p = 0.024), but that correlation

did not survive after correcting the p-value for multiple comparisons. Our findings showed

extensive white matter perfusion disturbances including white matter tissue, both with

and without microstructural alterations. The imaging parameters investigated, however,

did not correlate to cognition.

Keywords: white matter hyperintensity, normal appearing white matter, penumbra, cerebral blood flow, diffusion

tensor imaging, subcortical vascular mild cognitive impairment
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INTRODUCTION

Vascular cognitive impairment (VCI) refers to all levels of
cognitive alteration, ranging from mild to severe, caused
by cerebrovascular disease (1). Subcortical vascular cognitive
impairment (SVCI) is a common form of VCI caused by
subcortical ischemic vascular disease (SIVD) (2). Subcortical
vascular mild cognitive impairment (svMCI) is a prodromal
stage of Subcortical vascular dementia (SVaD) (3). It is clinically
important to focus on svMCI before it develops into SVaD.
White matter hyperintensities (WMHs), also known as WM
lesions or leukoaraiosis, are usually considered themost common
magnetic resonance imaging (MRI) manifestations of SIVD,
increasing with both age and vascular risk factors (4, 5). WMHs
are frequently divided into periventricularWMH (PVWMH) and
deep WMH (DWMH), and the two classifications have been
differentially associated with vascular risk factors (6–9), cognitive
function measures (10–14) and histopathologic findings (14–
17). The burden of WMHs has widely been reported to be
associated with cognitive decline and the progression of cognitive
impairment (13, 18–22).

There is an increasing amount of evidence suggesting that
WM alterations are not only present in visible WMHs but
also in the normal-appearing WM (NAWM) surrounding
WMHs, which conventional MRI scans re unable to identify.
Previous reports have indicated that NAWM displays subtle
immunohistochemical and pathological alterations beyond WM
lesions, raising the possibility that WM dysfunction is more
widespread than the focal WM lesions (23–26). Previous
studies have also demonstrated WM integrity disruption and
hypoperfusion within NAWM surrounding WMHs, using
diffusion tensor imaging (DTI) and arterial spin labeling (ASL)
(27–31). The specific, subtly changed NAWM surrounding
WMHs is called a “WMH penumbra” in many studies; however,
this terminology has not yet been widely adopted.

WMH penumbras represent milder WM injury concerning
WMHs and are at a higher risk for future conversion to
WMH than other areas of healthy WM beyond penumbras
(29). Previous studies have shown that structural WMH
penumbras, defined by DTI and FLAIR intensity, extended
approximately 2–9mm, while cerebral blood flow (CBF) WMH
penumbras, defined by ASL, extended ∼12–14mm around
both PVWMH and DWMH in cognitively intact community-
dwelling elderly individuals (27–29, 32). Though the extent
of WMH penumbras is not entirely consistent among studies,
these findings consistently reveal that CBF penumbras are more
extensive than structural penumbras, indicating that altered CBF
may predate structural changes in the NAWM surrounding
WMH. Longitudinal studies have further demonstrated that
WMHs and their penumbras represent a continuum of WM
injury that evolves over time and that abnormal changes in
surrounding NAWM precede the progression of WMH (27,
28, 32, 33). Other studies have also found that most of the
new lacunes preferentially localize to WMH penumbras and
that infarcts on the edge of WMHs are more likely to develop
into lacunes or cavities than those far from WMHs (34, 35).
These findings imply that WMH penumbras can be regarded

as relevant clinical targets for interventions that prevent the
development of WMHs. Structural penumbras defined by DTI
may provide information about full-scale microstructural WM
integrity disruption, and CBF penumbras may provide etiological
insight into the formation and progression of WMHs. Therefore,
it is crucial to combine structural and CBF penumbras of
WMHs within svMCI patients to facilitate our understanding
of the mechanism underlying WMH progression and cognitive
impairment evolution.

Currently, studies characterizing both structural and CBF
WMH penumbra in the same svMCI subjects are lacking. The
goal of this study is to characterize the CBF and structural
penumbras of PVWMHs and DWMHs and to further explore
whether penumbras can reflect cognitive function alterations,
better than WMHs themselves, among svMCI subjects.

