Систематика Lycaenidae (Lepidoptera: Papilionoidea) юга России: молекулярно-генетические и морфологические аспекты

Taxonomy of Lycaenidae (Lepidoptera: Papilionoidea) of south of Russia: molecular genetic and morphological aspects

Б.В. Страдомский B.V. Stradomsky

Институт аридных зон ЮНЦ РАН, пр. Чехова, 41, Ростов-на-Дону 344006 Россия Institute of Arid Zones SSC RAS, Chekhov str., 41, Rostov-on-Don 344006 Russia. E-mail: bvstr@yandex.ru

Ключевые слова: Lepidoptera, Lycaenidae, юг России, молекулярно-генетические маркеры, COI, ITS2, гениталии. *Key words:* Lepidoptera, Lycaenidae, south of Russia, molecular genetic markers, COI, ITS2, genitals.

Резюме. Проведено комплексное изучение митохондриального (COI) и ядерного (ITS2) локусов ДНК представителей семейства Lycaenidae, обитающих на юге европейской части России и Северном Кавказе, и особенностей строения их гениталий.

Abstract. The author conducted a comprehensive study of mitochondrial (COI) and nuclear (ITS2) DNA loci of representatives of the family Lycaenidae (Southern Russia and the North Caucasus) and the structural features of their genitalia.

Введение

Система голубянок, несмотря на многочисленные варианты, до сих пор является далекой от совершенства. Среди всех предложенных систем необходимо выделить концепцию Элиота [Eliot, 1973] как наиболее приемлемую, хотя и несущую ряд недостатков, например излишнее дробление родов, что отчасти было откорректировано последующими исследованиями [Wiemers et al., 2010; Talavera et al., 2013]. Несмотря на то, что автор уделял внимание анализу преимущественно внешних морфологических признаков, его система учитывала и более фундаментальные критерии, такие как особенности строения гениталий.

В настоящее время максимальное внимание исследователей при создании естественной системы уделяетсяанализумолекулярно-генетическихмаркеров. Причем, как показывает опыт этих исследований, изучения только митохондриальной ДНК, максимально распространенного в исследованиях маркера, явно недостаточно. В этой связи обязательным при изучении таксономических взаимоотношений организмов являются и несцепленные с митохондриальными ядерные локусы ДНК.

С целью изучения таксономических взаимоотношений представителей семейства Lycaenidae, обитающих на территории юга европейской части России и Северном Кавказе, было проведено комплексное изучение митохондриального и ядерного локусов ДНК и особенностей строения их гениталий.

Материал и методы

Исследованные экземпляры хранятся в музее Южного научного центра Российской академии наук (Ростов-на-Дону, Россия). Экземплярам присвоены идентификационные музейные номера. Характеристики изученных экземпляров Lycaenidae представлены в таблице 1. Всего исследовано 69 видов.

Обработку образцов тканей, амплификацию участков митохондриального гена первой субъединицы цитохромоксидазы (COI) ДНК и ядерной некодирующей последовательности internal transcribed spacer 2 (ITS2), а также секвенирование амплифицированных фрагментов проводили аналогично процедурам, описанным ранее [Водолажский, Страдомский, 2008а].

Для получения ПЦР-продуктов СОІ использовали прямой праймер (5'-TAG CGA AAA TGA CTT TTT TCT A-3') и обратный праймер (5'-TTG CTC CAG CTA ATA CAG GTA A-3'), для ITS2 – прямой праймер (5'-GGG CCG GCT GTA TAA AAT CAT A-3') и обратный праймер (5'-AAA AAT TGA GGC AGA CGC GAT A-3') [Водолажский и др., 2009]. В случае изучения представителей рода *Lycaena* для ITS2 использовали прямой праймер (5'-ACT CCT GTC TGA GGG CCG GCT G-3') и обратный праймер (5'-TGA GGC AGA CTC GAT ATC CGT C-3').

Анализ первичных нуклеотидных последовательностей проводили с использованием программы BioEdit Sequence Alignment Editor [Hall, 1999].

Отличия суммарных COI-ITS2 нуклеотидных последовательностей определяли количественно с применением алгоритма Minimum Evolution с помощью программы MEGA5 [Tamura et al., 2011] и графически представляли в виде ME-кладограммы.

Результаты и обсуждение

В данном исследовании проведен сравнительный анализ двух несцепленных между собой генетических маркеров бабочек-голубянок Lycaenidae, обитающих на юге европейской части России и Северном Кавказе. В качестве маркеров использовали первичную

Б.В. Страдомский

Таблица 1. Исследованный материал: музейные номера и присвоенные номера Генбанка. Table 1. List of material with voucher codes and GenBank accession numbers.

