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Abstract. In this paper, we study to express the theory of curves including a wide section of Euclidean

geometry in terms of dual vector calculus which has an important place in the three -dimensional dual

space D3. In other words, we study DAW (k)-type curves (1 ≤ k ≤ 3) by using Bishop frame defined as

alternatively of these curves and give some of their properties in D3. Moreover, we define the notion of

evolutes of dual spherical curves for ruled surfaces. Finally, we give some examples to illustrate our findings.

1. Introduction

The analytical tools in the study of 3-dimensional kinematics and differential geometry of ruled surfaces

are based on dual vector calculus. Dual numbers were introduced in the 19th century by Clifford as a tool

for his geometrical investigations. In addition, their applications to rigid body kinematics were generalized

by Study in their principal of transference. The application of dual numbers to the lines of 3-space is

carried out by the principle of transference which has been formulated by E. Study [1]. It allows a complete

generalization of the mathematical expression for the spherical point geometry to the spatial line geometry

by means of dual-number extension, i.e., replacing all ordinary quantities by the corresponding dual-number

quantities.

In other words, in the Euclidean 3-space E3, lines combined with one of their two directions can be represented
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by unit dual vectors over the ring of dual numbers. The most important properties of real vector analysis

are valid for the dual vectors and the oriented lines in E3 are in one-to-one correspondence with the points

of a dual unit sphere.

A dual point in dual space D3 corresponds to an oriented line in E3 and two different points in D3 represent

two skew-lines in E3 in general. A differentiable curve on dual unit sphere in D3 represents a ruled surface

in E3 [2]. Ruled surfaces are those surfaces which are generated by moving a straight line continuously in

the space [3]. In the light of this correspondence, dual spherical motion, expressed with the help of dual unit

vectors, is closely analogous to real spherical motion, expressed with the help of real unit vectors. Therefore,

the properties of elementary real spherical motion can also be carried over by analogy into the motion of

lines in E3.

The notion of AW (k)− type submanifolds was defined by K. Arslan and A. West [4]. After that, a lot of

work related to curves of AW (k)− type has been done (see for example [5–7]). In [8], the authors studied

DAW (k)− type curves on the dual unit sphere using Frenet frame.

In this paper, we investigate the DAW (k)−type curves and give the curvature conditions of these curves

using a Bishop frame which has many properties that make it ideal for mathematical research. It also

has applications in the area of biology and computer graphics, for example it may be possible to compute

information about the shape of sequences of DNA using a curve defined by Bishop frame. Also, it may

provide a new way to control virtual cameras in computer animations.

2. Fundamental concepts

In this section, we briefly give the mathematical formulations and basic concepts that are needed in our

study.

2.1. Bishop frame. Let α : I ⊂ R→ E3 be a unit speed curve in the Euclidean 3-space E3 (i.e. its tangent

vectors are normed over the whole parameter interval I). Therefore, the Frenet equations along α are defined

as follows [9–11]: 
T′

N′

B′

 =


0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0




T

N

B

 , (2.1)

where {T(s),N(s),B(s)} is the moving Frenet frame along α and the functions κ(s) and τ(s) are respectively,

the curvature and torsion of α.

The Bishop frame of 1-type or parallel transport frame is an alternative approach to define a moving frame

that is well defined even when the curve has vanishing second derivative. The tangent vector and any

convenient arbitrary basis for the remainder of the frame are used. To define the Frenet frame, curvature

and torsion of a curve, this curve needs to be 3-times continuously differentiable non-degenerate. But the
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curvature function may vanish at some points on the curve, i.e., second derivative of the curve may be zero

at some parameter values. In this situation, we need an alternative frame in E3.

We can parallel transport an orthonormal frame along α(s) simply by parallel transporting each component

of the frame. The tangent vector and any convenient arbitrary basis for the remainder of the frame are used.

This frame is denoted by {T(s),N1(s),N2(s)}, and its derivative is expressed using matrix coefficients k1

and k2. 
T′

N′1

N′2

 =


0 k1(s) k2(s)

−k1(s) 0 0

−k2(s) 0 0




T

N1

N2

 . (2.2)

Thereby the relation between Frenet and Bishop frames are given as follows
T

N

B

 =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ




T

N1

N2

 , (2.3)

where

θ(s) = arctan(
k2
k1

); k1 6= 0, τ(s) =
dθ(s)

ds
, κ(s) =

√
k21 + k22,

k1 = κ cos θ and k2 = κ sin θ, (2.4)

and k1, k2 are called the first and second Bishop curvatures and effectively correspond to a cartesian coor-

dinate system for the polar coordinates κ, θ.