MATERIALS AND METHODS

Subjects
SIVD subjects were recruited from patients who were admitted
to the Neurology Department of Ren Ji Hospital between
August 2015 and December 2017. SIVD was defined as a
subcortical WM hyperintensity on T2-FLAIR imaging with at
least one lacunar infarct, according to the criteria suggested by
Galluzzi et al. (36). SIVD subjects who fulfilled svMCI criteria,
suggested by Petersen et al. (37) and Gorelick et al. (38), were
included in our study. The inclusion criteria were as follows:
(1) subjective cognitive difficulty reported by the patient or
caregiver; (2) quantifiable cognitive decline within one or more
cognitive domains (e.g., attention-executive function, memory,
language, or visuospatial function); (3) normal instrumental
activity of daily living. The exclusion criteria were as follows:
(1) cortical and/or corticosubcortical non-lacunar territorial
infarcts and watershed infarcts; (2) neurodegenerative diseases
(including Parkinson’s disease and AD); (3) signs of normal-
pressure hydrocephalus; (4) specific causes of WM lesions
(e.g., metabolic, toxic, infectious, multiple sclerosis, brain
irradiation); (5) alcoholic encephalopathy or illicit drug use; (6)
major depression (Hamilton Depression Rating Scale (HDRS)
≥ 18) (39); (7) severe cognitive impairment (inability to
perform the neuropsychological test or undergo the whole MRI
scan); (8) MRI safety contraindications and claustrophobia;
(9) education ≤ 6 years. Early VCI is characterized by
executive function/processing speed deficits with relatively
preserved memory and is less likely to produce subjective
complaints, whereas Alzheimer’s disease (AD) ormixed cognitive
impairment feature memory problems (2). Thus, we carefully
excluded the participants with memory complaints. All patients
underwent laboratory examinations to exclude systemic or other
neurological diseases. Finally, 73 right-handed svMCI patients
were included in this study.

The present research was approved by the Research Ethics
Committee of the Ren Ji Hospital, School of Medicine, Shanghai
Jiao Tong University. Written informed consent was obtained
from each subject before participation. All procedures were in
accordance with the institutional guidelines.
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TABLE 1 | Neuropsychological tests used to evaluate cognitive status.

Attention/executive

function

Chinese modified version of the Trail Making Test (TMT)

Modified version of the Stroop Color-Word Test (SCWT)

Category Verbal Fluency Test (VFT)

Memory Chinese version of the Auditory Verbal Learning Test

(AVLT) for short-delay and long-delay free recall

Rey-Osterrieth Complex Figure (ROCF) delayed recall

test (Chinese version)

Language Boston Naming Test (the 30-item version)

Visuospatial function ROCF copy test

Neuropsychological Assessment
Neuropsychological assessments were performed by two
experienced neurologists (QX and WC) within 1 week of the
MRI examination. No patients suffered any transient ischemic
attacks or strokes between the MRI examination and the
assessment. A comprehensive battery of neuropsychological
tests was designed to evaluate cognitive status, which included
all cognitive domains. The scales listed in Table 1 were used as
described in previous studies (40, 41). To assess the cognitive
status of each patient, the norms used were based on the mean
score of each measurement, which were derived from a small-
scale normative study of a community of healthy elderly people
in Shanghai, China (42). Cognitive dysfunction was defined as
−1.5 SD on at least one neuropsychological test.

To allow direct comparisons among different
neuropsychological tests, a z-score was calculated for each
neuropsychological test. A z-score is defined as a score that
falls in the distribution of normal scores. A z-score of +1.0
corresponds to a score 1 SD above the mean score. The raw
scores for each neuropsychological measure were z-transformed.
Then, the z-scores for each domain were generated by averaging
the z-scores of their respective tests. Composite z-scores
of global cognition, which represented general intellectual
ability, were computed by averaging the z-scores of all four
cognitive domains.

