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Abstract. The analytical solutions of the fractional diffusion equations in one and two-dimensional spaces

have been proposed. The analytical solution of the Cattaneo-Hristov diffusion model with the particular

boundary conditions has been suggested. In general, the numerical methods have been used to solve the

fractional diffusion equations and the Cattaneo-Hristov diffusion model. The Laplace and the Fourier sine

transforms have been used to get the analytical solutions. The analytical solutions of the classical diffusion

equations and the Cattaneo-Hristov diffusion model obtained when the order of the fractional derivative

converges to 1 have been recalled. The graphical representations of the analytical solutions of the fractional

diffusion equations and the Cattaneo-Hristov diffusion model have been provided.

1. Introduction

In fractional calculus, we have many fractional derivatives operators as: the Riemann-Liouville fractional

derivative [34] [36], the Caputo fractional derivative [8] [41], the Atangana-Baleanu fractional derivative

[2] [3] [4], the Caputo-Fabrizio fractional derivative [6] [30], the Conformable fractional derivative [42], the

generalized fractional derivatives in Caputo and Riemann-Liouville sense [21] [22] [24], and others. Fractional

calculus has many applications in mechanic, physics and science and engineering. Fractional calculus has

many applications in the viscoelastic models and the diffusion models. In [12] [13], Hristov treats on heat
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diffusion equation in term of the Caputo-Fabrizio time fractional derivative. In [10], Hristov proposes new

equations related to the fractional diffusion equations using the Atangana-Baleanu fractional derivative, see

others models in [23]. In [1], Alkahtani and Atangana discuss the numerical solution of the Cattaneo-Hristov

diffusion equation. In [26] Koca et al. propose the numerical solution of the second term of the Cattaneo-

Hristov diffusion equation. In [27], Li et al. have studied the Cauchy problem for nonlinear fractional

time-space generalized Keller-Segel equation using the Caputo fractional derivative. In [29], Yranli et al.

devoted to comparing the smoothing performance between the time fractional diffusion equation and the

classical diffusion equation using the regulation method, Savitzky-Golay, and coverer method. In [37], Ruan

et al. study a simultaneous identification problem of piecewise source term and the fractional order for

time-fractional diffusion equation. In [45], Zhang and al. propose a discrete form for solving time fractional

convection-diffusion equation. In [31], Ma et al. study asymptotic of the solutions to the fractional anomalous

diffusion equations. Several works related to the fractional diffusion equations exist in the literature. The

papers [5] [33] [39] [44] treat on fractional diffusion equations.

The fractional diffusion equation is obtained when a specific fractional derivative operator replaces the

ordinary derivative in the classical diffusion equation. In this paper, we use the Caputo fractional deriva-

tive. Podlubny [35] has introduced the fractional diffusion equation in fractional calculus. We propose the

analytical solutions of the fractional diffusion equations in one and two-dimensional spaces. Hristov [12]

introduced the Cattaneo-Hristov diffusion equation in fractional calculus. The author [12] opens news prob-

lems related to the analytical or approximate solutions of the Cattaneo-Hristov diffusion equation. Koca

et al. [26] propose the numerical and analytical solutions of the elastic part of the heat diffusion equation

process. Alkahtani et al. [1] propose the numerical solution of the complete Cattaneo-Hristov diffusion equa-

tion using the Crank-Nicholson numerical scheme. Hristov [12] proposes an approximate solution of the

Cattaneo-Hristov diffusion equation using the heat-balance integral method (HBIM). Hristov [12] proposes

a double integral-balance method (DIM) to get the approximate solution of the Cattaneo-Hristov diffusion

equation. The analytical or approximate solutions of the fractional diffusion equations using HBIM and

