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Spinal cord injury (SCI) can result in an irreversible disability due to loss of sensorimotor
function below the lesion. Presently, clinical treatments for SCI mainly include surgery,
drugs and postoperative rehabilitation. The prospective roles of bioscaffolds and
exosomes in several neurological diseases have been reported. Bioscaffolds can
reconnect lesion gaps as well as transport cells and bioactive factors, which in turn can
improve axonal and functional regeneration. Herein, we explicate the respective roles of
bioscaffolds and exosomes in SCI, and elucidate on the usage of combinational therapy
involving bioscaffolds and extracellular vesicles (EVs) in improving SCI.

Keywords: spinal cord injury, stem cell therapy, neuronal damage, functional and axonal regeneration,
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INTRODUCTION

Spinal cord injury (SCI) is a severe neurological trauma with high morbidity and mortality
(Ni et al., 2015). The pathophysiological mechanism of SCI is still unclear. SCI pathological
processes are divided into primary and secondary injury processes (Ozturk et al., 2018). We
have extensively elucidated these SCI pathological processes in our previous reports (Liu et al.,
2018; Xu L. et al., 2018; Zhou et al., 2018). In the event of SCI, the routine management will
involve surgical, medicinal and rehabilitation therapies (Sandrow-Feinberg and Houlé, 2015; Frank
and Roynard, 2018). Owing to the ineffectiveness of these therapies, the search for effective
treatment strategies for SCI is of prime importance, most especially to clinicians and patients.
There have been suggestions that the potential usage of bioscaffold and stem cell therapies could
improve spontaneous functional recovery in SCI. Extracellular vesicles (EVs), a form of endogenous
nanovesicles, have been and are still being studied extensively in some neurological disorders
(Chopp and Zhang, 2015; Ojha et al., 2017; Osier et al., 2018). In this report, we delve into

Abbreviations: SCI, spinal cord injury; NSCs, neural stem cells; EVs, extracellular vesicles; mRNA, messenger RNA;
lncRNA, long non-coding RNA; miRNA, microRNA; MVBs, multivesicular bodies; CSF, cerebrospinal fluid; PrPC,
cellular prion protein; TSEs, transmissible spongiform encephalopathies; BBB, the blood-brain barrier; CNS, the central
nervous system; NOD, nucleotide-binding-and-oligomerization domain; NLRP-1, nucleotide-binding-and-oligomerization
domain-like receptor protein-1; ASC, apoptosis-associated speck like protein containing a caspase recruitment domain;
siRNA, short-interfering RNA; MSCs, mesenchymal stem cells; PTEN, phosphatase and tensin homolog; EGFR, epidermal
growth factor receptor; TCP, tricalcium phosphate.
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some of the studies that have been conducted pertaining
to the contributory roles of bioscaffolds and EVs in SCI
and present our perspective on the usage of combined
bioscaffold-EVs in SCI.

THE EFFECTS OF BIOSCAFFOLDS IN SCI
TREATMENT

Regeneration is hampered after SCI. This is because the
microenvironment created following SCI is not conducive
for cell migration and axonal growth. Axonal regulation is
a vital part in nerve repair. Bioscaffolds can ameliorate the
spinal cord microenvironment and direct cell behaviors such
as migration, proliferation and differentiation (Caicco et al.,
2013). Current research studies are focused on developing
scaffolds that could steer axonal regeneration and reduce scar
tissue formation. The combination of biomaterials with stem
cells did improve SCI functional recovery (Khaing et al.,
2014; Zweckberger et al., 2016). Biomaterial scaffolds have
the ability to create a substrate where cell growth could be
engineered in a highly controlled fashion (Mackenzie and
Rademakers, 2008; Hakim et al., 2015). The combination
of growth factors and biomaterial scaffolds demonstrated
effective SCI repair by decreasing lesion cavity, promoted
vascular formation and increased neural cell attachment
and axonal outgrowth (Grulova et al., 2015). Spinal cord
injured neurons have limited growth potential, and an adverse
microenvironment could potentiate the differentiation of neural
stem cells (NSCs) into astrocytes and oligodendrocytes rather
than neurons (Fan et al., 2017; Piltti et al., 2017). Thus,
in the event of SCI, a favorable microenvironment that has
the capacity to promote NSCs differentiation and improve
neurological functions will be paramount. Scaffolds possess
superior biocompatibility and low immunogenicity, thus being
able to establish a favorable microenvironment for SCI
(Altinova et al., 2014; Takashima et al., 2015). Although the
application of an ideal bioscaffold for SCI treatment in the
clinical setting is presently of great interest, its potentiality in
instigating inflammation is a drawback. Scaffolds can potentially
induce immune responses in patients (Theodore et al., 2016;
Zhao et al., 2017).