MRI Acquisition
All MRI data were obtained using a 3.0T MRI scanner (Signa
HDxt; GE HealthCare, Milwaukee, WI, USA) equipped
with an eight-channel phased array head coil at Ren Ji
Hospital. Each subject underwent three dimensional T1
high-resolution imaging and FLAIR scans. All subjects
underwent MR diffusion tensor imaging (DTI) scans. Fifty-
six of the seventy three subjects underwent three-dimensional
arterial spin labeling (3DASL) scans. The parameters of
each sequence were as follows: (1) sagittal 3D T1 high-
resolution imaging [repetition time (TR) = 5.6ms, echo
time (TE) = 1.8ms, inversion time (TI) = 450ms, flip
angle = 15◦, slice thickness = 1.0mm, number of slices = 156,
gap = 0, field of view (FOV) = 256mm × 256mm, and
matrix = 256 × 256]; (2) axial FLAIR (TR = 9,075ms,
TE = 150ms, TI = 2,250ms, FOV = 256mm × 256mm,
matrix = 256 × 256, slice thickness = 2mm, and number
of slices = 66); (3) 3D ASL perfusion images were acquired

using 3D fast spin-echo acquisition with background
suppression and with a labeling duration of 1,500ms and a
post labeling delay of 2,000ms. (TR = 4,337ms, TE = 9.8ms,
FOV = 240mm × 240mm, slice thickness = 4mm, flip
angle = 155◦, NEX = 3, and number of slices = 34); (4) DTI
(TR = 17,000ms, TE = 89.8ms, slice thickness = 2mm,
gap = 0, FOV = 256mm × 256mm, number of slices = 66,
matrix = 128 × 128, and 20 diffusion-weighted directions with
b value= 1,000 s/mm2).

Image Processing and Analysis
Processing of the diffusion MRI dataset was implemented
using a pipeline toolbox, PANDA v1.3.1(https://www.nitrc.org/
projects/panda), which is based on FSL tools (43). In the
pipeline, skull-stripping with the brain extraction tool (BET)
was done to extract brain tissue for b0 image in each subject.
Eddy current-induced distortion and head motion artifacts
were corrected by registering each raw diffusion-weighted
image to the b0 image with an affine transformation. Then
diffusion metrics, including FA and MD, were calculated
within a mask created from b0 image. To derive the
CBF map of each subject, the three runs of ASL images
were inspected, and data with excessive head movement
(≥2mm or 2◦) were discarded, and the three runs were
concatenated. Quantitative CBF was then calculated on a
voxel basis according to Wang et al. (44). Voxel-wise partial
volume correction was performed (45). Then, the CBF,
FA and MD maps for each subject were coregistered to
the corresponding individual 3D T1-weighted images using
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

WMHs were segmented by the lesion growth algorithm
as implemented in the LST toolbox version 1.1.4
(www.statistical-modeling.de/lst.html) for SPM (46). Then,
WMH clusters were separated into PVWMHs and DWMHs
according to the “continuity to ventricle rule” (47). PVWMHs
were defined as WMHs that were continuous with the margin
of the lateral ventricle and all others were defined as DWMHs.
Finally, probabilistic maps for WMH and WM were processed
with binarization.

To assess the WMH penumbra for each imaging measure,
a NAWM layer mask for each individual dataset was created
by linearly aligning the defined binary WMHs to the T1-
weighted images, according to previous studies (27, 28). The
NAWM layer mask consisted of 15 layers of PVWMH and
DWMH separately. Each layer was parallel and gradually
dilated away from the WMH by 1mm. The innermost layer,
closest to the WMH, was defined as layer 1 (NAWM-L1),
and the outermost layer was layer 15 (NAWM-L15). To
prevent overlapping between layers of neighboring WMHs,
the WMH and previous NAWM layers were merged together
to create a new “WMH” before creating the next layer. To
reduce the partial volume effects of the gray matter (GM) and
cerebrospinal fluid (CSF), the GM and CSF maps were dilated
by 2 voxels, and subtracted from the NAWM layers. The spatial
relationship between WMH and NAWM layer mask is shown
in Figure 1.
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FIGURE 1 | The spatial relationship between PVWMH, DWMH, and their

corresponding NAWM layer masks. The turquoise and yellow represent WM

lesions and NAWM layers, respectively. The innermost layer surrounding the

WMH represents layer 1, and the outermost layer represents layer 15.

(A) periventricular white matter hyperintensity (PVWMH); (B) deep white matter

hyperintensity (DWMH).

For each subject, the NAWM layer mask was applied to the
FA, MD, and CBF maps which were previously coregistered to
individual 3D T1-weighted images. Later, the mean FA, MD,
and CBF values of each NAWM layer for the PVWMH and the
DWMHwere computed. Similarly, the imaging parameter values
of whole-brain WMH and its subtype and whole-brain NAWM
were obtained.

