
SOFTWARE TOOL ARTICLE

   scClustViz – Single-cell RNAseq cluster assessment and 

visualization [version 2; peer review: 2 approved]

Brendan T. Innes 1,2, Gary D. Bader 1,2

1Molecular Genetics, University of Toronto, Toronto, Ontario, M5S3E1, Canada 
2The Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada 

First published: 21 Sep 2018, 7:1522  
https://doi.org/10.12688/f1000research.16198.1
Latest published: 12 Mar 2019, 7:1522  
https://doi.org/10.12688/f1000research.16198.2

v2

 
Abstract 
Single-cell RNA sequencing (scRNAseq) represents a new kind of 
microscope that can measure the transcriptome profiles of thousands 
of individual cells from complex cellular mixtures, such as in a tissue, 
in a single experiment. This technology is particularly valuable for 
characterization of tissue heterogeneity because it can be used to 
identify and classify all cell types in a tissue. This is generally done by 
clustering the data, based on the assumption that cells of a particular 
type share similar transcriptomes, distinct from other cell types in the 
tissue. However, nearly all clustering algorithms have tunable 
parameters which affect the number of clusters they will identify in 
data. 
The R Shiny software tool described here, scClustViz, provides a simple 
interactive graphical user interface for exploring scRNAseq data and 
assessing the biological relevance of clustering results. Given that cell 
types are expected to have distinct gene expression patterns, 
scClustViz uses differential gene expression between clusters as a 
metric for assessing the fit of a clustering result to the data at multiple 
cluster resolution levels. This helps select a clustering parameter for 
further analysis. scClustViz also provides interactive visualisation of: 
cluster-specific distributions of technical factors, such as predicted cell 
cycle stage and other metadata; cluster-wise gene expression 
statistics to simplify annotation of cell types and identification of cell 
type specific marker genes; and gene expression distributions over all 
cells and cell types. 
scClustViz provides an interactive interface for visualisation, 
assessment, and biological interpretation of cell-type classifications in 
scRNAseq experiments that can be easily added to existing analysis 
pipelines, enabling customization by bioinformaticians while enabling 
biologists to explore their results without the need for computational 
expertise. It is available at https://baderlab.github.io/scClustViz/.
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Introduction
The development of high-throughput single-cell RNA sequenc-
ing (scRNAseq) methods, including droplet-based (Klein et al.,  
2015; Macosko et al., 2015; Zheng et al., 2017) and multiplexed 
barcoding (Rosenberg et al., 2018) techniques, has led to a rapid 
increase in experiments aiming to map cell types within tissues 
and whole organisms (Ecker et al., 2017; Han et al., 2018; Regev  
et al., 2017; Saunders et al., 2018). The most common initial 
analysis of such scRNAseq data is clustering and annotation of 
cells into cell types based on their transcriptomes. Many work-
flows have been built and published around this use case (Kiselev  
et al., 2018; Lun et al., 2016; Sandrine, 2016; Satija, 2018), and 
many clustering algorithms exist to find cell type-associated  
structure in scRNAseq datasets (Li et al., 2017; Ntranos et al.,  
2016; Shao & Höfer, 2017; Xu & Su, 2015; Žurauskienė & Yau, 
2016). This paper focuses on how to interpret the results of a 
scRNAseq clustering analysis performed by existing methods,  
specifically when it comes to selecting parameters for the clus-
tering algorithm used and analysis of the results. This is imple-
mented as an R Shiny software tool called scClustViz, which  
provides an interactive, web-based graphical user interface 
(GUI) for exploring scRNAseq data and assessing the biological  
relevance of clustering results.

Nearly all unsupervised classification (clustering) algorithms take 
a parameter that affects the number of classes or clusters found  
in the data. Selection of the appropriate resolution of the classi-
fier heavily impacts the interpretation of scRNAseq data. An  
inappropriate number of clusters may result in missing rare but 

distinct cell types, or aberrantly identifying novel cell types 
that result from overfitting of the data. While there are general  
machine-learning-based methods for preventing overfitting, we 
propose a biology-based cluster assessment method; namely  
whether you could identify a given cluster-defined cell type in situ 
using imaging techniques based on marker genes identified, such 
as single molecule RNA fluorescence in situ hybridization (FISH). 
To identify marker genes and quantify the measurable transcrip-
tomic difference between putative cell types given a clustering  
solution, scClustViz uses a standard differential expression 
test between clusters. If there are few differentially expressed 
genes between two clusters, then those clusters should not be  
distinguished from each other and over-clustering is likely. The 
researcher can then select a cluster solution that has sufficiently 
fine granularity, while still maintaining statistically separable  
expression of genes between putative cell types.

Once cell types are defined using the clustering method and 
parameters of choice, the researcher must then go through several  
data interpretation steps to assess and annotate these clusters and 
identify marker genes for follow-up experimentation. Before  
a final clustering result is chosen, it is important to assess the 
impact of technical factors on clustering. While that may have been  
done as part of the upstream workflow, it is helpful to see the 
cluster-wise distribution of technical factors such as library size, 
gene detection rates, and proportion of transcripts from the mito-
chondrial genome (Ilicic et al., 2016). To annotate cell types  
identified by the classifier, it is helpful to see the genes uniquely 
upregulated per cluster, as well as assess the gene expression  
distribution of canonical marker genes for expected cell types  
in the data. Finally, novel marker genes may be identified for  
a cell population of interest, which requires identifying genes 
that are both upregulated in the cluster in question and detected  
sparingly or not at all in all other clusters in the experiment.

We describe scClustViz, an R package that aids this frequently 
encountered scRNAseq analysis workflow of identifying  
cell types and their marker genes from a heterogenous tissue sam-
ple. The package comprises two parts: a function to perform the 
differential gene expression testing between clusters for any set 
of clustering solutions generated by existing scRNAseq analy-
sis workflows, and a R Shiny GUI that provides an interactive  
set of figures designed to help assess the clustering results, annotate 
cell types, and identify marker genes. The package was designed 
with transparency and modularity in mind to ease merging  
into existing workflows and sharing the results with collabora-
tors and the public. This enables the tool to be of value to both  
experienced bioinformaticians developing workflows and bench 
scientists interpreting the results of a scRNAseq experiment.

Methods
Implementation
We propose a metric for assessing clustering solutions of 
scRNAseq data based on differential gene expression between 
clusters. We use the Wilcoxon rank-sum test to evaluate the  
statistical significance of differential gene expression between 
clusters. This test was selected based on the rigorous differential  

            Amendments from Version 1

Implementation:
•    Clarified the arguments surrounding Figure 1 for a new 

method of calculating log gene expression ratios for 
scRNAseq data and updated the figure.

•    Removed Figure 2 and the related text, as it was 
erroneously proposing filters that violated assumptions of 
false discovery rate control.

•    Improved methods section for functions implementing 
differential expression testing methods in scClustViz, 
including highlighting the option to pass user-defined DE 
testing results to scClustViz.

•    Updated description of underlying data object generated 
by the setup step of scClustViz to reflect adoption of a 
formal S4 class.

Operation:
•    Added a section explaining scClustViz incorporation into 

existing clustering pipelines for improved reproducibility.

•    Added note concerning Shiny app functionality from remote 
R sessions in system requirements.

Cell set comparisons:
•    Added volcano plots to the set of figures designed to 

explore individual cluster comparisons.

     All figures were updated after implementation of a new 
function designed to reduce label overlap.