DIM were proposed in [14] [15] [16] [17] [18] [19] [20] [32]. The analytical solution of the Cattaneo-Hristov

equation was stated in [26] by Koca et al. They give the analytical solution of the elastic part of the heat

diffusion equation process. In this paper, we continue the work concerning the analytical solution stated

by Koca et al. in [26]. In this paper, we propose the analytical solution of the complete Cattaneo-Hristov

diffusion equation of the transient heat equation using an integral method. The integral method uses both

the Fourier sine transform and the Laplace transform. We will notice this integration method will permit

to express the analytical solutions of the fractional diffusion equations in the term of the Gaussian error

function and the Mittag-Leffler function [9] [40]. The graphical representations of the analytical solutions of

some particular fractional diffusion equations are provided.
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The paper is organized as follows: in Section 2, we recall preliminary definitions which we will use in this

paper. In Section 3, we analyze the analytical solutions of the fractional diffusion equation in one-dimensional

space. In Section 4, we get the analytical solution of the fractional diffusion equation in two-dimensional

space. In Section 5, we analyze some particular cases graphically. And we finish with Section 6 by giving

the conclusions and remarks.

2. Fractional diffusion equations

In this section, we present the fractional differential equations studied in this paper. The problems concern

the fractional diffusion equation in one and two-dimensional spaces. The classical diffusion equation defined

by the ordinary derivative is popular. Many works related to the analytical and the numerical solutions

exist. Diffusion phenomena, of heat or mass [12] [35] is represented as the following form

∂u(x, t)

∂t
= κ2

∂2u(x, t)

∂x2
(2.1)

where κ2 = K
ρCp

. We add the following informations.

• • • K represents the thermal conductivity,

• • • ρ represents the specific heat,

• • • Cp represents the density of the material,

• • • u represents the temperature distribution of the material.

The fractional diffusion equation is obtained when we replace the ordinary derivative by a fractional

derivative operators. The fractional diffusion equation described by the Caputo fractional derivative is

expressed in one-dimensional space by the following equation [11] [31] [35]

Dc
αu(x, t) = κ2

∂2u(x, t)

∂x2
(2.2)

where Dc
α represents the Caputo fractional derivative operator defined by [28] [40]

Dc
αu(x, t) =

1

Γ(1− α)

∫ t

0

u′(x, s)

(t− s)α
ds (2.3)

all t > 0, α ∈ (0, 1) , and Γ(.) denotes the Gamma function. κ2 represents the diffusion coefficient for

the density of the diffusion material. The boundary conditions considered in this paper are the Dirichlet

boundary conditions:

• • • u(x, 0) = 0 for x > 0,

• • • u(0, t) = 1 for t > 0.

The fractional diffusion equation exists in two dimensional space. It is expressed as the following form [31]

Dc
αu(x, y, t) = κ2

{
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2

}
(2.4)

with the Dirichlet boundary conditions defined as
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• • • u(x, y, 0) = 0 for x, y > 0,

• • • u(0, y, t) = u(x, 0, t) = 1 for t > 0.

The initial boundary conditions play an important role in the integral method. Note that, when the

boundary conditions change, the form of the analytical solutions changes also. There exist many methods

to get the analytical solutions of the fractional diffusion equations: as the Laplace transform, as the Fourier

sine transform [43], as the heat-balance integral method (HBIM) [18, 20], as a double integral method

(DIM) [18,20], as a multiple integral method (MIM) [14]. This paper proposes an integral method consisting

of applying both the Laplace transform and the Fourier sine transform. Let recall the Laplace transform of

the Caputo fractional derivative which we will use later [25] [38]

L{Dc
αf(t)} = sαL{f(t)} (s)− sα−1f(0) (2.5)

where α ∈ (0, 1). The transformation (2.5 ) is known very useful in the resolution of the fractional differential

equations. All solutions obtained in this paper will be rewritten using the Mittag-Leffler function [9] defined

as the following form

Eα,β (z) =

∞∑
k=0

zk

Γ(αk + β)
. (2.6)

where α > 0, β ∈ R and z ∈ C. We obtain the exponential function when α = β = 1 and we obtain the

Mittag-Leffler function with one parameter when β = 1, for more information see in [9].