Вид	Музейный №	COI GenBank	ITS2 GenBank
Species	Voucher No.	accession numbers	accession numbers
Polyommatus icarus (Rottemburg, 1775)	ILL041	FJ428822	GQ885165
Polyommatus eros (Ochsenheimer, 1808)	ILL145	KF647233	KF918764
Polyommatus damon ([Denis et Schuffermüller], 1775)	ILL139	KF647237	KF918759
Polyommatus ripartii (Freyer, 1830)	ILL150	KF647228	KF918773
Polyommatus yurinekrutenko Koçak, 1996	ILL155	KF468767	KF468769
Polyommatus damone (Eversmann, 1841)	ILL089	KC692328	KC692334
Polyommatus dagestanicus (Forster, 1960)	ILL147	KF647238	KF918758
Polyommatus dorylas ([Denis et Schiffermüller], 1775)	ILL148	KF647235	KF918762
Polyommatus thersites (Cantener, [1835])	ILL167	KF860861	KF918776
Polyommatus daphnis ([Denis et Schiffermüller], 1775)	ILL165	KF860855	KF918760
Polyommatus amandus (Schneider, 1792)	ILL170	KF860851	KF894393
Polyommatus corydonius (Herrich-Schaffer, [1852])	ILL102	FJ943962	HQ224580
Polyommatus bellargus (Rottemburg, 1775)	ILL108	HQ224583	HQ224579
Polyommatus coridon (Poda, 1761)	ILL109	FJ943961	HQ224577
Polyommatus coelestinus (Eversmann, 1843)	ILL169	KF860854	KF918757
Cyaniris semiargus (Rottemburg, 1775)	ILL163	KF860860	KF918774
Kretania sephirus (Frivaldszky, 1835)	ILL091	HM159434	HM175709
Kretania pylaon (Fischer von Waldheim, 1832)	ILL090	HM159433	HM175708
Kretania zephyrinus (Christoph, 1884)	ILL092	HM159435	HM175710
Kretania eurypilus (Freyer, [1851])	ILL156	KF647232	KF918766
Plebejidea loewii (Zeller, 1847)	ILL132	KC759733	KC759735
Agriades pyrenaicus (Boisduval, 1840)	ILL133	KC759734	KC759736
Eumedonia eumedon (Esper, [1780])	ILL162	KF860856	KF918765
Aricia anteros (Freyer, [1838])	ILL137	KF647244	KF894394
Aricia teberdina (Sheljuzhko, 1934)	ILL138	KF647227	KF918775
Aricia artaxerxes (Fabricius, 1793)	ILL115	KC676704	KC676706
Aricia agestis ([Denis et Schiffermüller], 1775)	ILL112	KC676703	KC676705
Plebejus argus (Linnaeus, 1758)	ILL157	KF860852	KF894397
Plebejus maracandicus (Erschoff, 1874)	ILL093	HM159432	HM175711
Plebejus argyrognomon (Bergsträsser, 1779)	ILL094	HM159431	HM175712
Plebejus idas (Linnaeus, 1761)	ILL146	KF647230	KF918768
Pseudophilotes bavius (Eversmann, 1832)	ILL114	KC692327	KC692333
Pseudophilotes vicrama (Moore, 1865)	ILL119	KC692331	KC692337
Praephilotes anthracias (Christoph, 1877)	ILL144	KF647243	KF894395
Scolitantides orion (Pallas, 1771)	ILL120	KC692329	KC692335
Turanana endymion (Freyer, [1850])	ILL152	KF647234	KF918763
Glaucopsyche alexis (Poda, 1761)	ILL158	KF647245	KF894392
Phengaris alcon ([Denis et Schiffermüller], 1775)	ILL140	KF647246	KF894391
Phengaris teleius (Bergsträsser, [1779])	ILL110	KC692330	KC692336
Phengaris arion (Linnaeus, 1758)	ILL100	KC692326	KC692332
Phengaris nausithous (Bergstrasser [1779])	ILL141	KF647229	KF918770
Tarucus balkanicus (Freyer, [1844])	ILL151	KF647241	KF894398