Statistical Analysis
The analyses were performed using IBM SPSS Statistics 20
and R version 3.5.0. To determine the extent of WMH CBF
penumbra, mean CBF of the WMH and NAWM layers (L1–
L15) were compared with the corresponding mean CBF of
whole-brain NAWM using a paired t-test. The first layer
whose CBF value was not significantly different from the
whole-brain NAWM was defined as the outer boundary of
the CBF penumbra. Due to the impact of WM association
and commissural fibers surrounding the ventricles on DTI
parameters, the extent of WMH structural penumbra was
determined by comparing every two adjacent NAWM layers
using paired t-tests. The first of two neighboring layers whose
values were not significantly different from each other was
defined as the outer boundary of the structural penumbra.
The PVWMH and DWMH were analyzed separately. Pearson’s
partial correlations were used to assess the relation between the
mean CBF, FA, and MD values of PVWMH, DWMH, and their
corresponding penumbras with composite z-scores, controlling
for age, sex, and education. A significant difference was set
at p ≤ 0.05.

TABLE 2 | Summary of participant characteristics.

Variables Mean ± SD (range)

Number of subjects 73

Age (years) 65.71 ± 8.2 (∼50–86)

Female 25

Years of education 10.47 ± 3.07 (∼6–18)

Z-scores of attention/executive function −1.45 ± 1.26 (∼–5.33–1.12)

Z-scores of memory −1.46 ± 0.83 (∼–3.05–0.48)

Z-scores of language −0.75 ± 1.56 (∼–5.05–1.79)

Z-scores of visuospatial function 0.22 ± 1.99 (∼–8.19–1.46)

Composite z-scores of global cognition −0.86 ± 0.87 (∼–4.04–0.66)

SD, standard deviation.

RESULTS

Participant Characteristics
The demographic and cognitive characteristics were presented
in Table 2. Seventy-three subjects were included in our study.
Their age ranged from 50 to 86 years, with the mean years
of education 10.47 ± 3.07. The composite z-scores of global
cognition were -0.86 ± 0.87, and the z-scores of four cognitive
domain (attention/executive function, memory, language and
visuospatial function) were -1.45± 1.26, 1.46± 0.83, -0.75± 1.56
and 0.22± 1.99, respectively.

The Mean FA, MD, and CBF Values of Each
NAWM Layer of the PVWMH and DWMH
Are Presented in Table 3 and Figure 2
The extents of the PVWMH penumbras are as follows: 10mm
for the CBF penumbra; 6mm for the FA penumbra; 6mm for
the MD penumbra. The extents of the DWMH penumbras are
as follows: 7mm for the CBF penumbra; 4mm for the FA
penumbra; 2mm for the MD penumbra (see Tables S1–S3).

Relations Between the Mean FA, MD, and
CBF Values of the PVWMH, DWMH, and
Their Penumbras With Composite z-Scores
of Global Cognition and the z-Scores of
Each Cognitive Domain Are Illustrated in
Table 4 and Tables S4–S7
Only the mean FA value of the PVWMH-FA penumbra was
correlated with the composite z-scores of global cognition
(r = 0.268, p = 0.024) before correction, as showed in
Figure 3. After false discovery rate correction, that correlation
did not survive.

DISCUSSION

For SVCI subjects and cognitively intact elder individuals, the
morphological characteristics and distribution features of WM
lesions have been widely reported to be associated with cognitive
decline (12, 13, 48, 49), whereas few studies have been conducted
to explore the association between WMH penumbras and
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TABLE 3 | The mean FA, MD, and CBF values of the PVWMH, DWMH, and their corresponding layers (mean ± SD).

CBF(ml/100 g-tissue/min) FA MD(10−4mm2/s)

PVWMH DWMH PVWMH DWMH PVWMH DWMH

WMH 22.20 ± 6.85 30.72 ± 9.74 0.266 ± 0.031 0.289 ± 0.057 13.62 ± 1.52 10.34 ± 1.77

Layer 1 23.66 ± 7.05 29.94 ± 8.83 0.310 ± 0.041 0.310 ± 0.056 11.48 ± 1.46 9.86 ± 1.60

Layer 2 24.73 ± 7.11 30.58 ± 8.67 0.322 ± 0.048 0.316 ± 0.056 10.99 ± 1.56 9.69 ± 1.53