The capability of scaffolds in maintaining the normal state
in cell differentiation processes is required for SCI recovery
(Kadoya et al., 2016). Scaffold features, which include non-
toxicity, non-carcinogenic, biocompatible and biodegradable
are imperative for SCI therapy (Novikova et al., 2018). In
the event of SCI, stem cell transplantations could potentially
replace lost tissue components, contribute to remyelination
of damaged axons and secrete growth factors (Karamouzian
et al., 2012; Shin et al., 2018). Transplanted cells include
embryonic/neuronal stem cells, mesenchymal stem cells (MSCs),
Schwann cells and olfactory ensheathing cells (Vismara et al.,
2017; Yang et al., 2017). Scaffold and transplantation of selective
stem cells might remedy the issue of regeneration in SCI.
Bioscaffolds could combine with stem cells; with the combination
providing physical support for the lesion gap and steering
cell migration, proliferation and differentiation. In favorable

conditions, stem cells could differentiate into neurons and
secrete growth factors. Bioscaffold-based stem cell therapy could
provide a favorable microenvironment. Taken together, the
features of combined bioscaffold-stem cell could improve SCI
(Figure 1).

PROSPECTIVE ROLE OF EVs IN SCI
TREATMENT

EVs
EVs are membrane vesicles that are released from a variety
of cell types into the extracellular space (van der Pol
et al., 2012). EVs mainly consist of exosomes (diameter:
30–100 nm), microvesicles (diameter: 100–1,000 nm) and
apoptotic bodies (diameter: 1,000–5,000 nm; van der Pol
et al., 2012; Iessi et al., 2017; Caruso Bavisotto et al.,
2019). EVs have gained much attention in recent years
(Verma et al., 2015). EVs were first discovered in sheep
reticulocytes in 1983, with its name, ‘‘exosome,’’ coined in
1987 (Pan and Johnstone, 1983; Johnstone et al., 1987). EVs
are small vesicles that contain nucleic acids such as DNA,
messenger RNA (mRNA), long non-coding RNA (lncRNA),
microRNA (miRNA), proteins and lipids (Hong et al., 2017;
Mo et al., 2018; Torralba et al., 2018). EVs originate from the
inward budding of cells called multivesicular bodies (MVBs).
Undergoing a maturation process, intraluminal vesicles (pre-
exosomes) that have accumulated in the MVBs blend with
the plasma membrane, subsequently releasing EVs (Caruso
Bavisotto et al., 2019). EVs’ life journey includes endosome
biogenesis, transport, release and re-uptake by endocytosis
(Wang et al., 2017).

EVs can be extricated by several methods including
ultracentrifugation, filtration centrifugation, density gradient
centrifugation and immunomagnetic separation (Schageman
et al., 2013; Brownlee et al., 2014; Muller et al., 2014). A number
of cells can secrete EVs in both normal and pathological
conditions. EVs are naturally present in body fluids, including
blood, saliva, urine, cerebrospinal fluid (CSF) and breast milk