See referee reports

REVISED
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expression methodology review carried out by Soneson and  
Robinson (Soneson & Robinson, 2018). In their testing, the  
Wilcoxon test had accuracy on par with that of the majority of 
methods tested (most methods were adequately accurate), and  
identified sets of differentially expressed genes similar to MAST 
(Finak et al., 2015) and limma (Ritchie et al., 2015), two popu-
lar alternatives. What little bias the Wilcoxon rank-sum test does 
have tends to be towards genes detected at lower rates in the data 
(Soneson & Robinson, 2018), which can easily be corrected by 
using a detection rate filter prior to testing. In terms of power and 
control of type I error rate, the Wilcoxon test was less powerful 
than more advanced methods, with a false discovery rate (FDR) 
more conservative than expected. However, unlike some more 
complicated tests, the Wilcoxon test is compatible with paral-
lel processing of testing calculations to increase computation  
speed. Ultimately, the simplicity of the Wilcoxon test made 
it appealing for default use in this tool, as it is understood 
by most users, is fast to compute and is available in base R.  
Alternatively, given the wide variety and constant growth of 
scRNAseq-specific differential gene expression tests, scClustViz 
can use the results of any test method that returns measures  
of effect size and statistical significance.

Two measures of effect size of differential gene abundance 
are reported by scClustViz: difference in detection rate (dDR)  
and gene expression ratio (logGER, log2 gene expression  
ratio). Detection rate refers to the proportion of cells from each 
cluster in which the gene in question was detected (per cluster  
gene detection rate). The concept of detection rate in scRNAseq 
data stems from the low per-cell sensitivity and minimal  
amplification noise of droplet-based assays. Since there is a 
correlation between gene expression magnitude and per clus-
ter gene detection rate, the detection rate is a meaningful  
quantification of gene expression. Furthermore, it is suitable for 
identifying genes that uniquely “mark” certain cell populations,  
as such marker genes should be undetected outside of the cells  
they mark.

Log gene expression ratio (also known as log fold change) 
is a measure of effect size that considers both magnitude of  
gene expression as well as detection rate, as it is the ratio of 
mean gene abundance between two cell clusters. However, due 
to the sparsity of scRNAseq data, some clusters may not contain 
any cells in which a certain gene was detected. It is thus neces-
sary to add a pseudocount to the logGER calculations to prevent  
divide-by-zero errors and the resulting logGER magnitudes of 
infinity. As exemplified in Figure 1, the choice of pseudocount  
impacts logGER results. A pseudocount of 1 is commonly used 
in the field of transcriptomics but creates two problems when 
used on the low abundance values common to droplet-based  
scRNAseq data. Since a value of 1 is a considerable fraction of 
small count data, adding 1 to all counts tends to compress the  
magnitude of the gene expression ratio in a manner that inversely 
correlates with the magnitude of abundances being compared  
(Figure 1a). As a result, not only is the calculated logGER less 
than true logGER, but this compression of true logGER is more 
pronounced when at least one side of the comparison has values  

near zero. Using a small pseudocount such as 10-99, on the other 
hand, results in logGER values being very close to their true 
value, rather than suffering from the compression caused by the  
pseudocount of 1 (Figure 1b). The problem with this is that com-
parisons with zero result in very high magnitude logGER values,  
well outside the range of the rest of the results. If zero counts 
of a transcript in a cell library truly represented that gene 
not being expressed at all in that cell (i.e. if high-throughput  
single-cell RNAseq experiments were exquisitely sensitive), 
then this wouldn’t be a problem, since the true expression ratio  
would be infinitely large. However, zero counts are better inter-
preted to mean that transcripts for the gene in question were 
not detected in that cell. Given the relatively poor sensitivity  
of current high-throughput scRNAseq technology on a per cell 
basis, this does not necessarily mean that the gene was not 
expressed. Thus, it would be better if logGER values for compari-
sons with zero were reasonably close in magnitude to the rest of 
the results. To accomplish this, we use a pseudocount represent-
ing the smallest possible “step” in the count-based data, set to the 
reciprocal of the number of cells in the data. This is sufficiently 
small as to not compress logGER magnitudes, while keeping  
comparisons with zero reasonably close to the range of potential 
logGER values. In scClustViz, the reported logGER values are 
ratios of log-mean gene abundance calculated using the recipro-
cal of the number of cells in the data (the smallest possible “step”  
in the cDNA count) as the pseudocount.

Three different sets of differential gene expression results are 
reported by scClustViz. These are the results of two sets of  
hypothesis tests: each cluster versus the rest of the data com-
bined (calculated by the function CalcDEvsRest), and all pairwise  
comparisons between clusters (calculated by the function  
CalcDEcombn). These comparisons are made using the  
Wilcoxon rank-sum test, with false discovery rate controlled  
using the method of Benjamini and Hochberg (Benjamini &  
Hochberg, 1995). Genes are included in the test if they pass  
a detection rate threshold (default is 10%) in at least one of  
the pair of clusters tested. In the case of both sets of tests, the 
results can be substituted with those of another statistical method  
by adding its results to the sCVdata object outlined below.

The first set of genes reported by scClustViz are those that are 
differentially expressed between each cluster and the rest of  
the data combined (referred to as DE vs Rest in the Shiny inter-
face). This is not used to assess clustering results but may be visu-
alized by the user to identify distinguishing genes for that cluster,  
although this will only be valuable if there is enough hetero-
geneity in the data to identify differential genes. Though this  
represents an unbalanced comparison, the non-parametric nature  
of the Wilcoxon rank-sum test makes it robust to such imbalances.

The second is referred to as marker genes. These are genes that 
are significantly positively differentially expressed in a clus-
ter in pairwise comparisons with every other cluster (at a default  
FDR of 5%). This is taken from the results of the pairwise 
comparisons outlined above and returned by the function 
DEmarker. This method is one of the two sets of differential gene  
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Figure 1. Mean and log gene expression ratio (logGER) calculations are affected by selection of the pseudocount used to prevent 
divide-by-zero errors. A. A scatter plot comparing true logGER (x-axis) with logGER calculated with a pseudocount of 1 (y-axis) for pairwise 
comparisons from a simulated scRNAseq data set where the mean abundance of a single gene varied from zero to 50 across 15 clusters. 
Points are coloured by the mean gene abundance of the comparison, with darker being larger. The black line denotes equality between x- and 
y- axes. With a pseudocount of 1, the magnitude of logGER is compressed at both ends relative to true logGER, and the magnitude of this 
compression is inversely correlated with gene abundance in the clusters being compared. B. Same plot comparing true logGER with logGER 
calculated with pseudocounts of 1e-99 (diamonds) and 1 / # of cells (squares). Calculated logGER are very close to true logGER when using 
smaller pseudocounts (as denoted by the black line). When using a very small pseudocount of 1e-99, the magnitude of logGER values are 
over 300 when comparing a cluster with zero gene abundance (division-by-zero resulting in a true logGER magnitude of infinity). This is far 
from the range of other logGER values. An alternative is to set the pseudocount to the smallest possible “step” in count-based data (1 / # of 
cells) to prevent magnitude compression of logGER calculations caused by using a pseudocount of 1, while keeping division-by-zero values 
within the range of the data. Code to generate this figure is available in the scClustViz folder of the R library under paperFigs/Fig1.R
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expression results used in scClustViz to quantify cluster granular-
ity. It ensures that there are marker genes for all clusters that are  
unique to each cluster, given all other clusters in the data.

The third set of genes reported is calculated by comparing 
each cluster to its nearest neighbouring cluster, and represents  
the other way cluster granularity is quantified by scClustViz. By 
ensuring there is at least one positively differentially expressed 
gene (default FDR of 5%) between each set of neighbouring clus-
ters, this metric enforces the requirement for having statistically  
separable clusters, which is less restrictive than requiring unique 
marker genes per cluster. Nearest neighbours are clusters with 
the fewest differentially expressed genes between them, as calcu-
lated above. These are also taken from the results of the pairwise  
comparisons outlined above and returned by the function 
DEneighb.