Layer 3 25.85 ± 7.22 30.93 ± 8.62 0.329 ± 0.052 0.321 ± 0.056 10.75 ± 1.52 9.68 ± 1.59

Layer 4 26.97 ± 7.29 31.31 ± 8.67 0.334 ± 0.053 0.324 ± 0.054 10.51 ± 1.46 9.63 ± 1.63

Layer 5 28.06 ± 7.39 31.68 ± 8.76 0.337 ± 0.055 0.325 ± 0.052 10.37 ± 1.50 9.75 ± 1.67

Layer 6 29.11 ± 7.53 32.18 ± 8.91 0.339 ± 0.056 0.325 ± 0.050 10.18 ± 1.43 9.72 ± 1.67

Layer 7 30.02 ± 7.62 32.72 ± 9.05 0.338 ± 0.056 0.325 ± 0.048 10.11 ± 1.36 9.77 ± 1.74

Layer 8 31.22 ± 7.72 33.18 ± 9.14 0.338 ± 0.056 0.325 ± 0.048 10.03 ± 1.33 9.75 ± 1.69

Layer 9 32.25 ± 7.85 33.72 ± 9.26 0.336 ± 0.055 0.325 ± 0.046 10.03 ± 1.30 9.73 ± 1.72

Layer 10 33.17 ± 7.97 34.10 ± 9.28 0.332 ± 0.055 0.324 ± 0.045 10.01 ± 1.29 9.75 ± 1.73

Layer 11 33.82 ± 8.37 34.40 ± 9.19 0.328 ± 0.055 0.323 ± 0.044 10.00 ± 1.26 9.83 ± 1.69

Layer 12 34.67 ± 8.13 34.88 ± 9.20 0.324 ± 0.054 0.321 ± 0.043 9.99 ± 1.27 9.83 ± 1.60

Layer 13 35.28 ± 8.14 35.26 ± 9.24 0.320 ± 0.054 0.319 ± 0.042 9.96 ± 1.31 9.92 ± 1.61

Layer 14 35.77 ± 8.18 35.52 ± 9.18 0.315 ± 0.054 0.317 ± 0.042 9.97 ± 1.32 9.94 ± 1.60

Layer 15 36.21 ± 8.30 35.76 ± 8.93 0.311 ± 0.056 0.315 ± 0.042 10.01 ± 1.37 9.97 ± 1.53

WBNAWM 33.45 ± 8.58 33.45 ± 8.58 0.312 ± 0.026 0.312 ± 0.026 9.19 ± 0.74 9.19 ± 0.74

FA, fractional anisotropy; MD, mean diffusivity; CBF, cerebral blood flow; WMH, white matter hyperintensity; WBNAWM, whole brain normal-appearing white matter;

SD, standard deviation.

cognitive function and the contribution of subtle abnormalities
within the penumbras to cognitive function remains unclear. The
present study aimed to explore the role of WMH penumbras in
global cognition of svMCI subjects. Our results revealed reduced
CBF and FA, and increased MD, of WMH and its surrounding
NAWM for both PVWMH and DWMH. Our findings also
showed that the CBF penumbra was wider than the structural
penumbra as defined by FA and MD.

Our finding that CBF penumbras were more extensive than
structural penumbras around both PVWMH and DWMH was
consistent with a previous study (27). Wider CBF penumbras
covered structural penumbras and no microstructural changed
NAWM, suggesting the likelihood that compromised CBF
precedes white matter integrity changes. Longitudinal research
is needed to determine whether perfusion or structural changes
come first. CBF plays a critical role in the maintenance
of neuronal integrity, and the CBF penumbra may reflect
more extensive white matter alterations beyond the structural
penumbra. A previous longitudinal study found that NAWM
voxels that converted to newWMH at follow-up had significantly
lower baseline CBF than persistent NAWM voxels that did
not convert to WMH, suggesting that the CBF penumbra is
linked to WMH extension (28). Lower CBF within NAWM
reflects a higher risk for future conversion to WMH. Thus,
the CBF penumbras of both PVWMH and DWMH can be
considered novel targets for prediction and intervention of
WMH progression. Our findings showed that CBF gradually
increased from NAMW layer 1 to layer 15, suggesting that subtle
NAWM injury is likely a continuous process, and WMH growth
is mostly from inner NAWM layers of existing WMHs to outer

layers. This finding supported those of previous studies, revealing
that most growing WMHs extended from the edge of existing
lesions to the outer region (22, 28).