2.2. Dual space. Here, we give the notions of dual space and dual spherical curves of ruled surfaces. For

more detailed descriptions, see [ [12–16]].

Let a and a∗ be two real numbers and ε 6= 0, ε2 = 0. A dual number â is an ordered pair of the form

(a, a∗) for all a, a∗ ∈ R. Let R× R be a set denoted as D, where

D = â = a+ εa∗ : a, a∗ ∈ R, (2.5)

and the dual numbers form a ring over the real number field.

Two inner operations and an equality on D are defined as follows:

(1) ⊕ : D × D → D for â = (a, a∗), b̂ = (b, b∗) defined as â ⊕ b̂ = (a + b) + ε( a∗ + b∗), is called the

addition in D.

(2) � : D × D → D for â = (a, a∗), b̂ = (b, b∗) defined as â � b̂ = ab + ε( a∗b + ab∗), is called the

multiplication in D.

(3) For the equality of â and b̂ we have â = b̂⇔ a = b, and a∗ = b∗.
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The dual number â = a+ εa∗ divided by the dual number b̂ = b+ εb∗ provided b 6= 0 can be defined as

â

b̂
=
a+ ε a∗

b+ εb∗
=
a

b
+ ε

a∗b− b∗a
b2

. (2.6)

Obviously, the set D with the operations of addition, multiplication and equality on D = R × R is a ring

with non trivial zero devisors. In a dual number â = (a, a∗) ∈ D, the real number a is called the real part

of â and the real number a∗ is called the dual part of â. The dual number (1, 0) = 1 is called a real unit in

D and the dual number (0, 1) is to be denoted with ε in short, and is called dual unit [9].

The set of

D3 = D× D× D = {â : â = a + εa∗,a,a∗ ∈ R3}; (2.7)

a = (a1 , a2 , a3),a∗ = (a∗1, a
∗
2, a
∗
3)

is a module over the ring D.

For any â, b̂ ∈ D3, the inner product and the vector product are defined as follows:

< â, b̂ >=< a,b > +ε(< a,b∗ > + < a∗,b >),

â× b̂ = a× b + ε(a× b∗ + a∗ × b), (2.8)

respectively. If a 6= 0, then the norm is defined by

‖â‖ =
√
< â, â > = ‖a‖+ ε

< a,a∗ >

‖a‖
. (2.9)

A dual vector â with norm 1 is called a dual unit vector. Let â = a + εa∗ ∈D3, the set

Ŝ2 = {â = a + εa∗ : ‖â‖ = (1, 0); a,a∗ ∈ R3}, (2.10)

is called the dual unit sphere with center Ô in D3. Via this we have the following map (E. Study’s map, c.f.

Figure 1): The set of all oriented lines in Euclidean space E3 is in one-to-one correspondence with set of

points of dual unit sphere in D3−space [13,14,16].

Dual function of dual number presents a mapping of a dual number space on itself. Properties of dual

functions were thoroughly investigated by Dimentberg [17]. He derived the general expression for dual

analytic (differentiable) function as follows:

f(â) = f(a + εa∗) = f(a) + εa∗ f ′(a),

where f ′(a) is the derivative of f(a) and a,a∗ ∈ R. This definition allows us to write the dual forms of some

well-known function as follows:
sin(â) = sin(a + εa∗) = sin(a) + εa∗ cos(a),

cos(â) = cos(a + εa∗) = cos(a)− εa∗ sin(a),
√

â =
√

a + εa∗ =
√

a + ε a∗

2
√
a
, (a > 0).
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The E. Study’s map allows us to write a ruled surface by a dual vector function. So, ruled surfaces and dual

curves are synonymous in this paper.

Consider the dual Serret–Frenet frame {T̂(ŝ), N̂(ŝ), B̂(ŝ)} associated with a dual curve α̂(ŝ), then the

Serret–Frenet formulae read:
T̂
′

N̂
′

B̂
′

 =


0 k̂ 0

−k̂ 0 τ̂

0 −τ̂ 0




T̂

N̂

B̂

 ,

(
′ =

d

dŝ

)
, (2.11)

where k̂ = k̂(ŝ) and τ̂ = τ̂(ŝ) are called the dual curvature function and the dual torsion function, respectively.