FIGURE 1 | Ideal bioscaffold-based stem cell therapy for spinal cord
injury (SCI).
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(Prada and Meldolesi, 2016). The numerous sources of EVs show
their potentiality of being employed in the clinical setting, as they
are readily available in the event that they are needed. In other
words, EVs could be used extensively if they are effective and
easy to obtain. That said, EVs derived from human plasma could
potentially be unsafe. For example, EVs delivering pathological
prions could affect normal cells and EVs carrying miR-29b
could impede the neuroprotective function in HIV patients (Hu
et al., 2012; Berrone et al., 2015; Caruso Bavisotto et al., 2019).
Cellular prion protein (PrPC) from plasma-derived EVs might
contribute to the pathogenesis and propagation of prion diseases
such as transmissible spongiform encephalopathies (TSEs), a
type of neurodegenerative disease (Berrone et al., 2015; Properzi
et al., 2015b). The study by Nonaka et al. (2013) reported TAR
DNA-binding protein 43 (TDP-43) aggregates to be potentially
conveyed from one cell to the other, to some extent, via EVs.
Aggregates of TDP-43 are implicated in both frontotemporal
dementia and amyotrophic lateral sclerosis (ALS) with all these
studies put across, choosing the safest source of exosomes is
paramount. In this regard, we refer to the article by Campanella
et al. (2019). One of the suggested choices out across by
the authors was the employment of EVs that had could be
extracted from the same patient so as to avoid the issue of
immunogenicity-associated complications. These EVs, of course,
would have to be subjected to therapies and tinkering. The
only hindrance to this choice, however, will be the lengthened
time that it will take for the therapy to be initiated following
injury. The secretion of EVs by host cells to recipient cells
could regulate the biological activities of the recipient cells
through the substances that the EVs carry (De Toro et al., 2015).
The molecular mechanisms involved in the secretion, uptake,
transmission of signals and corresponding functions between
cells are still unclear.

Potential Applications of EVs
EVs are involved in intercellular communication and play
important roles in the regulation of stem cell maintenance, tissue
repair and immunosurveillance (Katsman et al., 2012; Robbins
and Morelli, 2014; Benito-Martin et al., 2015; Rani et al., 2015).
EVs can transport molecules and modulate biological functions
within recipient cells (Montecalvo et al., 2012; Logozzi et al.,
2019). The multiple functions of EVs and their superiority such
as small size have raised the possibilities for their development
and usage as therapeutic, diagnostic and screening purposes
for some diseases. For instance, miRNA-derived EVs could be
used as non-invasive biomarkers to screen and diagnose lung
cancer (Cazzoli et al., 2013). As a messenger of information
exchange between cells, EVs could potentially transmit genetic
information and proteins through the following manner: (1) EVs
membrane can fuse with target cell membrane and directly
release its RNAs or proteins directly; (2) EVs membrane protein
can bind to target cell membrane protein and activate a series
of signaling pathways; and (3) EVs membrane proteins can
be cleaved by proteases in the extracellular matrix, with the
cleaved fragments acting as ligands to bind to receptors on the
target cell membrane and cause a cascade reaction (Wahlgren
et al., 2012; Mulcahy et al., 2014; Yoon et al., 2014). EVs

could be internalized by recipient cells through mechanisms
such as endocytosis including clathrin-mediated endocytosis,
phagocytosis, macropinocytosis and plasma or endosomal
membrane fusion. Endocytosis is an energy-dependent process
and is indicative of endocytic pathways (Mulcahy et al.,
2014). The size, contents and membrane composition of EVs
are heterogeneous and depend on the cellular source, state
and environmental conditions. The function of exosomes also
depends on the type of cells where they are derived, which
could be utilized in many applications such as immune response,
antigen presentation, cell migration and differentiation, and
tumor invasion (Frydrychowicz et al., 2015; Pusic et al., 2016).
Tumor-derived EVs were involved in the exchange of genetic
information between tumor cells and normal cells, which was
impetus to tumor invasion or inhibition (Zech et al., 2012). The
study by Cossetti et al. (2014) reported the possible key role of
EVs in serving as carriers in the soma-to-germline transmission
of nucleic acids (specifically RNA). EVs are involved in tumor
metastasis and chemotherapeutic drug resistance, which might
be the cause of tumor refractoriness (Federici et al., 2014; Xiao
et al., 2014; Kreger et al., 2016; Lugini et al., 2016). Exactly, in
turn, EVs-mediated treatments in tumors attracted the attention
of many researchers (Jang et al., 2013; Pascucci et al., 2014; Saari
et al., 2015; Kim M. S. et al., 2018). The use of EVs as a delivery
mechanism of chemotherapeutics such as cisplatin, doxorubicin
and highly cytotoxic drugs such as acridine orange increases
the therapeutic index of a tumor (Toffoli et al., 2015; Hadla
et al., 2016; Agrawal et al., 2017; Iessi et al., 2017). While the
vast majority of these studies showed a promising drug delivery
system of EVs in cancer, EVs could be applied in other conditions
such as SCI owing to its delivery efficacy, low immunogenicity
and high biocompatibility.