Consistent with previous studies, we found that the FA
and MD penumbras covered 2–6mm from WMHs (22, 27,
29). Our results showed that the FA values of the inner
periventricular NAWM layers were slightly higher than those
of the outer periventricular NAWM layers and the mean
whole-brain NAWM. The “location effect” may explain this
phenomenon (27). PVWMHs are located near highly organized
myelinated structures, such as the corpus callosum, where water
diffusion is highly restricted and dependent on fiber direction.
Other studies have also shown similar phenomena (27, 50).
DTI measures of WM microstructural integrity appeared to
provide an earlier indication of WM injury than WMHs. A
previous study demonstrated that NAWM regions converting to
WMH had significantly lower FA and higher MD values than
persistent NAWM regions, suggesting that changes in NAWM
precede the development of WM lesions (33). Moreover, vast
number of studies have revealed that the pathophysiological
alterations in WM is a gradual process and WMHs are only
the tip of the iceberg of WM pathology (23, 29, 51, 52).
Decreased FA and increased MD within NAWM and WMH
indicate microstructural WM integrity disruption and altered
water mobility, which may affect the integrity of WM tracts
connecting cortical-subcortical areas, leading to disconnection
syndrome and cognitive decline (53, 54).

Only the PVWMH-FA penumbra was correlated with global
cognition, whereas that correlation did not survive after
correcting the p-value formultiple comparisons. The relationship
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FIGURE 2 | Group means of the PVWMH (the left column) and DWMH (the right column) and their outer NAWM layers. The solid horizontal and dotted lines represent

the mean and standard error of the whole-brain NAWM CBF, FA, and MD values, respectively. Red arrows represent the outer boundary of WMH penumbra for each

dataset. (A) PVWMH-CBF; (B) PVWMH-FA; (C) PVWMH-MD; (D) DWMH-CBF; (E) DWMH-FA; (F) DWMH-MD.

between penumbra findings and cognition was weak. This
likely represents the fact that these physiological processes of
penumbra are no destructive per se but are established risk
factors for future brain injury that will associated with progressive
cognitive impairment. However, the exact reason underlying this
occurrence is not well-established, and further studies are needed.

Our finding that there was no significant correlation between
the imaging parameters within WMHs, including the two

classifications, and global cognitive function was not consistent
with those of previous studies (55, 56). A previous study revealed
that global cognitive function, assessed by Mini-Mental State
Examination (MMSE), was associated with total brain NAWM-
FA and WMH-FA in subjects with leukoaraiosis using a multiple
linear regression analysis (55). A population-based study also
showed that MD, radial diffusivity and axial diffusivity of both
WMH and NAWM were associated with global cognition,
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TABLE 4 | Relations between the mean FA, MD, and CBF values of PVWMH, DWMH, and their penumbras with composite z-scores of global cognition.

Mean values of imaging

parameters

r p-value p-value corrected by

FDR

PVWMH-CBF 22.20 0.112 0.421 0.6495

PVWMH-FA 0.267 0.115 0.341 0.6495

PVWMH-MD 13.62 0.077 0.522 0.6960

DWMH-CBF 30.72 0.171 0.226 0.6945

DWMH-FA 0.289 0.046 0.707 0.7370

DWMH-MD 10.34 −0.13 0.286 0.6945

Mean CBF of PVWMH-CBF penumbra 28.52 −0.047 0.737 0.7370

Mean FA of PVWMH-FA penumbra 0.328 0.268 0.024 0.2880

Mean MD of PVWMH-MD penumbra 10.71 −0.047 0.696 0.7370

Mean CBF of DWMH-CBF penumbra 31.33 0.213 0.129 0.6945

Mean FA of DWMH-FA penumbra 0.318 0.096 0.433 0.6945

Mean MD of DWMH-MD penumbra 9.8 −0.110 0.370 0.6945

The p-values are corrected by false discovery rate later on. PVWMH, periventricular white matter hyperintensity; DWMH, deep white matter hyperintensity; CBF, cerebral blood flow

(ml/100 g-tissue/min); FA, fractional anisotropy; MD, mean diffusivity (10−4mm2/s); FDR, false discovery rate.