3. DAW (k)−type curves

In this section, we consider AW (k)−type curves in the dual space D3 and denote this type of curves

by DAW (k)−type. For this purpose, let {T̂, N̂1, N̂2} be a dual Bishop frame of α̂(ŝ). Then the Bishop

formulas of α̂ are given by 
T̂′

N̂′1

N̂′2

 =


0 k̂1 k̂2

−k̂1 0 0

−k̂2 0 0




T̂

N̂1

N̂2

 , (3.1)

where

T̂ = T + εT∗, N̂1 = N1 + εN∗1 , N̂2 = N2 + εN∗2,

k̂1 = k1 + εk∗1 and k̂2 = k2 + εk∗2 .

Proposition 3.1. Let α̂ be a unit speed dual curve with arc length parameter ŝ and {T̂, N̂1, N̂2} be its

Bishop frame. There within follows for its derivatives

α̂8 = T̂,

α̂88 = k̂1N̂1 + k̂2N̂2,

α̂888 = −
(
k̂21 + k̂22

)
T̂ + k̂81N̂1 + k̂82N̂2,

α̂8888 = −
((

k̂21 + k̂22

)8
+ k̂1k̂

8
1 + k̂2k̂

8
2

)
T̂

+
(
k̂881 − k̂31 − k̂1k̂22

)
N̂1

+
(
k̂882 − k̂32 − k̂21 k̂2

)
N̂2. (3.2)
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Notation 3.1. From proposition 3.1, we can write

V̂1 = k̂1N̂1 + k̂2N̂2,

V̂2 = k̂81N̂1 + k̂82N̂2,

V̂3 =
(
k̂881 − k̂31 − k̂1k̂22

)
N̂1

+
(
k̂882 − k̂32 − k̂21 k̂2

)
N̂2. (3.3)

Definition 3.1. [4] The unit speed dual curves of osculating order 3 are

(i): of Bishop DAW (1)−type if and only if

V̂3 = 0,

(ii): of Bishop DAW (2)−type if and only if

∥∥∥V̂2

∥∥∥2 V̂3 =
〈
V̂3, V̂2

〉
V̂2,

(iii): of Bishop DAW (3)−type if and only if

∥∥∥V̂1

∥∥∥2 V̂3 =
〈
V̂3, V̂1

〉
V̂1. (3.4)

Proposition 3.2. The unit speed dual curve is of Bishop DAW (1)−type if and only if Bishop curvature

equations

k881 − k31 − k1k22 = 0, k882 − k32 − k21k2 = 0,

k∗881 − 3k21k
∗
1 − k22k∗1 − 2k1k2k

∗
2 = 0, k∗882 − 3k22k

∗
2 − k21k∗2 − 2k1k2k

∗
1 = 0, (3.5)

hold.

Proof. By the aid of definition 3.1 and notation 3.1, one can obtain

(
k̂881 − k̂31 − k̂1k̂22

)
N̂1 +

(
k̂882 − k̂32 − k̂21 k̂2

)
N̂2 = 0. (3.6)

Since N̂1 and N̂2 are linearly independent, then

k̂881 − k̂31 − k̂1k̂22 = 0,

k̂882 − k̂32 − k̂21 k̂2 = 0. (3.7)

By separating Eqs. (3.7) into real and dual parts we obtain the desired equations. �
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Proposition 3.3. The unit speed dual curve is of Bishop DAW (2)−type if and only if the Bishop curvature

equations (
k881 − k31 − k1k22

)
k82 =

(
k882 − k32 − k21k2

)
k81,

(
k881 − k31 − k1k22

)
k∗82 +

(
k∗881 − 3k21k

∗
1 − k∗1k22 − 2k1k2k

∗
1

)
k82

=
(
k882 − k32 − k21k1

)
k∗81 +

(
k∗882 − 3k22k

∗
2 − 2k1k

∗
1k2 − k21k∗2

)
k81. (3.8)

hold.