EVs act on the innate immune system as paracrine messengers
and have been described as pro-inflammatory mediators in many
chronic inflammatory diseases, such as rheumatoid arthritis and
atherosclerosis (Boilard et al., 2010; Holder et al., 2012; Hoyer
et al., 2012). They also exert immunomodulatory properties
against both infectious agents and tumors, and alleviate immune
abnormalities such as graft-vs.-host disease (Kordelas et al.,
2014). On the basis of these features, EVs could play a
contributory role in both the diagnosis and treatment of
immune-related or inflammatory diseases. Recently, researches
on EVs in many fields are in full swing (Bei et al., 2017; Fang
et al., 2018; Huang et al., 2018; Li H. et al., 2018; Nojehdehi
et al., 2018). Also, EVs could be used for cell co-culturing in vitro
or in vivo injection with biological activity. Another key feature
of EVs is their ability to cross the blood-brain barrier (BBB;
Zhuang et al., 2011; Chen et al., 2016). EVs in both circulation
and the CSF could make these vesicles unfold long-distance
communication and transport bioactive molecules to selected
targets. Circulating EVs could reveal the status of the tissue origin
and provide an accurate means for minimally invasive diagnosis
of neurological diseases. EVs have been applied as drug delivery
vehicles in Parkinson’s disease (Haney et al., 2015). Experiments
in rats showed MSCs-derived EVs attenuated inflammation
and demyelination of the central nervous system (CNS;
Li Z. et al., 2018).
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FIGURE 2 | Prospective role of extracellular vesicles (EVs) combined with bioscaffold in stem cell therapy for SCI.

Contribution of EVs in SCI
Treatment (Table 1)
Results from published EVs studies have been encouraging,
which in turn may increase their potential of being applied in
SCI (Xin et al., 2013; Properzi et al., 2015a; Zhang et al., 2015;
Kim et al., 2016; Liu et al., 2019; Ren et al., 2019). The innate
immune response plays a role in neuroinflammation following
CNS injury via activation of inflammasomes (Haneklaus
et al., 2013; de Rivero Vaccari et al., 2016). The expressions
of nucleotide-binding-and-oligomerization domain (NOD)-
like receptor protein-1 (NLRP-1) inflammasome, apoptosis-
associated speck-like protein containing a caspase recruitment
domain (ASC) and caspase-1 are significantly elevated in
spinal cord neurons following trauma. NLRP1 inflammasome
proteins are present in EVs derived from CSF after SCI.
EVs-mediated short-interfering RNA (siRNA) delivery inhibited
the inflammatory process following SCI (de Rivero Vaccari et al.,
2016). Owing to the lack of effective treatment for the primary
phase of SCI, the inhibition of the secondary phase of SCI
by effective measures could potentially curtail SCI-associated
disabilities. One of these effective measures, we believe, lies
in the application of EVs due to its numerous beneficial
factors. EVs released from mesenchymal stromal cells attenuated
apoptosis, inflammation and promoted angiogenesis following
SCI (Huang et al., 2017). Human umbilical cord MSCs-derived
EVs promoted functional recovery in SCI mice by curtailing
inflammation (Sun et al., 2018). EVs derived from miR-133b-
modified MSC promoted recovery after SCI (Li D. et al.,
2018). MSC-derived EVs reduced SCI-induced A1 astrocytes and
exerted anti-inflammatory and neuroprotective effects following
SCI (Wang et al., 2018). The EVs isolated from differentiated
PC12 cells and MSCs exerted a protective role in SCI treatment
by inhibiting the expression of phosphatase and tensin homolog
(PTEN; Xu G. et al., 2018). All these published studies evince