To quickly compare multiple clustering solutions in the user  
interface, the above differential gene expression tests and other 
cluster-wise gene expression statistics are precomputed for 
each cluster solution. The results are stored as a named list  
containing entries for each cluster solution. The precomputed 
results for each cluster solution are stored as a novel S4 object  
class, sCVdata.

To support quick display of the various figures in the user 
interface, other cluster-wise gene statistics are calculated.  
Detection rate (DR) is the proportion of cells in a cluster in which 
a given gene has a non-zero expression value. Mean detected 
gene expression (MDGE) is the mean of the normalized transcript  
counts for a gene in the cells of the cluster in which that gene  
was detected. And mean gene expression (MGE) is the mean  
normalized transcript count for a gene for all cells in the clus-
ter. These are stored as a named list of dataframes in a slot in 
sCVdata.

Both pairwise and one versus all differential expression 
test results are similarly stored in slots of sCVdata (DEvsRest 
and DEcombn). For the results of comparisons between a cluster 
and the rest of the data, each named list element contains a data 
frame with logGER for all genes, and p-value and FDR results 
for all tested genes. For pairwise comparisons between clusters, 
each named list element contains a data frame with logGER and  
dDR for all genes, and p-value and FDR results for all tested 
genes. List elements are named with cluster names, separated by a  
dash for pairwise comparisons.

The sCVdata object also stores the results of silhouette analy-
sis, a metric for assessing the contribution of each cell to cluster  
cohesion and separation (Rousseeuw, 1987). This is included in 
the visualization as a complementary metric for cluster solution  
assessment. Finally, user-defined parameters pertaining to cal-
culations on the input data are also stored as a slot in sCVdata,  
supporting replicability.

The package was built in R v3.5.0 (R Core Team, 2018). 
The R Shiny interactive web page generating tool (shiny 
v1.1.0) was used to generate the scClustViz user interface  

(Chang et al., 2018). Silhouette plots are generated using the R 
package cluster v2.0.7-1 (Maechler et al., 2018). Colour-split 
dots for plotting use code from the R package TeachingDemos 
v2.10 (Snow, 2016). Colour scales with transparency use the  
R packages scales v1.0.0, viridis v0.5.1, and RColorBrewer  
v1.1-2 (Garnier, 2018; Neuwirth, 2014; Wickham, 2017).

Operation
The scClustViz tool is available as an R package from GitHub,  
with usage details and example code available on the website. 
The typical usage requires one setup step prior to running the  
visualization to precompute and save the differential gene 
expression testing results. Once setup is complete, the user can  
quickly view and easily share the results of their analysis.

Setup is done using the function CalcAllSCV, which takes 
as input the user’s scRNAseq data object and a data frame of  
cluster assignments where each variable refers to a different 
cluster solution. Currently scClustViz supports both the Bio-
conductor SingleCellExperiment class (Lun & Risso, 2017) and  
Seurat class (Butler et al., 2018; Satija et al., 2015). This func-
tion also takes optional arguments describing the state of the data 
and customizing testing thresholds. To calculate means of log- 
normalized data accurately, the function needs to know the log base 
and pseudocount used in the normalization. In most cases, gene 
expression data is transformed in log base 2, though Seurat uses 
the natural log. Most log-normalization methods add a pseudo-
count of 1 to avoid log-zero errors. As such, the function defaults  
to expecting log2-normalized data with a pseudocount of 1. 
The function also allows the user to set the gene detection rate  
threshold for inclusion in differential gene expression testing, 
defaulting to 10%.

Since this step may be time-consuming with many cluster  
solutions to test, the function includes an option to stop testing 
cluster solutions once differential gene expression between near-
est neighbouring clusters has been lost. In order to do this, the 
function tests cluster solutions in order of increasing numbers of 
clusters and ensures that all nearest neighbouring cluster pairs 
(as determined by number of differentially expressed genes in  
pairwise tests) have at least one significant comparison. As 
such, the user may indicate the false discovery rate threshold for  
determining significance, which defaults to 5%.

Alternatively, the differential gene abundance testing and 
cluster overfitting determination can be incorporated into  
an existing analysis pipeline. This can be done by iteratively clus-
tering with increasing resolution and calling CalcSCV after each 
clustering step. CalcSCV generates an sCVdata object for a sin-
gle cluster resolution, and is called by CalcAllSCV to generate  
the list of sCVdata objects needed to run the Shiny interface. By 
checking for differential expression between nearest neighbour-
ing clusters, this can be used to automatically stop generating  
cluster solutions once differential expression between clusters is 
lost.

The resulting list of sCVdata objects and input scRNAseq 
data object should be saved to disk as a single compressed  
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RData file prior to viewing them in the GUI. This is done to ensure 
that setup is a one-time process, and to simplify sharing and 
reproducibility of analyses. The function runShiny launches the  
R Shiny instance with the interactive data figures in the R integrated 
development environment (IDE) or a web browser. It loads the data 
from a file and has optional arguments to specify the annotation 
database and marker genes for expected cell types. The anno-
tation database is used to find gene names to improve clarity of  
some figures and expects a Bioconductor AnnotationDbi object 
such as org.Mm.eg.db for mouse or org.Hs.eg.db for human.  
Finally, if passed a named list of canonical marker genes for 
expected cell types in the data, scClustViz will automatically 
generate cluster annotations (labels). This is done by assigning 
each cluster to the cell type with the top aggregate rank of gene  
expression for its marker genes. More in-depth and unbiased 
methods for assigning cell type identities to clustering results 
exist (Crow et al., 2018; Kiselev et al., 2017), so this is meant  
more as a convenience option for labelling purposes than a  
definitive automatic cluster annotation method.

System requirements for this tool will depend heavily on the data 
set in question, since the data will have to be loaded into mem-
ory, and the memory footprint of scRNAseq data depends on  
the number of cells being analysed. However, in all tests load-
ing objects from Seurat into scClustViz, the saved objects after 
the setup and differential expression testing steps were smaller 
than the original Seurat object. It is thus safe to assume that  
scClustViz will run on the computer on which the data set in ques-
tion was analysed. For the data from the MouseCortex package,  
the largest data set (E15, containing nearly 3000 cells) uses 
less than 1.2GB of memory. Opening Shiny apps can be diffi-
cult in some computing environments, especially remote R ses-
sions to servers without browsers or rendering capabilities. There 
are options in the Shiny runApp function to help troubleshoot  
these situations, and these are accessible from the runShiny  
function in scClustViz.

Use cases
To demonstrate the convenience of sharing analysed data with 
scClustViz, the MouseCortex package was built with data from 
a recent publication exploring the development of the mouse  
cerebral cortex using scRNAseq (Yuzwa et al., 2017). A tutorial 
for building similar R data packages calling scClustViz as the  
visualization tool can be found on the scClustViz website.

The MouseCortex package contains the four data sets published 
in the paper, and a wrapper function for runShiny that loads  
each data set with the appropriate arguments. The embryonic day 
17.5 data set (opened by the command viewMouseCortex(“e17”)) 
will be used to demonstrate the purpose of the various figures in 
scClustViz and highlight its role in identifying a core gene set 
expressed in the neurogenic stem cell population of the cerebral 
cortex in the next sections. All figures from this point on were  
generated in the scClustViz Shiny app and saved using the “Save 
as PDF” buttons.

Clustering solution selection
The first step in the post-clustering workflow is to assess the 
results of the various clustering parameterizations used. scClustViz  

uses a combination of differential gene expression between 
clusters and silhouette analysis for this. Differential gene  
expression is used as a metric in two ways: the number of posi-
tively differentially expressed genes between a cluster and its 
nearest neighbour, and the number of marker genes (positively 
differentially expressed vs. all other clusters in pairwise tests) per  
cluster. In Figure 2a, differential expression to the nearest  
neighbouring cluster is represented as a series of boxplots per 
cluster resolution, arranged on the x-axis to indicate the number 
of clusters in each boxplot. The highlighted boxplot indicates the  
currently selected cluster from the pulldown menu in the user  
interface. Both differential expression-based metrics can be visual-
ized this way by switching the metric used, via the interface.