FIGURE 3 | Associations between the mean FA of the PVWMH-FA penumbra

and the composite z-scores of global cognition. Partial r and p-values was

obtained after controlling for age, sex, and education.

regardless of white matter atrophy and WMH volume (57). The
lack of correlation between imaging parameters and cognition in
our study, which was inconsistent with these previous studies,
may be attributed to two aspects as follows. On the one hand,
this discrepancy may be attributed to the different participants
and methods used to assess cognitive status. On the other
hand, the heterogeneity of WMHs may partly explain this
discrepancy. Postmortem studies have revealed that WMHs are
histopathologically heterogeneous in both severity and nature
(26). The spatial distribution and the signal properties, including
magnetization transfer imaging, DTI and FLAIR, of WMHs
have also been revealed to be heterogeneous, though WMHs
have similar appearances on FLAIR and T2-weighted images
(32, 58, 59). Given that WMHs are heterogeneous in terms of
histopathology, spatial distribution and the signal properties,

mixed analysis of WMHs may compromise the reliability of the
analysis in assessing the association of WMHs with cognitive
function, which may partly explain our finding. Though it is not
feasible or realistic to control all the heterogeneities of WMHs in
one study, future studies should be conducted to stratify WMHs
according to their heterogeneities.

Measures of microstructural integrity and perfusion within
WMH penumbra may have several clinical implications. First, to
prevent WMH growth, it is crucial to understand the etiology
of development of NAWM tissue within WMH penumbra
into WMH which represents more severe WM injury. A
longitudinal study had showed that radial diffusivity, reflecting
demyelination (60, 61), had the strongest relationship withWMH
expansion compared to axial diffusivity and CBF, indicating
that demyelination may be the main underlying etiology of
WMH development (62). Second, previous longitudinal studies
had found that some WMH may regress after minor stroke,
with potentially better clinical and brain tissue outcomes,
suggesting that WMH reversibility may attribute to the transient
disturbance of the blood-brain barrier (BBB), causing interstitial
fluid alterations (63–66). A longitudinal study revealed that
participants with WMH decrease had larger reductions in blood
pressure and MD in NAWM than participants with WMH
increase (66). Thus, ASL CBF and DTI measures may be used to
investigate cerebral perfusion andmicrostructural integrity as the
potential mechanism explaining the reversal ofWMH andWMH
penumbra. Third, a clinician should take into account that the
true WM injury may be more extensive than the visible WMH.
WMH penumbra represents milder WM injury concerning
WMH and may be a high-priority target for intervention as it
is potentially reversible to treatment.

There were several limitations to our study. First, because
there is no generally adopted rule for defining the extent ofWMH
penumbras to date, we defined the CBF penumbra by comparing
the mean CBF of each NAWM layer to that of the whole-brain
NAWM. Whole-brain NAWM already contained subtle changes
in the NAWM. Thus, the CBF penumbra defined by this method
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is slightly narrower than the real CBF penumbra. Second, the
number of lacunes, WMH location and corresponding cortical
dysfunction also have an impact on cognitive impairments (67,
68). The associations between WMHs and their penumbras with
cognition may be mediated by these confounders. In the present
study, we only investigated the effect of WMH penumbras on
cognitive status. Our future work will seek to quantify and model
these confounders for the purpose of better understanding the
role of WMH penumbra in cognition. Third, in this study, we
assumed that WMHs equably affects surrounding NAMW along
the straight line between the two, without taking the architecture
of WM fibers into consideration. It may be more biologically
plausible to assume that a WMH at one location on a WM fiber
more strongly influences WM integrity along the rest of the same
tract than in other tracts. However, it seems to be unfeasible and
unrealistic to use DTI tractography to investigate eachWMH and
its penumbra one by one. Finally, our study was a cross-sectional
study, and the sample size was small. Longitudinal studies with
larger sample sizes are needed.

CONCLUSION

In this study, reduced CBF and FA and increased MD in
the inner NAWM layers for both PVWMH and DWMH
suggested extensive WM alterations beyond the visible WM
lesions commonly observed on clinical MRI of svMCI subjects.
CBF penumbras cover more extensive WM at risk than DTI
penumbras, suggesting the likelihood that compromised CBF
precedes white matter integrity changes, and CBF penumbras
may be a potential target for the prevention of further
microstructural white matter damage. The imaging parameters
investigated, however, did not correlate to cognition.
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