the therapeutic role of exosomes in SCI. Although the specific
mechanisms pertaining to the therapeutic effects of EVs in SCI
have not been clearly defined, there is the possibility that the
mechanisms might involve an inhibitory effect on neuronal cell
apoptosis and inhibition of inflammatory responses in a series
of signaling pathways: (1) Active Wnt proteins are secreted on
EVs; (2) EVs could transfer epidermal growth factor receptor
(EGFR) to endothelial cells, and subsequently activate both
MAPK and Akt pathways; (3) Exosomal miR-9 could stimulate
angiogenesis by activating JAK-STAT signal pathway; (4) EVs
from activated CD8+ T-cell could activate ERK and NF-κB
pathways; and (5) nanovesicles could activate the JNK and
c-Jun signaling cascades in MSCs (Al-Nedawi et al., 2009; Cai
et al., 2012; Zhuang et al., 2012; Kim H. Y. et al., 2018). In
view of the fact that the precise pathophysiology of EVs in
SCI presently remains unclear, these related signaling pathways
warrant further studies as they could potentially shed light on
EVs’ pathophysiology.

EVs are characterized by their ability to transfer proteins
and genetic information to instruct intercellular communication.
Through the employment of EVs, we are of the view that
the alteration of detrimental messages produced in damaged
tissues could potentially be instrumental in SCI treatment. SCI
could be improved by loading certain substances that have
anti-inflammatory effects. Since the instigation of signaling
pathways by inflammatory factors is one of SCI pathogenesis,
EVs could be employed to inhibit the inflammatory process
following injury. For example, a specific inhibitor of certain
signaling pathways could be combined with EVs and injected
into the injured spinal cord. Also, the encapsulation and
transportation of proteins, RNAs and drugs might provide
novel insights for the treatment of diseases such as SCI.
RNAs and proteins packaged within EVs are stable, thus,
increasing their potential application in clinical therapies. In two
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TABLE 1 | Summary of applications of exosomes.

Applications Sample source Conclusions References

Lung cancer Human Exosomes may serve as minimally invasive diagnostic
applications.

Cazzoli et al. (2013)

Cancer-directed immune response Rat Exosomes may distinctly affect the immune system. Zech et al. (2012)
Preeclampsia Human Microvesicles can modulate immune cell responsiveness

at different times of pregnancy and in preeclampsia.
Holder et al. (2012)

Graft-versus-host Disease (GvHD) Human Mesenchymal stem cells-exosome therapy improved
clinical GvHD symptoms significantly.

Kordelas et al. (2014)

Type-1 diabetes mellitus (T1DM) Mice Exosomes exert ameliorative effects on autoimmune
T1DM.

Nojehdehi et al. (2018)

Colorectal cancer Human Exosomes derived from hypoxic colorectal cancer
enhance prometastatic behaviors and may provide new
targets for colorectal cancer treatment.

Huang et al. (2018)

Cardiac ischemia-reperfusion injury Mice Exercise-derived extracellular vesicles might serve as a
potent therapy for myocardial injury in the future.

Bei et al. (2017)

Hepatocellular carcinoma Human Exosomal transfer of siGRP78 can suppress Sorafenib
resistance in hepatocellular carcinoma.

Li H. et al. (2018)

Steroid-induced femoral head necrosis
(SFHN)

Rat Exosomes affect SFHN osteogenesis and may develop
a novel therapeutic agent for SFHN.

Fang et al. (2018)

Parkinson’s disease Mouse Exosomes loaded with catalase produce a
neuroprotective effect.

Haney et al. (2015)

Autoimmune encephalomyelitis Rat Exosomes may be a promising cell-free therapy for
multiple sclerosis.