When a cluster resolution is selected, its silhouette plot is ren-
dered to add another method of cluster assessment (Figure 2b).  
A silhouette plot is a horizontal bar plot where each bar is a cell, 
grouped by cluster. The width of each bar, referred to as silhou-
ette width, represents the difference between mean distance to 
other cells within the cluster and mean distance to cells in the  
neighbouring cluster. Distance is Euclidean in the reduced dimen-
sional space used in clustering (this is generally PCA space, 
and is pulled from the input data object based on a user-defined  
parameter). Positive values indicate that the cell is closer to cells 
within its cluster. It is worth noting that the dimensions returned 
by methods such as PCA are not equally meaningful, since 
each explains a different proportion of the variance in the data,  
while Euclidean distance treats them all equally. This can be 
addressed by weighting the PCs by variance explained, a method 
implemented in newer versions of Seurat (Butler et al., 2018). 
To prevent unexpected results caused by assuming a PC weight-
ing option in upstream analysis, the silhouette plot in scClustViz  
does not reweight PCs, so users are encouraged to consider this 
when interpreting this plot.

Once the user has chosen the appropriate cluster solution, 
they can click the “View clusters at this resolution” button to 
proceed to in-depth exploration and visualization of the results.  
They can also save this as the default resolution for future ses-
sions. If a cluster resolution is saved as default, a file specify-
ing the saved resolution will be generated in the same directory  
as the input data (or an optional output directory). Specifying a 
separate output directory is useful when the input data is part of  
a package, as in MouseCortex. If the same output directory is  
specified the next time the command is run, all saved data in that 
directory will be reloaded in the app.

Data set and cluster metadata inspection
In this section, the user can explore the data set as a whole.  
The first panel, Figure 3a shows a two-dimensional repre-
sentation of cells in gene expression space. This is generally 
a tSNE or UMAP plot, and is pulled from the input data object  
based on a user-defined parameter (McInnes & Healy, 2018;  
van der Maaten & Hinton, 2008). The cells are coloured by clus-
ter and can be labelled by cluster number or automatically anno-
tated with a predicted cell type based on known marker genes 
for expected cell types passed to runShiny. The user can select 
any cluster for downstream exploration by clicking on a cell  
from that cluster in this plot. This will highlight the cluster in 
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Figure 2. Interactive figures to assess clustering solutions. A. Boxplots representing number of differentially expressed genes between 
neighbouring clusters for each cluster resolution. For each cluster at a specific resolution, the number of positively differentially expressed 
genes to its nearest neighbouring cluster is counted, and those counts are represented as a boxplot. The boxplots are arranged along the 
x-axis to reflect the number of clusters found at that resolution. Highlighted in red is the cluster resolution currently selected in the interface. 
This figure has been zoomed using the interactive interface to make it clear that at the selected resolution there is more than one differentially 
expressed gene between neighbouring clusters. The number of marker genes per cluster and average silhouette widths can be similarly 
viewed with the scClustViz interface. B. Silhouette plot for the selected cluster resolution. A horizontal bar plot where each bar is a cell, 
grouped by cluster. Silhouette width represents the difference between mean distance to other cells within the cluster and mean distance to 
cells in the neighbouring cluster. Distance is Euclidean in reduced dimensional (generally PCA) space. Positive values indicate that the cell 
is closer to cells within its cluster.
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Figure 3. Visualizations of the data and its metadata. A. A 2D projection of cells in gene expression space (frequently a tSNE plot) is 
coloured by cluster. Clusters can be labelled by number, or automatically annotated as seen here. B. An example of a metadata overlay on 
the tSNE plot. The library size (number of transcripts detected) per cell is represented by colour scale, where darker cells have larger library 
sizes. C. Metadata can be represented as a scatter plot. The relationship between number of unique genes detected (total features – y-axis) 
and library size (total counts – x-axis) is shown here. The cells from the selected cluster (cluster 8, cortical precursors) are highlighted in red. 
D. Categorical metadata is represented as a stacked bar plot showing the number of cells contributing to each category per cluster. This plot 
shows predicted cell cycle state, with G1 phase in green, G2/M in orange, and S phase in purple.
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other plots in the interface. Since we are interested in identifying  
marker genes for the precursor cell population, we may click  
on cluster 8 (purple) to select it for downstream analysis.

The distribution of various cellular metadata can be visualized 
in Figure 3b. Metadata is selected from a pulldown menu and 
is represented as colours on the cells in the 2D projection. In  
this manner the user can inspect the impact of technical arte-
facts such as gene detection rate, library size, or cell cycle stage 
on the clustering results. Numeric metadata can also be assessed  
as a scatter plot, where the axes can be defined by selecting 
from pulldown menus. Figure 3c shows the relationship between  
number of genes detected and library size per cell for both the data 
set as a whole and the selected cluster. The cells from cluster 8,  
a cortical precursor cluster, were selected in the previous plot 
and are thus highlighted in red here. The cluster 8 cells are simi-
lar to other cells in the data, thus do not seem to be biased by the 
measures visualized in this plot. If this was not the case, we may  
want to consider investigating confounding variables in the nor-
malization process. For example, many authors have noted that 
gene detection rate is often strongly correlated with the first 
few principal components, and can unduly influence clustering  
results (Finak et al., 2015; Risso et al., 2018). There are  
a few ways to handle this, from simply excluding those princi-
pal components, or explicitly normalizing for those factors when 
scaling the data (as implemented in Seurat), to including the  
offending technical variables as covariates in more complex  
dimensionality reduction (i.e. ZINB-WaVE) or differential 
expression testing (i.e. MAST) models. While those specialized  
analyses are outside the scope of this tool, it is important to  
be able to visualize these technical factors in the analysed data to 
assess the efficacy of the chosen correction method.

Categorical metadata is represented as a stacked bar plot in  
Figure 3d, as either absolute counts or relative proportions. Here 
we see that by E17.5 the cortical precursors of cluster 8 are not 
predicted to be actively in the cell cycle using the cyclone method 
(Scialdone et al., 2015). This fits expectations from known  
developmental biology, since neurogenesis is nearly complete by 
this stage, and the stem cell population that persists into adult-
hood is thought to enter quiescence around E15.5 (Fuentealba  
et al., 2015). For demonstration purposes, we will continue 
to focus on cluster 8, which is predicted to form the adult  
neurogenic stem cell population in the cerebral cortex. We will  
aim to identify marker genes for these cells.

Differentially expressed genes per cluster
Once the user is satisfied that their cluster solution is appropri-
ate and unaffected by technical factors, the next step in data  
interpretation is to determine the cellular identity of each clus-
ter by its gene expression profile. The differential expression  
tests done prior to running the visualization assist with this by 
highlighting the most informative genes in the data set. In a suf-
ficiently heterogeneous data set, differential expression between 
a cluster and the rest of the data can be useful for identifying  
genes that uniquely define a cluster’s cellular identity. A more con-
servative form of this is the identification of marker genes – those 
genes that are significantly positively differentially expressed 

in all pairwise tests between a cluster and all other clusters. This 
highlights genes expected to be found at a significantly higher  
expression in this cluster than anywhere else in the data. 
Finally, there is the testing between each cluster and its nearest  
neighbour to highlight local differences in expression. Each of 
these sets of differentially expressed genes can be presented as a 
dot plot comparing clusters, as seen in Figure 4. A dot plot is a 
modified heatmap where each dot encodes both detection rate  
(by dot diameter) and average gene expression in detected cells (by 
dot colour) for a gene in a cluster. Here up to the top ten marker 
genes per cluster are shown, but both the type of differential  
expression test used to generate the gene set and the number of 
differentially expressed genes contributed per cluster can be  
adjusted using the interactive interface. At this point in the analy-
sis, it is also possible to download any of these differential gene 
expression results as tab-separated value files for further analy-
sis, by selecting the cluster of interest and differential expression 
type and clicking “Download gene list”. This may be of value  
if the user is using this platform to share the data online, or 
with those who would prefer not to use R for further analysis.  
In this dot plot, we can see the top 10 marker genes for our puta-
tively quiescent cortical precursor cell population (cluster 8)  
include known marker genes for cortical radial precursors (Fabp7, 
Slc1a3, Ptprz1, and Vim), a known marker for adult neural stem 
cells (Dbi), as well as novel marker genes for this population 
(Mfge8, Ttyh1, Pea15a, and Ednrb) (Yuzwa et al., 2017). The 
dot plot format also shows us that while Ckb and Gpmgb are  
significantly positively differentially expressed in cluster 8  
relative to all other clusters, they are still detected in high propor-
tions in all clusters, and thus would not be optimal marker genes.