3. Analytical Solution of Fractional Diffusion Equation in One Dimensional space

In this section, we investigate to find the analytical solution of the fractional diffusion equation in one-

dimensional space defined as the following form

Dc
αu(x, t) = κ2

∂2u(x, t)

∂x2
. (3.1)

We consider the Dirichlet boundary conditions defined as follows:

• • • u(x, 0) = 0 for x > 0,

• • • u(0, t) = 1 for t > 0.

In other words, we assume that the initial temperature of the material is null and the temperature of the

plate for all t > 0 is maintained constant U0 = 1. It is essential for our results and the application of

our method of resolution. The integral methods as HBIM and DIM use the finite penetration depth to get

the approximate solutions of the fractional diffusion equation (3.1). For more information on these integral

methods, see in [18] [20]. In this paper, we adopt the following integral method (see in [43]), described as

follows:

• • • apply the Fourier sine transform,

• • • apply the Laplace transform,
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Figure 1. Fractional diffusion model.

• • • apply the inverse of Laplace transform,

• • • apply the inverse of Fourier sine transform.

This method of resolution seems very useful and practical to get the analytical solution of the fractional

diffusion equations. If the temperature of the plate is null, the integral method described above seems no

adequate to be applied and it is better to use the classical methods as HBIM or DIM to solve equation (3.1).

We begin the resolution of the fractional differential equation (3.1) by applying the Fourier sine transform.

Multiplying equation (3.1) by 2
π sinwx and integrating it between 0 to ∞, we get that:

Dc
αus(w, t) = κ2

{
2

π
wus(0, t)− w2us(w, t)

}
Dc
αus(w, t) =

2κ2w

π
− κ2w2us(w, t).

where us(w, t) denotes the Fourier sine transform of u(x, t). Rearranging, we obtain the following fractional

differential equation defined as

Dc
αus(w, t) + κ2w2us(w, t) =

2κ2w

π
. (3.2)

The second step of the resolution consists of applying the Laplace transform to both sides of equation (3.2),

and then we obtain that

sαūs(w, s) + κ2w2ūs(w, s) =
2κ2w

πs

ūs(w, s) =
2κ2w

πs (sα + κ2w2)
. (3.3)

where ūs(w, s) denotes the Laplace transform of us(w, t). The third step of the resolution consists of applying

the inverse of the Laplace transform to both sides of equation (3.3). To reach our end, we rewrite equation

(3.3) as follows:

ūs(w, s) =
2

π

{
1

s
− sα−1

sα + κ2w2

}
1

w
. (3.4)
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Applying the inverse of Laplace transform to both sides of equation (3.4) and using the Mittag-Leffler

function as defined in [9], we get

us(w, t) =
2

πw

{
1− Eα

(
−κ2w2tα

)}
. (3.5)

To get the analytical solution of the fractional diffusion equation (3.1), we apply the inverse of the Fourier

sine transform to both sides of equation (3.5), and then we obtain the following result

u(x, t) =
2

π

∫ ∞
0

sinwx

w

{
1− Eα

(
−κ2w2tα

)}
dw

= 1− 2

π

∫ ∞
0

sinwx

w
Eα
(
−κ2w2tα

)
dw. (3.6)

Let now analyze a particular case of the fractional diffusion equation. The classical diffusion equation is

obtained when α → 1. To get the analytical solution, we use the Laplace transform obtained in equation

(3.3). We have the following decomposition

ūs(w, s) =
2

π

{
1

s
− 1

s+ κ2w2

}
1

w
. (3.7)

Using the inverse of Laplace transform to both sides of equation (3.7), we get the following intermediary

solution

us(w, t) =
2

πw

{
1− exp

(
−κ2w2t

)}
. (3.8)

Respecting the procedure of the resolution, we have to apply the inverse of Fourier sine transform, and then

we obtain the analytical solution of the classical diffusion equation given by

u(x, t) =
2

π

∫ ∞
0

sinwx

w

{
1− exp

(
−κ2w2t

)}
dw

= 1− 2

π

∫ ∞
0

sinwx

w
exp

(
−κ2w2t

)
dw

= 1− erf
(

x

2κ
√
t

)
(3.9)

where the function erf(.) denotes the Gaussian error function.