Celastrina argiolus (Linnaeus, 1758)	ILL154	KF647242	KF894396
Cupido minimus (Fuessly, 1775)	ILL164	KF860857	KF918769
Cupido osiris (Meigen, [1829])	ILL113	KC676700	KC676702
Cupido argiades (Pallas, 1771)	ILL116	KC676699	KC676701
Cupido alcetas (Hoffmansegg, 1804)	ILL142	KF647247	KF894390
Cupido decoloratus (Staudinger, 1886)	ILL143	KF647236	KF918761
Lampides boeticus (Linnaeus, 1767)	ILL159	KF860853	KF894399
Leptotes pirithous (Linnaeus, 1767)	ILL160	KF860858	KF918771
Tomares callimachus (Eversmann, 1848)	ILL153	KF647240	KF894400
Callophrys chalybeitincta Sovinsky, 1905	ILL095	JF810411	JF813099
Callophrys rubi (Linnaeus, 1758)	ILL080	JF810413	JF813097
Satyrium acaciae (Fabricius, 1787)	ILL123	JX112886	JX122754
Satyrium spini (Fabricius, 1787)	ILL126	JX112881	JX122757
Satyrium ilicis (Esper, [1779])	ILL128	JX112887	JX122759
Satyrium w-album (Knoch, 1782)	ILL125	JX112882	JX122756
Satyrium pruni (Linnaeus, 1758)	ILL124	JX112880	JX122755
Neolycaena rhymnus (Eversmann, 1832)	ILL099	JF810412	JF813098
Thecla betulae (Linnaeus, 1758)	ILL122	KC676696	KC676698
Favonius quercus (Linnaeus, 1758)	ILL161	KF860859	KF918772
Lycaena phlaeas (Linnaeus, 1761)	ILL118	KC676695	KC676697
Lycaena helle ([Denis et Schiffermüller], 1775)	ILL134	KF647231	KF918767
Lycaena thersamon (Esper, [1784])	ILL121	KC660004	KC660006
Lycaena dispar ([Haworth], 1802)	ILL117	KC618686	KC618685
Lycaena alciphron (Rottemburg, 1775)	ILL129	KC660003	KC660005
Lycaena tityrus (Poda, 1761)	ILL168	KF894389	KF918777
Lycaena candens (Herrich-Schäffer, [1844])	ILL136	KF647239	KF918756
Lycaena virgaureae (Linnaeus, 1758)	ILL135	KF647226	KF918778

нуклеотидную последовательность митохондриального гена COI, кодирующего первую субъединицу фермента цитохромоксидазы, а также ядерную нуклеотидную последовательность ITS2 – внутренний транскрибируемый спейсер 2 (internal transcribed spacer 2). В исследовании использовано 69 видов голубянок. В исследование не включены таксоны подвидового статуса, а также виды, которые ранее были сведены в синонимы [Водолажский, Страдомский, 20086; Страдомский, Фомина, 2013].

Модель, полученная для комбинации обоих изученных генов (COI+ITS2), позволила выделить ряд отдельных кластеров, в которые объединяются изученные виды (рис. 1). Так, в основании кладограммы расположена ветвь, включающая в себя представителей рода *Lycaena* Fabricius, 1807. В объеме этой клады представленные виды не образуют четко дифференцированных отдельных ветвей, что может свидетельствовать о принадлежности их одному роду. Такой вывод поддерживается также близким сходством генитальных структур представителей рода *Lycaena* (рис.2–7). Лопасти ункуса длинные, узкие, лентовидные; ветви гнатоса удлиненные, серпообразные; эдеагус длинный, конический, заостренный на вершине, в базальной части в месте крепления мышц-ретракторов имеет глубокий длинный вырез, отчетливо выделяющийся в латеральной проекции. Длина выреза не менее 1/4 длины эдеагуса. То есть и молекулярногенетические исследования, и исследования строения гениталий подтверждают, что род *Lycaena* является монофилетичным, а также отсутствует необходимость его дробления на отдельные роды. Таким образом, подсемейство Lycaeninae представлено на изучаемой территории только одним родом – *Lycaena*.