Gene expression distributions per cluster
To more closely inspect the gene expression of an individual  
cluster, scClustViz presents gene expression data per cluster 
as a scatter plot with the proportion of cells from that cluster in 
which a gene is detected (more than zero transcript counts) on the  
x-axis, and mean normalized transcript count from cells in 
which the gene was detected on the y-axis, as seen in Figure 5a.  
This visualization method helps separate the contribution of zeros 
from the mean gene expression value, since like the dot plot it 
separates magnitude of gene expression from gene detection  
rate. It also highlights the strong relationship between magnitude 
of gene expression and likelihood of detection in droplet-based  
single-cell RNAseq data, since the trend goes from the plot’s 
bottom left (genes have low expression and are rarely detected) 
to top right (genes have high expression and are detected often).  
In this figure, the cortical precursor cluster 8 is shown, but the 
user can select the cluster shown from a pulldown menu in this  
panel as well. There are three ways to highlight various genes 
in this plot. First, the genes passed as known marker genes for  
expected cell types can be highlighted in colours correspond-
ing to their cell type, if a marker gene list is defined by the user  
(Figure 5a). This figure indicates that this cluster was classi-
fied as cortical precursors based on the high relative expression  
of both Sox2 and Pax6, as well as Nes and Cux1 (markers for 
both cortical precursors and projection neurons). In Figure 5b,  
the plot shows differentially expressed genes, specifically the 
genes contributed by this cluster to the dot plot shown immediately  
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Figure 4. Visualizing differential gene expression. A dot plot showing the relative expression of a subset of marker genes (x-axis) across 
all clusters (y-axis). A dot plot is a modified heatmap where each dot encodes both detection rate and average gene expression in detected 
cells for a gene in a cluster. Darker colour indicates higher average gene expression from the cells in which the gene was detected, and larger 
dot diameter indicates that the gene was detected in greater proportion of cells from the cluster. Cluster colours are indicated for reference 
on the left side of the plot. Cluster numbers are also indicated on the left side, along with the number of differentially expressed genes in each 
cluster. The genes included can be changed to reflect those differentially expressed per cluster when compared to the rest of the data set as 
a whole (i.e. the tissue), the nearest neighbouring cluster, or marker genes unique to that cluster. This figure shows marker genes per cluster. 
The number of differentially expressed genes contributed per cluster can also be adjusted, here set to 10.

above in the app (Figure 4). Thus, by changing the differential  
gene set or number of genes in the heatmap, the user can also 
adjust the genes highlighted in this scatter plot. Finally, the user  
can search for genes manually by entering a list of gene  
symbols or using a regular expression in the search box below 
the figure. To identify and compare gene expression for any point  
in this figure, the user can click on the corresponding data point.

Clicking on a data point in the figure above will generate  
a series of boxplots comparing gene expression for the selected 
gene across all clusters (Figure 5c). Since the above scatter  
plot can be crowded, all genes near the clicked point are shown 
in a pulldown menu, so that the user can select their gene of  
interest. Alternatively, the gene(s) entered in the search  
box in the previous panel can be used to populate the pulldown 
list for selecting the gene of interest for this figure. By compar-
ing gene expression across clusters, it is easier to assess the util-
ity of putative marker genes. Here we see that Mfge8 is expressed  
nearly exclusively in cluster 8, with rare detection in any other 
clusters. This suggests that Mfge8 may be effective for iden-
tifying the cells of this cluster in situ. In fact, both fluorescence  

in situ hybridization for Mfge8 and immunohistochemistry for 
its protein lactadherin showed specificity for the cortical pre-
cursor cells in the embryonic mouse brain, as well as the B1  
neural stem cells of the adult ventricular/subventricular zone 
(Yuzwa et al., 2017).

Finally, the user can directly plot the expression of a gene  
or genes of interest on the tSNE plot to better visualize the distri-
bution of gene expression in the data set, as shown in Figure 5d.  
Genes are selected by entering gene symbols or a using a  
regular expression and selecting the matching gene symbols  
from a dropdown list. Gene expression is represented by a col-
our scale on the cells of the two-dimensional projection. If mul-
tiple genes are selected, the maximum gene expression value per 
cell is shown. This serves as another way of highlighting the  
specificity of Mfge8 for the cortical precursor cells in this data set.

Cell set comparisons
The final feature of scClustViz is the ability to generate volcano 
and MA plots comparing gene statistics for any two clusters,  
or any two sets of cells specified by the user (Figure 6a). This 
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Figure 5. Exploring cluster-wise gene expression. A. A scatter plot representing gene expression in the highlighted cluster, the cortical 
precursor cluster 8. The x-axis represents the proportion of cells from that cluster in which a gene is detected (more than zero transcript 
counts), and the y-axis is the mean normalized abundance from cells in which the gene was detected. The cell type marker genes are 
highlighted, indicating that this cluster was classified as cortical precursors based on the high relative expression of both Sox2 and Pax6, 
as well as Nes and Cux1 (markers for both cortical precursors and projection neurons). B. The same scatter plot is shown with the top 10 
marker genes for cluster 8 highlighted, though the user can choose other differentially expressed gene sets from the heatmap, or search for 
genes of interest using the interface. The identity of any point can be determined by clicking on it in the interface. C. Boxplots comparing the 
expression of a gene of interest across all clusters. Clusters are arranged on the x-axis based on the cluster dendrogram generated for the 
dot plot above (Figure 4), and normalized transcript count for the gene of interest (Mfge8, in this case) is represented on the y-axis. The dots 
on each boxplot represent the individual data points, gene expression per cell. The black dash is an optional indication of the gene detection 
rate per cluster, as indicated on the y-axis on the right side. This figure shows that Mfge8 may be a marker of cortical precursors. D. Gene 
expression overlaid on the cell projection. Gene expression is represented by a colour scale on the cells of the two-dimensional projection, 
where darker indicates higher expression. Clusters can be optionally labelled by number or annotation. This figure shows the distribution of 
Mfge8 expression in the dataset.

is useful for two reasons. First, such detailed investigations of 
differences between clusters may help identify cell types or  
classify their relationships. It may also reveal systematic differ-
ences in gene expression data between two sets of cells that could  
indicate a technical or biological confounding factor. Volcano  

plots show relationships between effect size and statistical sig-
nificance for sets of differential gene expression comparisons 
between clusters. MA plots (also known as Tukey’s mean- 
difference plot or Bland-Altman plot) show differences between 
samples comparing the log-ratio of gene expression between  
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samples to the mean gene expression across those samples. We 
modify the traditional MA plot by showing the mean on the y-axis 
and difference on the x-axis to maintain visual consistency with 
volcano plots. We further expand this plot’s utility by giving the 
user the option of viewing the difference and average of all three  
gene statistics used in scClustViz: mean gene expression, mean 
detected gene expression, and detection rate. Furthermore,  
the user can manually select sets of cells to compare, and scClustViz 
will calculate differential gene expression statistics between the 
selected cells and the remaining cells in the data, and between 
sets of selected cells. Once the calculations are complete, the  
resulting comparison is represented as a separate “cluster  
solution” and can be explored in all the figures of scClustViz.  
These results can be saved to disk by clicking “Save this  
comparison to disk” when selecting it in the pulldown menu 
for cluster solution selection. Any saved comparisons will be  
loaded along with the data any time runShiny is run.