Let’s give the behavior of the temperature distribution of the material in some configurations. See in figures

2,3,4 and 5 the behavior of the temperature distribution of the material u in different cases. The figure 2

describes the behavior of the temperature distribution of the material in the diffusion equation (α → 1)

when x and t take different values with the diffusion coefficient for the density of the diffusion material

fixed to κ2 = 0.85.10−4m2/s (Hydrogen ion diffusion coefficient). The figure 3 describes the behavior of the

temperature distribution of the material in the diffusion equation (α→ 1) when x takes different values and

t→∞ and with the diffusion coefficient for the density of the diffusion material fixed to κ2 = 0.85.10−4m2/s.

We can observe all the curves decay rapidly. Thus the diffusion becomes more than more rapid. The figure 4

describes the behavior of the temperature distribution of the material in the diffusion equation (α→ 1) when
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Figure 2. Surface of the temperature distribution for α→ 1, κ2 = 0.85.10−4m2/s

Figure 3. The temperatures distributions for α→ 1, κ2 = 0.85.10−4m2/s and t→∞

successively x = 0.0050, x = 0.0065 and x = 0.0095 and t takes various values with the diffusion coefficient

for the density of the diffusion material fixed to κ2 = 0.85.10−4m2/s. We observe when x → 0 then the

temperature distribution of the material in the diffusion equation (α → 1) converge to 1. Furthermore,

we can observe all the curves increase slowly. Thus the diffusion is in general very slow. The figure 5

describes the behavior of the temperature distribution of the material in the diffusion equation (α → 1)

when successively t = 100, t = 150 and t = 200 and x takes various values with the diffusion coefficient for

the density of the diffusion material fixed to κ2 = 0.85.10−4m2/s. We can observe all the curves decay very

rapidly. .
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Figure 4. The temperatures distributions for α→ 1, κ2 = 0.85.10−4m2/s, x = 0.0050; 0.0065; 0.0095

Figure 5. The temperatures distributions for α→ 1, κ2 = 0.85.10−4m2/s, t = 100; 150; 200

We use a bode plot to interpret the result of this paper graphically. To this end, we use the transfer

function given here by the Laplace transform. To reach our conclusion, we compute the capacity

H(s) =
2κ2

πs (s+ κ2w2)

using Matlab code, we obtain the behavior of the amplitude and the phase of the temperature distribution,

see in figure 6.
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Figure 6. Bode plot of temperature distribution with α→ 1, κ = 0.85.10−4m2/s

4. Analytical Solution of the Fractional Diffusion Equation in Two Dimensional Space

In this section, we investigate to find the analytical solution of the fractional diffusion equation in two-

dimensional space expressed as follows

Dc
αu(x, y, t) = κ2

{
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2

}
(4.1)

with Dirichlet boundary conditions defined as

• • • u(x, y, 0) = 0 for x, y > 0,

• • • u(0, y, t) = u(x, 0, t) = 1 for t > 0.

We repeat the same reasoning as in Section 3. We apply the Fourier sine transform. Multiplying equation

(4.1 ) by 2
π sinwx sin ηy and integrating it between 0 to ∞ successively respecting x and y, we get that:

Dc
αus(w, η, t) = κ2

{
2(w2 + η2)

πwη
us(0, t)− (w2 + η2)us(w, η, t)

}
Dc
αus(w, η, t) =

2κ2(w2 + η2)

πwη
− κ2(w2 + η2)us(w, η, t).