Следующая изолированная ветвь кладограммы включает в себя представителей трибы Theclini подсемейства Theclinae: *Thecla betulae* (Linnaeus, 1758) и *Favonius quercus* (Linnaeus, 1758). Сестринская ей ветвь кладограммы включает представителей триб Eumaeini и Tomarini того же подсемейства. Сравнение гениталий видов этих двух клад подчеркивает достоверность их разделения по молекулярно-генетическим маркерам (рис. 8–19). Так, вальвы представителей триб Eumaeini и Tomarini очень узкие, у *T. betulae* и *F. quercus* вальвы, напротив, широкие. В латеральной проекции дорсальные структуры гениталий самцов Eumaeini и Tomarini очень массивные, куполообразные, фактически примыкают к вальвам. У видов трибы Theclini дорсальные структуры возвышаются над вальвами. Б.В. Страдомский

Рис. 1. Lycaenidae: ME-кладограмма, построенная методом Минимальной Эволюции на основе последовательностей ДНК COI и ITS2. Fig. 1. Lycaenidae: ME-cladogram based on the Minimum Evolution method of analysis of distances for COI and ITS2 DNA sequences.

Рис. 2–7. Гениталии представителей рода *Lycaena* (2–4 – боковая проекция; 5–7 – ункус и гнатос). Шкала 2 мм. Figs 2–7. Genitalia of *Lycaena* species (2–4 – lateral view; 5–7 – uncus and gnathos). Scale bar 2 mm. 2, 5 – *L. alciphron*; 3, 6 – *L. dispar*; 4, 7 – *L. phlaeas*.

В то же время необходимо отметить, что целесообразность разделения голубянок на трибы Eumaeini и Tomarini представляется сомнительной. С точки зрения анализа молекулярно-генетических маркеров, род *Tomares* Rambur, 1840 фактически не образует самостоятельной клады, а принадлежит общей ветви с родами трибы Eumaeini. Также и при анализе гениталий не выявлено принципиальных отличий в строении этих структур между трибами Eumaeini и Tomarini (рис. 10–19).

Весьма неоднозначно с точки зрения и молекулярно-генетического исследования, и анализа строения гениталий также взаимоотношение родов Satyrium Scudder, 1876 и Neolycaena de Nicéville, 1890. Род Satyrium представляется парафилетической группой, т.к. в составе этой клады присутствует род Neolycaena (рис. 1). Очень сходны и гениталии этих родов. Здесь необходимо признать, что либо Neolycaena имеет подчиненное положение по отношению к роду Satyrium, либо из рода Satyrium необходимо вычленить такие таксоны, как w-album (Knoch, 1782) и pruni (Linnaeus, 1758), причем в целях поддержания монофилии каждый в самостоятельный род. То есть для поддержания естественной молекулярной классификации хвостаток существующие на настоящий момент таксономические решения оказываются непригодными.

В четвертой, крупнейшей, ветви кладограммы объединены представители подсемейства Polyommatinae, а с учетом того факта, что на изучаемой территории обитают виды только одной трибы этого подсемейства, выделенной Элиотом [Eliot, 1973], то трибы Polyommatini. В объеме данной клады однозначно вычленяется 7 независимых ветвей. В системе Элиота они соответствуют так называемым внетаксономическим секциям (Section). В нашем исследовании внетаксономическое понятие «секция» заменено на традиционный иерархический ранг подтриба.

Выделенные на основании молекулярногенетического анализа отдельные подтрибы Polvommatinae характеризуются своеобразием строения генитального аппарата их представителей. Так, например, у видов подтрибы Cupidina (типовой род *Cupido* Schrank, 1801) (= Section *Everes* sensu Eliot) характерным генитальным признаком, отличающим их от всех других представителей трибы, является непарная лопасть ункуса (рис. 20, 21, 23, 24, 26, 27). Подтриба Leptotina (типовой род Leptotes Scudder, 1876) (= Section Leptotes sensu Eliot) характеризуется наличием у ее представителей раздвоенного на вершине эдеагуса (рис. 22, 25, 28, 29). Необходимо отметить, что подтрибы Cupidina, Leptotina, а также Polyommatina были уже ранее выделены в этом таксономическом статусе на основании молекулярно-генетического анализа в работе Талаверы и др. [Talavera et al., 2013].

У *Celastrina argiolus* (Linnaeus, 1758) – представителя подтрибы Lycaenopsina (типовой род *Lycaenopsis* C. et R. Felder, [1865]) (= Section *Leptotes* sensu Eliot) – дорсальные структуры гениталий самца куполообразные, тегумен массивный, выпуклый, ветви гнатоса фактически отсутствуют, лопасти ункуса представлены короткими, направленными вентрально крючками (рис. 30, 33, 36).

Характерным отличительным признаком *Tarucus* balkanicus (Freyer, [1844]) – подтриба Castaliina (типовой род *Castalius* Hübner, [1819]) (= Section *Castalius* sensu Eliot) – является своеобразное строение юксты. Ее ветви расширены в чрезвычайно развитые треугольные лопасти, выходящие в латеральной проекции за пределы ветвей винулума (рис. 31, 34, 37).