In Figure 6 we’re investigating a potential technical artefact 
in the data, specifically the poor cohesion of cluster 5 as seen  
in the silhouette plot in Figure 2b. This poor cohesion could 
be due to the differences in library size within the cells of the  
cluster, as seen in Figure 3b. To investigate this, the cell  
selection tool in scClustViz was used to select the cells of clus-
ter 5 with low library sizes (Set A, < 1500 UMIs per cell) and 
those with high library sizes (Set B, > 1500 UMIs per cell). After  
running the differential gene expression calculations, we can 

view the differentially expressed genes between the sets in the  
dot plot or volcano plot (Figure 6a). Set B seems to have more 
positively differentially expressed genes, which may be due to 
improved gene detection rate from higher library sizes. This can 
be seen in Figure 6b, where an MA-style plot showing difference  
in detection rate vs average detection rate across sets is shown. 
Most genes are more detected in the set with larger library 
sizes (set B), which might be expected, since more transcripts  
detected correlates with higher average transcript counts per  
gene. Clicking on a gene in this figure has the same functional-
ity as the scatter plot in Figure 5; it will be selected for viewing  
in the boxplot above (Figure 5c). Using this, we noticed that 
genes from the mitochondrial genome were seemingly unaffected 
by the difference in library sizes, as they tended to fall near zero  
difference in detection rate. To highlight this, we searched for 
all genes from the mitochondrial genome using the search tool,  
which allowed us to highlight them here. If cells are damaged and 
leaking cytoplasm, they are likely to have smaller library sizes 
as they lose mRNA. However, since RNA from the mitochon-
drial genome is sequestered in a separate organelle, they are less  
likely to lose those transcripts (Ilicic et al., 2016). We can see 
evidence for this in the cells of cluster 5 with small library sizes, 
since the detection rate of their mitochondrial genes is unchanged.  
While this data set was filtered to remove cells with higher than 
average mitochondrial gene transcript proportions, including that 
metric in the metadata would allow for tuning of the threshold  
used. Since these cells have both low library sizes and higher 

Figure 6. Comparing manually defined sets of cells. A. A volcano plot showing log-ratio of gene expression between cell sets on the x-
axis, and differential gene expression significance score (-log10 FDR) on the x-axis. Set A here is a subset of cluster 5 with low library sizes  
(< 1500 counts per cell), while set B is the subset of cluster 5 with high library sizes (> 1500 counts per cell). Highlighted are the top 
differentially expressed genes upregulated in set A (red) and set B (blue). B. An MA-style plot showing difference in gene detection rate 
between set A and set B on the y-axis, and average gene detection rate across sets on the x-axis. The vertical line is at zero difference in 
detection rate. Highlighted in red are genes from the mitochondrial genome, which are generally used as markers of damaged cells in single-
cell RNAseq analyses.
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relative detection rate of mitochondrial transcripts, it is safe to  
assume they are damaged cells and remove them from the  
analysis.

Conclusion
We developed scClustViz to aid in the annotation of cell types 
and identification of marker genes from scRNAseq data.  
It provides both a metric for cluster assessment based on inter-
cluster differential gene expression, as well as a convenient user 
interface for accomplishing this analysis and interpretation 
task. Using differential gene expression to assess clustering solu-
tions ensures that the results are suited to addressing the rel-
evant biological task of identifying cell types and their marker  
genes. The user interface is also focused specifically on  
this task by generating publication quality figures and provid-
ing analyses that help the user determine the appropriate number 
of clusters, identify cell types, and highlight genes unique to 
those cell types. There are other user interfaces available for the  
analysis of scRNAseq data (Rue-Albrecht et al., 2018; Zhu  
et al., 2017). However, scClustViz fills a niche between existing 
GUIs, which are either very user-friendly for non-technical users, 
at the cost of the ability to customize analysis, or very powerful 
and customizable, at the cost of providing a simple framework  
for accomplishing a common analysis task. The one-time setup 
step for scClustViz also simplifies data sharing, as it generates  
a file that can be shared for viewing by anyone using R. Data shar-
ing can be made more user-friendly by building an R data pack-
age with a wrapper function calling scClustViz, as seen in the  
use case outlined in this paper. Building such a package is a 
quick process, and a tutorial is available on the scClustViz  

website. scClustViz is available at https://baderlab.github.io/
scClustViz/ as free, open source software under the permissive  
MIT open source license.

Data availability
The example dataset used is available as an R package:  
https://github.com/BaderLab/MouseCortex

Archived code at time of publication: https://doi.org/10.5281/ 
zenodo.2582093 (Innes, 2018a)

Licence: MIT

Software availability
scClustViz is available from: https://baderlab.github.io/scClustViz/

Source code is available from GitHub: https://github.com/ 
BaderLab/scClustViz

Archived source code at time of publication: https://doi.org/10.5281/
zenodo.2582090 (Innes, 2018b)

Licence: MIT
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Strengths 
 
Interactive Shiny interface. scClustViz enables researchers to work interactively with their single-
cell RNA-seq data. The Shiny interface available in this package is excellent. I found it to be very 
intuitive and easy to use. Cluster identification and marker analysis is time consuming, 
and scClustViz helps accelerate these steps by enabling a user to quickly generate and 
save informative plots. 
 
Cluster and marker visualizations. The suite of plots offered in this package are robust and 
informative. They all appear to render quickly, even for relatively large data sets. In particular, the 
silhouette plot approach (Figure 3B) is novel, and I like the ability to view the cluster and maker 
dimensional reduction plots side-by-side (Figure 4). Dot plots are a great way to identify cell-type 
specific markers, and the interactive tool available in the package works well (Figure 5).   
 
Weakness 
 
logGER pseudocount calculations. The explanation of differential expression 
implementation needs improvement (see Methods section), and the functions are not 
documented in the text. The authors mention that they employ a small pseudocount calculation 
approach (e.g. using 10-99), which results in "logGER values being very close to their true value". 
More evidence is needed to support this claim, and I would like to see additional rationale as to 
why this is approach is preferable to other published methods that address dropout/zero count 
inflation (e.g. ZINB-WaVE, MAGIC)1-2. 
 
Wilcoxon rank-sum test. Additionally, as mentioned in the text, the Wilcoxon rank-sum test isn't 
as powerful and doesn't control the false discovery rate as well as some other published methods3

. In particular, edgeR, DESeq2, limma, scde, and MAST are validated differential expression callers 
in use in other single-cell analysis packages that are viable alternatives to Wilcoxon4-5-6-7-8-9. An 
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option to use pre-calculated values inside the package would be a nice addition. 
 
Reproducible code. While the interactivity provided by the Shiny interface is excellent and user-
friendly for visualization, GUI-based data analysis is often difficult to reproduce. I would like to see 
scriptable, exported versions for all of the tools available in the package, so that a single-cell 
marker analysis can be run start-to-finish using scClustViz in a reproducible manner. 
 
Recommendations 
 
Take advantage of object-oriented programming. The authors mention in the text that 
scClustViz relies upon a "small custom list" of data generated using either the `readFromSeurat()` 
or `readFromManual()` functions, and that this approach "reduces the risk of unexpected inputs". I 
disagree with this statement, and recommend that the authors switch from an unstructured list to 
an S4 class object. Additionally, the paper doesn't describe what is stored in this list in detail. The 
S4 class system is documented in detail on the Bioconductor website, and is used by most popular 
single-cell RNA-seq analysis tools. S4 classes enable validity checks (see `validObject()`) and 
backwards compatibility support for legacy objects created with older versions of the package (see 
`updateObject()`).  
 