Proof. In the light of definition 3.1 and notation 3.1, it is easy to get(
k̂822 k̂

88
1 − k̂31 k̂822 − k̂1k̂42

)
N̂1 +

(
k̂821 k̂

88
2 − k̂32 k̂821 − k̂21 k̂2k̂821

)
N̂2

=
(
k̂81k̂

88
2 k̂

8
2 − k̂32 k̂81k̂82 − k̂21 k̂2k̂81k̂82

)
N̂1 +

(
k̂81k̂

88
2 − k̂32 k̂81 − k̂21 k̂2k̂81

)
N̂2,

then (
k̂881 − k̂31 − k̂1k̂22

)
k̂82 =

(
k̂882 − k̂32 − k̂21 k̂2

)
k̂81. (3.9)

Similarly, by separating Eq. (3.9) into real and dual parts, we get Eq. (3.8). �

Proposition 3.4. The unit speed dual curve is of Bishop DAW (3)−type if and only if the Bishop curvature

equations (
k881 − k31 − k1k22

)
k2 =

(
k882 − k32 − k21k2

)
k1,

(
k881 − k31 − k1k22

)
k∗2 +

(
k∗881 − 3k21k

∗
1 − k∗1k22 − 2k1k2k

∗
2

)
k2

=
(
k882 − k32 − k21k1

)
k∗1 +

(
k∗882 − 3k22k

∗
2 − 2k1k

∗
1k2 − k21k∗2

)
k1. (3.10)

hold.

Proof. Using definition 3.1 and notation 3.1, we have(
k̂21 k̂

88
1 − k̂31 k̂22 − k̂51 + k̂1k̂2k̂

88
2 − k̂42 k̂1 − k̂31 k̂22

)
N̂1 +

((
k̂882 − k̂32 − k̂21 k̂2

)(
k̂21 + k̂21

))
N̂2

=
(
k̂21 k̂

88
1 − k̂51 − k̂31 k̂22 + k̂881 k̂

2
2 − k̂31 k̂22 − k̂1k̂42

)
N̂1

+
(
k̂22

(
k̂882 − k̂32 − k̂21 k̂2

)
+ k̂1k̂2

(
k̂881 − k̂31 − k̂1k̂22

))
N̂2,

it follows that {
k̂881 − k̂31 − k̂1k̂22

}
k̂2 =

{
k̂882 − k̂32 − k̂21 k̂2

}
k̂1. (3.11)

Separating Eq. (3.11) into real and dual parts, we obtain Eq. (3.10). �



Int. J. Anal. Appl. 16 (5) (2018) 621

4. Evolutes of dual spherical curves for ruled surfaces

In this section, we give the notions of dual spherical curves of ruled surfaces as well as evolutes of these

curves. For more detailed descriptions (see [12, 15, 16, 18, 19]). A ruled surface is a surface swept out by a

straight line L moving along a curve β = β(t). The various positions of the generating lines L are called the

rulings of the surface. Such a surface, thus, has a parametrization in the ruled form

Ψ (t, v) = β(t) + vα(t); v ∈ R. (4.1)

Here, β = β(t) is called the base curve, α = α(t) is the unit vector giving the direction of generating line,

and t is the motion parameter. The base curve is not unique, because any curve of the form

γ(t) = β(t) + η(t)α(t), (4.2)

may be used as its base curve, η(t) is a smooth function. If there exists a common perpendicular to two

neighboring rulings on Ψ , then the foot of the common perpendicular on the main ruling is called a central

point. The locus of the central points is called the striction curve. In Eq. (4.2), if

η(t) = −〈β
′(t), α′(t)〉
‖α′(t)‖2

, (4.3)

then γ(t) is called the striction curve on the ruled surface Ψ, and it is unique. The base curve β(t) of the

ruled surface is its striction curve if and only if 〈β′(t), α′(t)〉 = 0.

While a differentiable curve on the dual unit sphere Ŝ2 corresponds to a ruled surface in E3. A differentiable

curve γ̂ on a dual unit sphere, depending on real parameter t, represents a differentiable family of straight

lines in E3, which we call a ruled surface. The ruled surface Ψ is written as the dual vector function γ̂ given

by (according to the E. Study’s dual-line coordinates)

γ̂(t) = U(t) = α(t) + εγ(t) ∧ α(t) = α(t) + εα∗(t), (4.4)

where α∗ is the moment of α about the origin in E3, and ε is an indeterminate subject to the relation ε2 = 0.