Для *Lampides boeticus* (Linnaeus, 1767), представляющего подтрибу Lampidina (типовой род *Lampides*) (= Section *Lampides* sensu Eliot), отличительной чертой в строении гениталий является наличие коротких мягких ветвей гнатоса, вершинами направленых медиально (рис. 32, 35, 38).

Рис. 8–19. Гениталии представителей подсемейства Theclinae (8–10, 14–16 – боковая проекция, шкала 2 мм; 11–13, 17–19 – вальва, шкала 1 мм).

Figs 8–19. Genitalia of representatives of the subfamily Theclinae (8–10, 14–16 – lateral view, scale bar 2 mm; 11–13, 17–19 – valve, scale bar 1 mm). 8, 11 – *Thecla betulae*; 9, 12 – *Favonius quercus*; 10, 13 – *Tomares callimachus*; 14, 17 – *Callophrys rubi*; 15, 18 – *Satyrium acaciae*; 16, 19 – *Neolycaena rhymnus*.

Напротив, у видов, входящих в состав подтрибы Scolitantidina (типовой род *Scolitantides* Hübner, [1819]) (= Section *Glaucopsyche* sensu Eliot), ветви гнатоса длинные, вершинами направлены каудально. Гениталии представителей Scolitantidina характеризуются также короткими лопастями ункуса и коротким утолщенным эдеагусом с тупой вершиной (рис. 39–44).

Последней и самой многообразной подтрибой, представленной на юге европейской части России и Северном Кавказе, является Polyommatina (типовой род Polyommatus Latreille, 1804) (= Section Polyommatus sensu Eliot). Характерными признаками гениталий у представителей этого кластера являются удлиненные вальвы сложной структуры: наличие различных складок на их внутренней поверхности, костального и каудального отростков. Также примечательны удлиненные лопасти ункуса, ориентированные параллельно вальвам (рис. 45–50). Подтриба

насчитывает значительное количество родов. Причем результаты наших исследований по вычленению отдельныхклад, соответствующихопределеннымродам, практически совпадают с таковыми, представленными в работе Талаверы и др. [Talavera et al., 2013].

Таким образом, учитывая анализ молекулярногенетических маркеров и строения генитального аппарата изученных таксонов голубянок, следует в целом признать адекватность их системы, предложенной Элиотом [Eliot, 1973]. В то же время необходимо отметить ряд несоответствий молекулярногенетического и генитального анализа, с одной стороны, и, с другой стороны, существующей ныне систематики в таксономии подсемейства Theclinae. Разрешение этих спорных вопросов, несомненно, потребует дополнительных исследований с привлечением как материала из иных регионов, так, возможно, и новых критериев, не использованных в этой работе.

Рис. 20–38. Гениталии представителей подсемейства Polyommatinae (20–22, 30–32 – боковая проекция; 23–25, 33–35 – ункус и гнатос; 26–28,

36–38 – вальва; 29 – эдеагус). 20–24, 26, 27, 30–33, 35–38 – шкала 1 мм; 25, 28, 29, 34 – шкала 0.5 мм. Figs 20–38. Genitalia of representatives of the subfamily Polyommatinae (20–22, 30–32 – lateral view; 23–25, 33–35 – uncus and gnathos; 26–28, 36–38 – valve; 29 – aedeagus). 20–24, 26, 27, 30–33, 35–38 – scale bar 1 mm; 25, 28, 29, 34 – scale bar 0.5 mm.

20, 23, 26 - Cupido minimus; 21, 24, 27 - Cupido argiades; 22, 25, 28, 29 - Leptotes pirithous; 30, 33, 36 - Celastrina argiolus; 31, 34, 37 - Tarucus balkanicus; 32, 35, 38 – Lampides boeticus;

Рис. 39–44. Гениталии представителей подсемейства Polyommatinae (39–41 – боковая проекция; 42–44 – ункус и гнатос). Шкала 1 мм. Figs 39–44. Genitalia of representatives of the subfamily Polyommatinae (39–41 – lateral view; 42–44 – uncus and gnathos). Scale bar 1 mm. 39, 42 – *Turanana endymion*; 40, 43 – *Pseudophilotes bavius*; 41, 44 – *Glaucopsyche alexis*;

Рис. 45–50. Гениталии представителей подсемейства Polyommatinae (45–47 – боковая проекция, шкала 2 мм; 48–50 – ункус и гнатос, шкала 1 мм). Figs 45–50. Genitalia of representatives of the subfamily Polyommatinae (45–47 – lateral view, scale bar 2 mm; 48–50 – uncus and gnathos, scale bar 1 mm). 45, 48 – Polyommatus amandus; 46, 49 – Eumedonia eumedon; 47, 50 – Plebejus maracandicus.