Add native SingleCellExperiment support. The authors provide a function for importing data 
from Seurat (`readFromSeurat()`), but currently don't provide a simple coercion method for the 
popular `SingleCellExperiment` class container. 
 
Add unit testing. I noticed that the package doesn't currently have any code coverage with unit 
tests. I strongly recommend adding these checks against a minimal dataset. In particular, the 
testthat package (http://testthat.r-lib.org) is recommended.  
 
Improve text labels. The gene marker labels on some plots are illegible because they are 
superimposed. The ggrepel package (https://cran.r-project.org/package=ggrepel) may help 
improve the legibility of plots with gene labels. 
 
Technical issues 
 
Unable to launch Shiny browser in a remote R session. The example MouseCortex Shiny data 
package runs correctly on machines where a browser instance can be launched. I tested this on 
multiple local environments (Linux, macOS, Windows) and on a remote RStudio server. However, it 
fails to launch on some remote high-performance computing (HPC) environments from the R 
command line. In some cases this can potentially be fixed with `runApp(launch.browser = FALSE)`, 
but it's unclear to me whether a user can easily run the `viewMouseCortex("e11")` example in a 
remote R session without RStudio. This may be an edge case, but many R users work primarily on 
remote environments, so it's worth mentioning this potential limitation in the text. Here is the 
error message that can occur: 
 
``` 
Listening on http://127.0.0.1:3899 
xdg-open: no method available for opening 'http://127.0.0.1:3899' 
``` 
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Shiny console warnings. A number of warnings appear in my R console when running the 
example Shiny datasets. For reference, here are a few I can see in my log when viewing the 
MouseCortex example dataset: 
 
``` 
Warning: Error in if: argument is of length zero 
  [No stack trace available] 
 
Warning: Error in tapply: arguments must have same length 
  [No stack trace available] 
 
Warning: Error in switch: EXPR must be a length 1 vector 
  [No stack trace available] 
``` 
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Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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Dr. Steinbaugh, 
 
Thank you for your detailed review of our manuscript, and your helpful suggestions for 
improving the software. We address your comments below. 
 
logGER pseudocount calculations. The explanation of differential expression implementation 
needs improvement (see Methods section), and the functions are not documented in the text. 
 
We’ve clarified our differential expression testing methods. 
 
The authors mention that they employ a small pseudocount calculation approach (e.g. using 10-
99), which results in "logGER values being very close to their true value". More evidence is needed 
to support this claim, and I would like to see additional rationale as to why this is approach is 
preferable to other published methods that address dropout/zero count inflation (e.g. ZINB-
WaVE, MAGIC). 
 
Log gene ratio (also referred to as log fold change) is a common way of reporting effect size 
for differential gene abundance tests. These calculations are independent of the statistical 
test, but play a role in the interpretation of results, and we expressed a concern that the 
traditional method of calculating these ratios (using a pseudocount equal to 1) was 
underrepresenting the true magnitude of effect size due to the small abundances common 
to droplet-based scRNAseq data. Using a very small pseudocount (e.g. 10-99) is not 
appropriate either. Instead, we recommend using a pseudocount representing the smallest 
possible “step” in the count-based data, set to the reciprocal of the number of cells in the 
data. We generated a simulated dataset that more clearly represents the problem, 
comparing the three pseudocount options we discuss, with results plotted in Figure 1. The 
analysis used to generate the data is available as an R script installed with scClustViz and 
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found in the R library path under scClustViz/paperFigs/Fig1.R. 
 
Wilcoxon rank-sum test. Additionally, as mentioned in the text, the Wilcoxon rank-sum test isn't 
as powerful and doesn't control the false discovery rate as well as some other published methods. 
In particular, edgeR, DESeq2, limma, scde, and MAST are validated differential expression callers 
in use in other single-cell analysis packages that are viable alternatives to Wilcoxon. An option to 
use pre-calculated values inside the package would be a nice addition. 
 
Great point. We’ve now included a simple way of passing results from other differential 
expression callers into the workflow (replacing default values in the scClustViz data object). 
 
Reproducible code. While the interactivity provided by the Shiny interface is excellent and user-
friendly for visualization, GUI-based data analysis is often difficult to reproduce. I would like to 
see scriptable, exported versions for all of the tools available in the package, so that a single-cell 
marker analysis can be run start-to-finish using scClustViz in a reproducible manner. 
 
This is an excellent idea. scClustViz now exports all functions used for both calculation of the 
data presented in the Shiny interface, and those used to generate the figures available in 
the interface. 
 
Take advantage of object-oriented programming. The authors mention in the text that 
scClustViz relies upon a "small custom list" of data generated using either the `readFromSeurat()` 
or `readFromManual()` functions, and that this approach "reduces the risk of unexpected inputs". 
I disagree with this statement, and recommend that the authors switch from an unstructured list 
to an S4 class object. Additionally, the paper doesn't describe what is stored in this list in 
detail. The S4 class system is documented in detail on the Bioconductor website, and is used by 
most popular single-cell RNA-seq analysis tools. S4 classes enable validity checks (see 
`validObject()`) and backwards compatibility support for legacy objects created with older 
versions of the package (see `updateObject()`).  
 
This was a welcome suggestion and forms the basis for our major update to scClustViz. As 
outlined in the updated manuscript, the setup step prior to running the Shiny interface now 
interfaces with existing S4 objects of the SingleCellExperiment and Seurat classes, and 
stores results of its calculations in a custom S4 class “sCVdata”. This should make loading 
analyses into scClustViz simpler for the user, there is less opportunity for unexpected data 
formats, and error messages are now clearer. The one aspect of this suggestion we did not 
implement was the backwards compatibility support. If we change the class structure in the 
future, we will do so, but since Drs. Andrews and Hemberg identified a statistical error in 
our previous version, we opted to not support backwards compatibility to prevent the 
propagation of that error into users results going forward. 
 
Add native SingleCellExperiment support. The authors provide a function for importing data 
from Seurat (`readFromSeurat()`), but currently don't provide a simple coercion method for the 
popular `SingleCellExperiment` class container. 
 
scClustViz now interfaces with the SingleCellExperiment class. 
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Add unit testing. I noticed that the package doesn't currently have any code coverage with unit 
tests. I strongly recommend adding these checks against a minimal dataset. In particular, the 
testthat package (http://testthat.r-lib.org) is recommended.  
 
Testing has been added for all functions performing calculations. Inspired by a recent blog 
post, we have also added integration of Travis CI and Codecov as in issue in our github 
tracker to incorporate in the near future. 
 
Improve text labels. The gene marker labels on some plots are illegible because they are 
superimposed. The ggrepel package (https://cran.r-project.org/package=ggrepel) may help 
improve the legibility of plots with gene labels. 
 
This was not implemented in the first version of scClustViz because all plots where gene 
labels are present are clickable, allowing the user to disambiguate overlapping labels. 
However, this doesn’t help when users export their figures for the purpose of static 
presentations, so this was a valuable suggestion. We’ve now developed a function 
(spreadLabels2) for base R graphics inspired by ggrepel and spreadLabels that attempts to 
eliminate label overlap while keeping labels as close to their data points as possible. 
 
Unable to launch Shiny browser in a remote R session. The example MouseCortex Shiny data 
package runs correctly on machines where a browser instance can be launched. I tested this on 
multiple local environments (Linux, macOS, Windows) and on a remote RStudio server. However, 
it fails to launch on some remote high-performance computing (HPC) environments from the R 
command line. In some cases this can potentially be fixed with `runApp(launch.browser = FALSE)`, 
but it's unclear to me whether a user can easily run the `viewMouseCortex("e11")` example in a 
remote R session without RStudio. This may be an edge case, but many R users work primarily on 
remote environments, so it's worth mentioning this potential limitation in the text. 
 