Hence, ruled surfaces and dual curves are synonymous in this work. Because 〈γ̂(t), γ̂(t)〉 = 1, thus, the ruled

surface can be represented by the dual curve on the surface of a dual unit sphere Ŝ2 (see Fig. 1 and Fig. 2).

Then γ̂(t) is called the dual spherical curve of ruled surface Ψ.

Now, as in real spherical geometry, we define an orthonormal moving frame along this dual curve as

follows [18]:

U1 = U(t), U2(t) =
U′1
‖ U′1‖

, U3(t) = U1 ∧U2. (4.5)

From now on we consider the case without α(t) = constant vector and α∗(t) = 0. In the case α(t) = constant

vector, the ruled surface Ψ (t, v) is a cylinder and in the case α∗(t) = 0, the ruled surface Ψ (t, v) is a cone.
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Figure 1. Ruled surface mapped to the dual spherical curve.

The dual unit vectors U1,U2 and U3 corresponds to three concurrent mutually orthogonal lines in E3.

Their point of intersection is the central point on the ruling U1, U3(t) is the limit position of the common

perpendicular to U1(t), and is called the central tangent of the ruled surface U1 = U(t) at the central

point. The line U2 = U2(t) is called the central normal of U1 = U(t) at the central point. Moreover, the

dual planes which correspond to the subspaces Sp{U1,U2}, Sp{U3,U2}, and Sp{U1,U3}, respectively, are

called the tangent plane, asymptotic plane and normal plane. By construction, the Blaschke formula is
U′1

U′2

U′3

 =


0 P 0

−P 0 Q

0 −Q 0




U1

U2

U3

 ,
′
=

d

dt
, (4.6)

where

〈U2,U2〉 = 1 = 〈U3,U3〉, 〈U1,U2〉 = 0,

and

P = p+ εp∗ = ‖ U′1‖ , Q = q + εq∗ =
det( U1, U′1,U

′′
1)

‖ U′1‖
3 , (4.7)

are called the Blaschke’s invariants of the dual curve U1(t). One of the invariants of the dual curve U1 =

U1(t) is

Σ : =
Q

P
, P 6= 0, (4.8)

which is well-known as the dual geodesic curvature in Ŝ2 [19,20]. Then, as in the case of real spherical curve,

we may write for the dual curve U(t) the following formulas:

K := κ+ εκ∗ =
√

1 + Σ2, T := τ + ετ∗ = ± Σ
′

1 + Σ2
, (4.9)

where K = K(t) is the dual curvature, and T = T (t) is the dual torsion of the dual curve U = U(t). Due

to [16], the evolute of the dual unit spherical curve γ̂ is the locus of all its centers of geodesic curvature. So,

it can be defined through the following form

Eγ̂(ŝ) =
1√

1 + Σ2
(ΣU1 + U3), (4.10)



Int. J. Anal. Appl. 16 (5) (2018) 623

where ŝ =
t∫
t1

‖(γ̂′(t))‖ dt = s+ εs∗ is the dual arc length of the curve γ̂(t) from t1 to t.

Under the previous notations about dual spherical curves and their evolutes we can summarize the following

results:

Corollary 4.1. Let γ̂ : I ⊂ D→ Ŝ2 be a dual regular unit spherical curve of a ruled surface, then γ̂ and its

osculating dual circle have a four-point contact at γ̂(ŝ0) if and only if Σ′(ŝ) = 0 and Σ′′(ŝ) 6= 0.

Corollary 4.2. [16] The evolute of the dual unit spherical curve γ̂ at ŝ0 is diffeomorphic to the ordinary

cusp if Σ′(ŝ0) = 0 and Σ′′(ŝ0) 6= 0. The ordinary cusp is Ĉ = {(â1, â2)
∣∣â21 = â32

)
}.

Lemma 4.1. The dual spherical curve γ̂(ŝ) is a great circle if the dual geodesic curvature function Σ(ŝ) of

γ̂ is identically zero, and then the ruled surface is a right helicoid and the striction curve is a geodesic curve.

5. Examples

Example 5.1. Let α̂ be a dual curve in D3 defined by

α̂ (ŝ) =
(
sin ŝ, sin ŝ cos ŝ, cos2 ŝ

)
=

(
sin s, sin s cos s, cos2 s

)
+ εs∗ (cos s, cos 2s,− sin 2s) ; ŝ = s+ εs∗.