Литература

- Водолажский Д.И., Страдомский Б.В. 2008а. Исследование филогенеза подрода *Polyommatus* (s. str.) Latreille, 1804 (Lepidoptera: Lycaenidae) с использованием маркеров мтДНК. Часть I. *Кавказский энтомологический бюллетень*. 4(1): 123–130.
- Водолажский Д.И., Страдомский Б.В. 2008б. Исследование голубянок группы Lysandra corydonius (Herrich-Schöffer, 1804) (Lepidoptera: Lycaenidae) с использованием маркеров мтДНК. Кавказский энтомологический бюллетень. 4(3): 353–355.
- Водолажский Д.И., Вимерс М., Страдомский Б.В. 2009. Сравнительный анализ последовательностей митохондриальной и ядерной ДНК голубянок подрода *Polyommatus* (s. str.) Latreille, 1804 (Lepidoptera: Lycaenidae: *Polyommatus*). Кавказский энтомологический бюллетень. 5(1): 115–120.
- Страдомский Б.В., Фомина Е.С. 2013. Сравнение таксонов *Polyommatus yurinekrutenko* Koçak, 1996 и *P. shamil* (Dantchenko, 2000) (Lepidoptera: Lycaenidae). *Кавказский энтомологический бюллетень*. 9(1): 181-182.

- Eliot J.N. 1973. The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. *Bulletin of the British Museum (Natural History), entomology.* 28: 371–505.
- Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series*, 41: 95–98.
- Talavera G., Lukthanov V.A., Pierce N.E., Vila R. 2013. Establishing criteria for higher level taxonomic classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). *Cladistics*. 29: 166–192.
- Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology end Evolution*. 28: 2731–2739.
- Wiemers M., Stradomsky B.V., Vodolazhsky D.I. 2010. A molecular phylogeny of *Polyommatus* s. str. and *Plebicula* based on mitochondrial COI and nuclear ITS2 sequences (Lepidoptera: Lycaenidae). *European Journal* of Entomology. 107(3): 325–336.

References

- Eliot J.N. 1973. The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bulletin of the British Museum (Natural History), entomology. 28: 371-505.
- Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95–98.
- Stradomsky B.V., Fomina E.S. 2013. The comparison of taxa Polyommatus yurinekrutenko Kocak, 1996 and P. shamil (Dantchenko, 2000) (Lepidoptera: Lycaenidae). Caucasian Entomological Bulletin. 9(1): 181–182 (in Russian).
- Talavera G., Lukthanov V.A., Pierce N.E., Vila R. 2013. Establishing criteria for higher level taxonomic classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). *Cladistics*. 29: 166-192.
- Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology end Evolution*. 28: 2731–2739.

- Vodolazhsky D.I., Stradomsky B.V. 2008a. Phylogenetic analysis of subgenus *Polyommatus* (s. str.) Latreille, 1804 (Lepidoptera: Lycaenidae) based on mtDNA markers. Part I. *Caucasian Entomological Bulletin.* 4(1): 123–130 (in Russian).
- Vodolazhsky D.I., Stradomsky B.V. 2008b. A study of blues butterflies of the group of Lysandra corydonius (Herrich-Schaffer, 1804 (Lepidoptera: Lycaenidae) with the use of mtDNA markers. Caucasian Entomological Bulletin. 4(3): 353-355 (in Russian).
- Vodolazhsky D.I., Wiemers M., Stradomsky B.V. 2009. A comparative analysis of mitochondrial and nuclear DNA sequences in blue butterflies of subgenus *Polyommatus* (s. str.) Latreille, 1804 (Lepidoptera: Lycaenidae: *Polyommatus*). *Caucasian Entomological Bulletin.* 5(1): 115– 120 (in Russian).
- Wiemers M., Stradomsky B.V., Vodolazhsky D.I. 2010. A molecular phylogeny of *Polyommatus* s. str. and *Plebicula* based on mitochondrial COI and nuclear ITS2 sequences (Lepidoptera: Lycaenidae). *European Journal of Entomology*. 107(3): 325–336.