An ellipsis argument to pass options to runApp is now included in the runShiny function 
(and wrapper functions calling it for published datasets), which may help the user 
troubleshoot in computing environments that don’t easily run Shiny apps. This is now 
mentioned in the system requirements section in the manuscript. 
 
Shiny console warnings. A number of warnings appear in my R console when running the 
example Shiny datasets. 
 
This seems to be a side-effect of Shiny’s real-time evaluation of functions. There are times 
when a function returns an error because an input it depends on is being calculated by 
another function. Shiny returns this as a warning, but once the calculation is complete, the 
dependent function can run error-free, so these warnings aren’t pertinent. This may be 
addressed by adding some internal checks to ensure dependent functions run only when 
their dependencies have been satisfied. We have added this to our github issue tracker to 
address in the future. 
 
Thank you again for all these valuable suggestions, which have improved the robustness 
and user-friendliness of scClustViz. 
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In this manuscript Innes and Bader present scClustViz, an R package for interactive assessment 
and visualization of unsupervised clustering methods for scRNA-se data. The topic is very timely as 
unsupervised clustering is one of the most important applications of scRNA-seq. Nevertheless, it is 
a challenging problem and despite several different software tools being available, it is still not 
possible to fully automate the process. Thus, having a method to facilitate this analysis that can be 
run on the output of other clustering methods is potentially very useful. 
 
Major Comments: 
 
1. Installing scClustViz was straightforward and easy. However, I then had some issues running it. 
Using a Seurat object from another project where we are analyzing the data, I got the following 
error: 
 
DE_for_scClustViz <- clusterWiseDEtest(data_for_scClustViz,exponent=exp(1)) 
[1] “” 
[1] “” 
[1] “Calculating all DE stats for  res.0.8” 
[1] “” 
[1] “Calculating cluster gene summary statistics” 
[1] “-- Gene detection rate per cluster --” 
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed = 01m 39s 
[1] “-- Mean detected gene expression per cluster --” 
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed = 01m 36s 
[1] “-- Mean gene expression per cluster --” 
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed = 01m 24s 
[1] “” 
[1] “Calculating DE vs tissue with 16 clusters” 
[1] “-- logGER calculations --” 
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed = 25m 39s 
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[1] “-- Wilcoxon rank sum calculations --” 
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed = 11m 20s 
[1] “” 
[1] “Calculating marker DE with 120 combinations of clusters” 
  |                                                  | 0 % ~calculating  Error in intI(i, n = x@Dim[1], dn[[1]], give.dn = 
FALSE) : 
 invalid character indexing 
 
It may be that there are some issues with the Seurat object that I used as input, but the unspecific 
nature of the error message makes it very hard to troubleshoot. 
 
I then tried to run it using an SingleCellExperiment object. Here, the instructions were less clear 
and it required some fiddling around before I came up with the following lines of code for 
preparing the dataset, the FACS sorted lung data from the Tabula Muris: 
 
logcounts(mySCE) <- log2(counts(mySCE) + 1) 
clusterAssignments <- grepl("^cell_type1",colnames(colData(mySCE))) 
mySCE <- plotPCA(mySCE, return_SCE=T, draw_plot=F) 
mySCE <- plotTSNE(mySCE, return_SCE=T, draw_plot=F) 
data_for_scClustViz <- readFromManual(nge=logcounts(mySCE), 
                                      md=colData(mySCE)[,!clusterAssignments], 
                                      cl=as.character(colData(mySCE)[,clusterAssignments]), 
                                      dr_clust=reducedDim(mySCE,"PCA"), 
                                      dr_viz=reducedDim(mySCE,"tSNE")) 
DE_for_scClustViz <- clusterWiseDEtest(data_for_scClustViz, 
                                       # Stop once DE is lost between nearest neighbouring clusters 
                                       testAll=FALSE, 
                                       # Normalized data is in log2 space 
                                       exponent=2, 
                                       # Pseudocount of 1 was added to log-normalized data 
                                       pseudocount=1, 
                                       # False discovery rate threshold of 1% 
                                       FDRthresh=0.01, 
                                       # Use difference in detection rate to filter genes for testing 
                                       threshType="dDR", 
                                       # Genes with at least 15% detection rate difference will be tested 
                                       dDRthresh=0.15 
                                       ) 
 
save(data_for_scClustViz,DE_for_scClustViz,file="for_scClustViz.RData") 
 
This allowed me to get the shiny interface started, but there were several error messages 
appearing (most frequently "object 'dr_viz' not found") and I was not able to explore the different 
functionalities that had been highlighted in the manuscript. This may have been due to the fact 
that there was only one clustering present in the SingleCellExperiment object. However, if this is 
the case, then I think that the error messages should be more informative and scClustViz ought to 
do a better job of handling this special case. Thus, I was unable to explore the different 
functionalities that were highlighted in the manuscript. 
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2. The multiple filters used by scClustViz is in general a good idea since it is not clear what is the 
best way of defining DE genes. However, filtering by changes in detection rate invalidates the 
multiple testing correction, genes could be filtered by expression level or detection rate but not 
difference in detection rate. The authors should comment on this complication 
 
Minor comments: 
 
1. Figure 3A plot would be better presented as a grouped scatterplot since the number of values 
per box is small. 
2. Figure 4 D colours in legend do not match colours in figure.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: My expertise is in computational biology and in particular on methods 
development for scRNA-seq. Thus, I feel qualified to evaluate this manuscript

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 04 Mar 2019
Brendan Innes, University of Toronto, Toronto, Canada 

Drs. Andrews and Hemberg, 
 
Thank you very much for your careful and helpful comments on this manuscript and 
software. 
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Your first major concern related to errors when trying to run the setup step. In the new 
version of scClustViz this has been addressed by using a formal S4 class object to store the 
results of the analysis. This object class includes built-in validity checking, so unexpected 
inputs are caught early and reported with meaningful error messages. In keeping with this, 
scClustViz now accesses data directly from SingleCellExperiment and Seurat S4 objects, 
which should reduce the number of unexpected inputs, as they have their own validity 
checking and return consistent data structures. 
 
Your second major concern was that filtering for difference in detection rate prior to 
differential expression testing invalidates the multiple testing correction, and you suggest 
filtering for detection rate instead. This is a very good point, since any filtering of 
hypotheses using a feature that correlates with the hypothesis being tested invalidates the 
assumption of uniform p-value distributions in FDR correction. We have addressed this by 
adopting the detection rate filter commonly used in the field, where genes must be 
detected above a certain rate (10% is our default) in at least one of the clusters being 
compared. This filtering method continues to protect against making comparisons with low-
abundance genes that the Wilcoxon rank-sum tests may be biased towards. As a result, we 
have removed the section of the manuscript comparing the previous proposed filtering 
methods, and the previous figure 2. 
 
You also suggest using a grouped scatterplot instead of boxplot for Fig3a (now Fig2a). The 
reason we avoided a grouped scatterplot in this case was because some cluster solutions 
may result in the same number of clusters and thus overlap on the x-axis. This would make 
it challenging to display a grouped scatterplot without causing confusion. We’ve opted to 
compromise by showing the data points for the selected cluster solution only. 
 
Finally, you noted that the legend in Fig4d (now Fig3d) has an incorrect legend. We couldn’t 
identify the error, so if it persists we’d be happy to correct it. 
 
Thank you again for identifying important points to address. We hope these corrections will 
allow you to use the software without further difficulty. 
 

Competing Interests: No competing interests were disclosed.
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