The corresponding ruled surface is given by

rα(s, v) = α ∧ α∗ + vα

=
(
− cos2 s+ v sin s, cos3 s+ sin s sin 2s+ v cos s sin s,− sin3 s+ v cos2 s

)
.

After some calculations, we obtain

T̂ =

( √
2 cos ŝ√

3 + cos 2ŝ
,

√
2 cos 2ŝ√

3 + cos 2ŝ
,−
√

2 sin 2ŝ√
3 + cos 2ŝ

)
,

N̂ =

(
− 2 sin ŝ√

3 + cos 2ŝ
√

13 + 3 cos 2ŝ
,− 12 sin 2ŝ+ sin 4ŝ

2
√

3 + cos 2ŝ
√

13 + 3 cos 2ŝ
,−

4
(
cos4 ŝ+ cos 2ŝ

)
√

3 + cos 2ŝ
√

13 + 3 cos 2ŝ

)
,

B̂ =

(
− 2

√
2√

13 + 3 cos 2ŝ
,

2
√

2 cos3 ŝ√
13 + 3 cos 2ŝ

,
−3 sin ŝ− sin 3ŝ√

26 + 6 cos 2ŝ

)
.

And

κ̂ =
2
√

13 + 3 cos 2ŝ

(3 + cos 2ŝ)3/2
, τ̂ = − 12 cos ŝ

13 + 3 cos 2ŝ
,

θ̂ =

∫
τ̂(ŝ)dŝ =

1

2

√
3

2
ln

(
8
√

6− 12 sin ŝ

2
√

6 + 3 sin ŝ

)
,

k̂1 = κ̂ cos θ̂ =
2
√

13 + 3 cos 2ŝ

(3 + cos 2ŝ)3/2

(
cos

[
1

2

√
3

2
ln

(
8
√

6− 12 sin ŝ

2
√

6 + 3 sin ŝ

)])
.
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Figure 2. The ruled surface corresponding to the dual unit spherical curve α̂.

k̂2 = κ̂ sin θ̂ =
2
√

13 + 3 cos 2ŝ

(3 + cos 2ŝ)3/2

(
sin

[
1

2

√
3

2
ln

(
8
√

6− 12 sin ŝ

2
√

6 + 3 sin ŝ

)])
.

In the case that ŝ = 3π/2, we get

k̂1 = −0.34, k̂2 = 2.21, k̂81 (s) = 0, k̂82 (s) = 0, k̂881 (s) = 3.46, k̂882 (s) = −4.90.

According to Proposition 3.3, the curve α̂ is of Bishop DAW(2)-type because(
k̂881 (s)− k̂31 (s)− k̂1 (s) k̂22 (s)

)
k̂82 (s) =

(
k̂882 (s)− k̂32 (s)− k̂21 (s) k̂2 (s)

)
k̂81 (s) = 0.

Also, according to Propositions 3.2 and 3.4, α̂ is neither of Bishop DAW(1)-type nor Bishop DAW(3)-type

because

k̂881 (s)− k̂31 (s)− k̂1 (s) k̂22 (s) 6= 0, k̂882 (s)− k̂32 (s)− k̂21 (s) k̂2 (s) 6= 0,

and {
k̂881 (s)− k̂31 (s)− k̂1 (s) k̂22 (s)

}
k̂2 (s) 6=

{
k̂882 (s)− k̂32 (s)− k̂21 (s) k̂2 (s)

}
k̂1 (s) .

Example 5.2. Let Ψ(s, v) be a ruled surface of E3 defined by [16]

Ψ(s, v) = γ(s) + vδ(s); v ∈ R,

where

γ(s) =

(
−2

1 + cos2 s
,

2 cos3 s

1 + cos2 s
,
− sin s− 2 sin s cos2 s

1 + cos2 s

)
and

δ(s) =
(
sin s, sin s cos s, cos2 s

)
.
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The ruled surface Ψ is written as the dual vector function γ̂ given by

γ̂(s) = Û(s) = δ(s) + ε γ(s) ∧ δ (s) ,

which can be expressed as follows

γ̂ (ŝ) = Û(ŝ) =
(
sin ŝ, sin ŝ cos ŝ, cos2 ŝ

)
.