where us(w, η, t) denotes the Fourier sine transform of u(x, y, t). Rearranging, we obtain the following

fractional differential equation defined as

Dc
αus(w, η, t) + κ2(w2 + η2)us(w, η, t) =

2κ2(w2 + η2)

πwη
. (4.2)
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We apply the Laplace transform to both sides of equation (4.2). We obtain the following relationships

sαūs(w, η, s) + κ2(w2 + η2)ūs(w, η, t) =
2κ2(w2 + η2)

πwηs

ūs(w, η, s) =
2κ2(w2 + η2)

πwηs (sα + κ2(w2 + η2))
. (4.3)

where ūs(w, η, s) denotes the Laplace transform of us(w, η, t). To obtain the analytical solution of the

fractional diffusion equation (4.1), we rewrite the Laplace transform (4.3) as follows

ūs(w, η, s) =
2

πwη

{
1

s
− sα−1

sα + κ2(w2 + η2)

}
. (4.4)

Finally, to get the analytical solution of the fractional diffusion equation (4.1), we apply the inverse of Laplace

transform to both sides of equation (4.4) and the inverse of Fourier sine transform on the obtained equation.

We get

u(x, y, t) =
4

π2

∫ ∞
0

sinwx

w

∫ ∞
0

sin ηy

y

{
1− Eα

(
−κ2(w2 + η2)tα

)}
dηdw.

We investigate the analytical solution of the diffusion equation in two-dimensional space obtained when

α → 1. To this end, we pick the Laplace transform function defined to equation (4.4) when α → 1, defined

by

ūs(w, η, s) =
2

πwη

{
1

s
− 1

s+ κ2(w2 + η2)

}
. (4.5)

Applying the inverse of Laplace transform and the inverse of the Fourier sine transform, we obtain that

u(x, y, t) =
4

π2

∫ ∞
0

sinwx

w

∫ ∞
0

sin ηy

y

{
1− exp

(
−κ2(w2 + η2)t

)}
dηdw

= 1− 4

π2

∫ ∞
0

sinwx

w

∫ ∞
0

sin ηy

y
exp

(
−κ2(w2 + η2)t

}
dηdw.

We use the Gaussian error function erf(.), we obtain the following form

u(x, y, t) = 1− erf
(

x

2κ
√
t

)
erf

(
y

2κ
√
t

)
. (4.6)

That is the analytical solution of the diffusion equation in two-dimensional space obtained when α→ 1.

Let’s give the behavior of the temperature distribution of the material in the diffusion equation in some

configurations. Figure 7 describes the behavior of the temperature distribution of the material in the diffusion

equation in two-dimensional space when x = y and t takes various values. Figure 8 describes the behavior of

the temperature distribution of the material in the diffusion equation in two-dimensional space when x = y

and t→∞, we observe the Gaussian profile of the temperature distribution of the material in the diffusion

equation. Figure 9 describes the behavior of the temperature distribution of the material in the diffusion

equation in two-dimensional space when x = y → 0 and t take various values. We observe all curves increase

rapidly.
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Figure 7. Surface of the temperature distribution of the material in the diffusion equation

for α→ 1, κ = 0.85.10−4m2/s, x = y

Figure 8. Temperature distribution of the material in the diffusion equation for α → 1,

κ = 0.85.10−4m2/s, x = y and t→∞

5. Analytical Solution of the Cattaneo-Hristov Diffusion Equation

Hristov in [12] [13], stating with Cattaneo constructive relaxation with Jeffrey’s kernel proposes a new

elastic heat diffusion equation described by the Caputo-Fabrizio fractional derivative. Diffusion phenomena,

of heat or mass, are generally explained as a consequence of the conservative law by the relationships [12]

ρCp
∂T

∂t
= − ∂q

∂x
; q(x, t) = −k∂T (x, t)

∂x
⇒ ρCp

∂T

∂t
= k

∂2T

∂x2
(5.1)

where the flux of heat is given by the following relationship

q(x, t) = −
∫ t

−∞
R(x, t)∇T (x, t− s)ds (5.2)
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Figure 9. Temperature distribution for α =→ 1, κ2 = 0.85.10−4m2/s, x = y → 0 and t