Li Z. et al. (2018)

Central nervous system (CNS) trauma Human Exosomes can deliver siRNA into the CNS to decrease
inflammasome activation.

de Rivero Vaccari et al.
(2016)

Traumatic brain injury (TBI) Rat Exosomes effectively improve functional recovery in rats
after TBI.

Zhang et al. (2015)

Stroke Rat Exosomes can be employed for stroke treatment. Xin et al. (2013)

separate animal studies, mesenchymal stromal cells-derived EVs
promoted neurovascular plasticity and functional recovery in
stroke and traumatic brain injury (Xin et al., 2013; Zhang et al.,
2015). Since EVs have the potential to exert beneficial therapeutic
effects in these neurological diseases, we believe it might exert
similar effects in SCI. That said, a thorough pre-clinical and
clinical studies are still needed to further evidence its suitability
in SCI therapy (Figure 2).

COMBINATION OF EVs AND BIOLOGICAL
SCAFFOLDS

We do believe a substantial improvement in SCI repair could
lie in the usage of combinational treatment methods. Though
several combinations have been evidenced to be significantly
better than single treatments, the complete recovery following
severe SCI has not been found (Tabesh et al., 2009). One of the
promising SCI therapies would be to incorporate biodegradable
polymer grafts with other therapeutic strategies. The study by
Huleihel et al. (2016) showed that vesicles (from ‘‘exomere’’-
sized particles to ‘‘microvesicles’’ of 1,000 nm) are associated with
scaffolds placed in different organ sites and that those vesicles
have different miRNA signatures, implying they might come
from tissue-specific cellular sources. These ‘‘inherent’’ vesicles
exhibited certain ex-vivo effects on neurite-like outgrowth from
neuroblastoma cells and promoted an M2-type macrophage
phenotype. Thus, the vesicles already present might influence
the surrounding cellular composition. It would, therefore, be
safe and logical to hypothesize that activated astrocytes and
microglia in a SCI setting could release pro-inflammatory

vesicles that could reside for potentially long periods of time
on these scaffolds, and possibly aid in the maintenance of the
inflammatory environment. Implantation of an ideal scaffold
could potentially inhibit glial scar formation and guide the
orientated axonal growth along the scaffold. This, in turn,
could reconnect neuronal relays between nascent and host
neurons and facilitate recovery of neurological function after
SCI. Additionally, an ideally modified scaffold integrating
bioactive factors might potentially exhibit neuroprotective effects
through its dispensation of physical support to bridge the
lesion gap following spinal cord transection or resection, as
well as providing guidance cues in nerve fiber regrowth and
functional regeneration of neural stem cells. Owing to the
microenvironment affecting spinal cord repair after injury,
the provision of a suitable microenvironment as well as
the inhibition of adverse environments during SCI repair
is paramount. Scaffold implantation could potentially induce
immune responses or inflammation. This, of course, would
not be conducive to SCI repair and would limit its clinical
therapeutic employment. In view of this, we hypothesize that
EVs combined with biological scaffold might hold promise
for spinal cord regeneration across the injured site with fewer
side effects. Also, the delivery of selective cargo in EVs that
attenuates adverse effects while exerting their therapeutic effects
would improve SCI. Stem cells have the potential of serving
as effective therapeutics for severe SCI provided that: (1) the
activation of biological factors is strictly controlled; (2) the
differentiation profiles of stem cells are properly regulated;
and (3) the microenvironment is suitable. One risk of stem
cells application is their potential of resulting in tumorigenesis
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(Rodriguez et al., 2012). MSCs administration might cause
a stoppage in the distal blood vessels due to their relatively
large cell size (Furlani et al., 2009). Thus, fully using the
advantages of stem cells while avoiding disadvantages is a critical
step toward applying them to SCI. Studies have attributed
the main therapeutic functions of stem cells to the paracrine
mechanisms, where EVs might be the most valuable therapeutic
factor (Ratajczak et al., 2014). EVs have low immunogenicity,
can cross the BBB and effectively deliver functional molecules
such as siRNA, miRNA and drugs to target cells (Alvarez-
Erviti et al., 2011; Zhuang et al., 2011; Fais et al., 2016).
Through the employment of receptor-mediated endocytosis for
internalization, EVs assisted in the delivery of drugs to target
cells; this was irrespective of the concentration gradient (Wang
et al., 2017). These characteristics support the feasibility of
being used in SCI treatment. Also, the release of functional
cargo in EVs from a suitable scaffold might play a significant
role in cell surface interactions, cell proliferation and migration
and interconnectivity. We do believe that in the event of SCI,
stem cells-derived EVs could reduce the complication associated
with scaffolds and improve the conveyance of nutrients to
the injured site, which, in turn, could potentially enhance
axonal regeneration.