Now, we can write the orthonormal moving frame
{

Û1, Û2, Û3

}
along this dual curve as follows

Û1 = Û(ŝ), Û2(ŝ) =
Û′1∥∥∥ Û′1

∥∥∥ , Û3(ŝ) = Û1 ∧ Û2.

Û1 =
{

sin ŝ, cos ŝ sin ŝ, cos2 ŝ
}
,

Û2 =

{ √
2 cos ŝ√

3 + cos 2ŝ
,

√
2 cos 2ŝ√

3 + cos 2ŝ
,−
√

2 sin 2ŝ√
3 + cos 2ŝ

}
,

Û3 =

{
−
√

2 cos2 ŝ√
3 + cos 2ŝ

,−−5 cos ŝ+ cos 3ŝ

2
√

2
√

3 + cos 2ŝ
,−
√

2 sin3 ŝ√
3 + cos 2ŝ

}
,

and

P =
∥∥∥ Û′1

∥∥∥ =

√
3 + cos 2ŝ√

2
,

Q =
det( U1, U′1,U

′′
1)

‖ U′1‖
3 = −

√
2(5 + cos 2ŝ) sin ŝ

(3 + cos 2ŝ)3/2
,

hence, the dual geodesic curvature

Σ̂ : =
Q

P
= −2(5 + cos 2ŝ) sin ŝ

(3 + cos 2ŝ)2
,

the dual curvature K = K(ŝ) and the dual torsion T = T (ŝ) of γ̂ are calculated as follows

K =

√
1 + Σ̂2 =

√
1 +

4(5 + cos 2ŝ)2 sin2 ŝ

(3 + cos 2ŝ)4
,

T = ± Σ̂
′

1 + Σ̂2
=

−106 cos ŝ+ 9 cos 3ŝ+ cos 5ŝ

2(3 + cos 2ŝ)3
(

1 + 4(5+cos 2ŝ)2 sin2 ŝ
(3+cos 2ŝ)4

) .
We obtain the evolute of the dual unit spherical curve of ruled surface as follows (see Fig. 3)

Eγ̂ (ŝ) =
(
Â1 (ŝ) , Â2 (ŝ) , Â3 (ŝ)

)
,

where

Â1 (ŝ) =
1− 8

(3+cos 2ŝ)2 −
2

3+cos 2ŝ +
√
2√

3+cos 2ŝ
−
√
3+cos 2ŝ√

2√
1 + 4(5+cos 2ŝ)2 sin2 ŝ

(3+cos 2ŝ)4

,
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Â2 (ŝ) =

√
2 cos3 ŝ√
3+cos 2ŝ

− 2 cos ŝ (5+cos 2ŝ) sin2 ŝ
(3+cos 2ŝ)2 +

√
2 sin ŝ sin 2ŝ√

3+cos 2ŝ√
1 + 4(5+cos 2ŝ)2 sin2 ŝ

(3+cos 2ŝ)4

,

Â3 (ŝ) =

(
−1 + 4

(3+cos 2ŝ)2 −
2
√
2√

3+cos 2ŝ
+
√
3+cos 2ŝ√

2

)
sin ŝ√

1 + 4(5+cos 2ŝ)2 sin2 ŝ
(3+cos 2ŝ)4

.

Also, in the case that ŝ = 3π
2 , we get

Σ̂′E(
3π

2
) = 0, Σ̂′′E(

3π

2
) = −8.

Then the evolute of the dual unit spherical curve γ̂ at ŝ = 3π
2 is diffeomorphic to the ordinary cusp and

hence, the corollary 4.2 is satisfied.
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Figure 3. The dual spherical curve γ̂ (the red color) of the ruled surface Ψ and its evolute

(the blue color).

6. Conclusion

In this work, we have studied dual curves in dual space D3 due to the notion of AW (k)-type curves

which was defined by K. Arslan and A. West [4] and denote it by DAW (k) curves. Besides, some conditions

on curvatures of these curves to be of DAW (k)-type using Bishop frame were introduced. In addition,

according to the E. Study of the correspondence between the oriented lines in Euclidean three space and the

dual points of the dual unit sphere in dual three space, we have obtained evolutes of dual spherical curves

for ruled surfaces. Finally, the obtained results were confirmed by giving two examples.
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