In this case of space independent damping the function R(x, t) it can be represented by the Jeffrey kernel

R(t) = exp (−(t− s)/τ) where τ designs a finite relaxation term [12] [26]. Continuing the constructive

equations, the energy balance yields the Cattaneo equation defined as the following form [12]

∂T (x, t)

∂t
= − k2

τρCp

∫ t

0

exp (−(t− s)/τ)
∂T (x, s)

∂x
ds (5.3)

With equation (5.3), the energy conservative equation of the internal energy result in the Jeffrey type intero-

differential equation [12] in the form

∂T (x, t)

∂t
=

k1
ρCp

∂2T (x, t)

∂x2
+

k2
τρCp

∫ t

−∞
exp (−(t− s)/τ)

∂2T (x, s)

∂x2
ds. (5.4)

Finally, using the concept of the Caputo-Fabrizio fractional derivative recently introduced in [6] and some

assumptions, see more details in [6], Hristov arrives to the complete Cattaneo-Hristov diffusion equation [12]

[13] expressed as the following form

∂T (x, t)

∂t
= a1

∂2T (x, t)

∂x2
+ a2 (1− α)

CF
0 Dα

t

(
∂2T (x, t)

∂x2

)
. (5.5)

where a1 = k1
ρCp

and a2 = k2
ρCp

with ρ = const, Cp = const. The constant k1 and k2 represent successively the

effective thermal conductivity and the elastic conductivity. CF
0 Dα

t denotes the Caputo-Fabrizio fractional

derivative, see in [6] and T represents the temperature distribution. The Dirichlet boundary conditions

considered in this paper is defined in the following form

• • • T (x, 0) = 0 for x > 0,

• • • T (0, t) = 1 for t > 0.

The equation (5.5) is known as the entire Cattaneo-Hristov equation of transition heat diffusion equation.

The Cattaneo-Hristov diffusion equation allows in-depth investigations of the role of the damping kernel on
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the behavior of the heat diffusion process and the telegraph equation [1]. The second term of the Cattaneo-

Hristov equation

∂T (x, t)

∂t
= a2 (1− α)

CF
0 Dα

t

(
∂2T (x, t)

∂x2

)
(5.6)

is known as the elastic part of the heat diffusion equation process and was subject of investigations done

by Koca et al. in [26]. In [26] Koca et al. propose analytical and numerical solutions of the elastic part of

the heat diffusion equation process described by the Caputo-Fabrizio fractional derivative. In [12], Hristov

proposes an approximation of the solution using an integral method based on a finite penetration depth.

In this section, we investigate to find the analytical solution of the complete Cattaneo-Hristov diffusion

equation (5.5). The boundary conditions considered in this paper are particular cases which we can obtain

with Cattaneo-Hristov model of diffusion. And all results found in this section can be modified when the

boundary conditions change. The method of the resolution used in the previous section to get the analytical

solution of the fractional diffusion equations in one and two-dimensional spaces doesn’t change. Before

applying the Fourier sine transform and the Laplace transform, we recall the Laplace transform of the

Caputo-Fabrizio fractional derivative given by

L
{
CF
0 Dα

t f(t)
}

=
sL{f(t)} (s)− f(0)

s+ α (1− s)
. (5.7)

To get the analytical solution of the complete Cattaneo-Hristov diffusion equation, we multiply equation

(5.5) by 2
π sinwx and integrating it between 0 to ∞; we obtain the following differential equation

∂Ts(w, t)

∂t
= a1

{
2

π
w − w2Ts(w, t)

}
+ a2 (1− α)

CF
0 Dα

t

{
2

π
w − w2Ts(w, t)

}
= a1

{
2

π
w − w2Ts(w, t)

}
− a2w2 (1− α)