MSC-derived EVs have been reported to be
non-immunogenic in the autologous setting and is well
tolerated in humans (Kusuzaki et al., 2017). Several studies have
evinced the feasibility of MSC-derived EVs in SCI treatment
(Kim H. Y. et al., 2018; Li D. et al., 2018; Sun et al., 2018; Wang
et al., 2018; Xu G. et al., 2018; Liu et al., 2019). In the light of
these, MSC-derived EVs could potentially be employed in SCI
therapy. With multifarious advantages such as diverse sources,
small size and ability to cross the BBB, the combination of
EVs with bioscaffold might improve SCI recovery. Just as stem
cells can combine with scaffold, EVs could also combine with
scaffolds in a similar manner as evidenced in several studies
(Gao et al., 2014; Gurruchaga et al., 2017; DeBrot and Yao,
2018). Briefly, through a series of techniques such as cell culture,
stimulation and EVs isolation and identification, EVs could
be blotted onto scaffold under sterile conditions and left still
for hours for the EVs to be completely absorbed to finalize the
combination of EVs and scaffolds (Zhang et al., 2016, 2017;
Wei et al., 2019). EVs derived from human-induced pluripotent
stem cell-derived MSC combined with tricalcium phosphate
(β-TCP) effectively promoted bone repair and regeneration in
a rat model of calvarial bone defects (Zhang et al., 2016). This
study established a strong possibility and regulation for the
practical study of biological scaffolds combined with EVs. On
the basis of EVs features such as information communication,
signaling intervention, drug delivery, stem cell sustenance and
immunosurveillance, the employment of bioscaffold-based EVs
therapy could potentially improve SCI.

CONCLUSION AND FUTURE
PERSPECTIVE

Axonal regeneration of CNS in their native environment is
intricate due to inhibitory functions in their extracellular
environment. This, in turn, complicates the management of
neurological disorders, including SCI. Several natural and
synthetic polymers have been used as either scaffolds or within
scaffolds for nerve regeneration. EVs that can be modified and
loaded with drugs or therapeutic agents are emerging to improve
SCI therapy efficiency, and exosomal cargo is an ideal biomarker
that can elucidate the complex mechanisms appertaining to SCI.
The stability of EVs in peripheral circulation suggests that they
can be used in SCI recovery. EVs can transfer their contents to
recipient cells, and can also be combined with either scaffold
or stem cells, resulting in augmented neuronal differentiation
and favorable microenvironment for SCI repair. In order to
expedite the usage of combinational therapy involving EVs and
bioscaffolds for SCI treatment in the clinical setting, we do
suggest the following:

1. Thorough elucidation of the specific type of EVs/parental cells
to employ in the event of SCI.

2. Thorough investigation of the gold standard approach to
isolating EVs and the tools for tracking EVs production,
uptake and long-term distribution;

3. Comprehensive elucidation of the precise mechanisms
underlying the application of EVs such as signaling pathways;

4. Exploration of inexpensive but excellent bioscaffolds that
could effectively bind and release EVs in a rational manner
(i.e., exosomes that could be released at the right time
and place);

5. Extensive investigation of the long-term possible adverse
reactions and response measures to these adverse reactions.

Additionally, larger clinical studies together with the
suggested points are also warranted. We do intend to
systematically investigate some of these suggestions in our
future studies.
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