CF
0 Dα

t Ts(w, t). (5.8)

where Ts(w, t) denotes the Fourier sine transform of T (x, t). Applying the Laplace transform to both sides

of equation (5.8), we get that

T̄s(w, t) =
2a1w (α+ (1− α)s)

πs {(1− α)s2 + (α+ (1− α)(a1w2 + a2w2)) s+ a1w2α}
. (5.9)

where T̄s(w, t) denotes the Laplace transform of Ts(w, t). Let that λ = α
1−α with α 6= 1 and then equation

(5.9) can be rewritten as follows

T̄s(w, t) =
2a1w (λ+ s)

πs {s2 + (λ+ (a1w2 + a2w2)) s+ a1w2λ}
. (5.10)

The transformation (5.10) is essential in a sense we use it for every specific order. The equation (5.10) can

be rewritten as a series, and then we obtain the following relationships

T̄s(w, t) =
2

π

∞∑
k=0

(−1)
k

(a1)kw2k+1λk
λs1−(3+k) + s1−(2+k)

(s+ (λ+ (a1w2 + a2)))
k+1

. (5.11)
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Let that µ =
(
λ+ (a1w

2 + a2w
2)
)
, applying the inverse of Laplace transformation and using Mittag-Leffler

functions with three parameters, we get that

Ts(w, t) =
2

π

∞∑
k=0

(−1)
k

k!
(a1)kw2k+1λk

[
λt2k+2E

(k)
1,3+k (−µt) + t2k+1E

(k)
1,2+k (−µt)

]
. (5.12)

Finally, we get the analytical solution of the Cattaneo-Hristov diffusion equation, by applying the inverse of

Fourier sine transform

T (x, t) =
2a1
π

∫ ∞
0

w sin(wx)

∞∑
k=0

(−1)
k

k!
(a1)kw2kλk

×
[
λt2k+2E

(k)
1,3+k (−µt) + t2k+1E

(k)
1,2+k (−µt)

]
dw. (5.13)

As in the previous section, we analyze the particular case of the Cattaneo-Hristov diffusion equation obtained

when α→ 1. The Laplace transform is given using the equation (5.10) by

T̄s(w, t) =
2

π

1

w

{
1

s
− 1

s+ a1w2

}
. (5.14)

Applying the inverse of Laplace transform to both sides to equation (5.14) and the inverse of Fourier sine

transform we get

T (x, t) =
2

π

∫ ∞
0

sin(wx)

w

{
1− exp(−a1w2t)

}
dw

= 1− 2

π

∫ ∞
0

sin(wx)

w
exp(−a1w2t)dw

= 1− erf
(

x

2
√
a1t

)
.

One can observe this solution is similar to the solution obtained in the classical diffusion equation. Thus

the surface described by the solution of the particular Cattaneo-Hristov diffusion equation considered above

is identical to the surface represented by the solution of the classical diffusion equation.

6. Conclusion

The complete Cattaneo-Hristov equation of the transient heat diffusion equation introduced by Hristov

was considered in this paper. The problems opened by Hristov with this new constructive equation in the

fractional diffusion equation are the problem consisting of getting the numerical solutions, the problem con-

sisting of finding the analytical solutions and the problem consisting to get an approximate solutions. Hristov

proposes an estimate for the solution of the Cattaneo-Hristov diffusion equation using a finite penetration

depth, Koca and Atangana in their works suggest the analytical and the numerical solutions of the elastic

part of the heat diffusion equation process. The numerical solution of the complete Cattaneo-Hristov equa-

tion of the transient heat diffusion equation was considered in recent works done by Alkahtani and Atangana.

This paper proposes the analytical solution of the complete Cattaneo-Hristov equation of the transient heat

diffusion equation. The integral method used in the resolution combines both the Fourier sine transform and
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the Laplace transform. This paper offers a useful analytical solution of the fractional diffusion equation in

two-dimensional space. Some special cases of the fractional diffusion equations were discussed and illustrated

graphically.
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