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A new valence bond (VB)-based multireference density functional theory (MRDFT)

method, named λ-DFVB, is presented in this paper. The method follows the idea of

the hybrid multireference density functional method theory proposed by Sharkas et al.

(2012). λ-DFVB combines the valence bond self-consistent field (VBSCF) method with

Kohn–Sham density functional theory (KS-DFT) by decomposing the electron–electron

interactions with a hybrid parameter λ. Different from the Toulouse’s scheme, the hybrid

parameter λ in λ-DFVB is variable, defined as a function of a multireference character of

a molecular system. Furthermore, the EC correlation energy of a leading determinant is

introduced to ensure size consistency at the dissociation limit. Satisfactory results of test

calculations, including potential energy surfaces, bond dissociation energies, reaction

barriers, and singlet–triplet energy gaps, show the potential capability of λ-DFVB for

molecular systems with strong correlation.

Keywords: valence bond (VB) method, multi-configuration, density functional theory, multi-reference character,

strong correlation

INTRODUCTION

One of the major interests in quantum chemistry is the methodology development for
electronic correlation energy calculation with an affordable computational cost. The basic
multiconfigurational wave function methods, the multiconfigurational self-consistent
field (MCSCF) method (Roos et al., 1980; Siegbahn et al., 1980), and the valence bond
analog, valence bond self-consistent field (VBSCF) method (van Lenthe and Balint-Kurti,
1980, 1983), mainly consider static electron correlation, which is not covered in a single
configuration-based wave function. Based on multiconfigurational wave function, the
perturbative theory (PT), coupled-cluster (CC), or configuration interaction (CI) can
be employed to cover dynamic correlation. With these post-self-consistent field (SCF)
techniques, many high-level multiconfigurational wave function methods are proposed,
including the multireference perturbation theory complete active space second-order
perturbation theory (CASPT2) (Andersson et al., 1992), multireference second-order
Møller-Plesset perturbation theory (MRMP2) (Nakano, 1993), valence bond second-order
perturbation theory (VBPT2) (Wu et al., 1998; Chen et al., 2009), multireference
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configuration interaction (MRCI) (Siegbahn et al., 1981), valence
bond configuration interaction (VBCI) (Wu et al., 2002; Song
et al., 2004), breathing-orbital valence bond (BOVB) (Hiberty
et al., 1992, 1994), and so on. The computational costs of these
post-SCF multiconfigurational wave function methods increase
rapidly with the size of active space.

Meanwhile, owing to its high efficiency for dynamic
correlation calculation, the Kohn–Sham density functional
theory (KS-DFT) is the most widely used electronic structure
method (Hohenberg and Kohn, 1964; Kohn and Sham, 1965;
Parr and Yang, 1989; Koch and Holthausen, 2001). Thus,
the development of the multireference wave function-based
DFT (MRDFT) method, in which the dynamic correlation is
considered by DFT functionals and the static correlation is
covered by a multiconfigurational wave function method, is
promising because of its economical computational cost. Since
the 1990s, many MRDFT schemes have been proposed (Lie
and Clementi, 1974; Miehlich and Stoll, 1997; Filatov and
Shaik, 1999; Gräfenstein and Cremer, 2000; Grafenstein and
Cremer, 2005; Head-Gordon, 2003; Gusarov et al., 2004; Pérez-
Jiménez et al., 2004; Yamanaka et al., 2006; Wu et al., 2007;
Cembran et al., 2009; Kurzweil et al., 2009; Rapacioli et al.,
2010; Sharkas et al., 2012; Ying et al., 2012; Manni et al., 2014;
Zhou et al., 2017), most of which use the MCSCF/ complete
active space self-consistent field (CASSCF) as the multireference
wave function. Recently, two valence bond wave function-based
MRDFT (DFVB) methods are presented: the first one is the
dynamic correlation-corrected density functional valence bond
(dc-DFVB) method (Ying et al., 2012), and the second one is the
Hamiltonian matrix correction-based density functional valence
bond (hc-DFVB) method (Zhou et al., 2017). These two methods
are capable of providing satisfactory accuracy with relatively
cheaper computational costs, compared to the currently existing
post-VBSCF methods. However, these two methods still suffer
from double counting error (DCE).

DCE is one of the key issues for MRDFT, because it is
impossible to separate the static and dynamic correlations
exactly. The range-separated scheme is considered to be helpful
for MRDFT to avoid double counting error (Fromager et al.,
2007, 2009). In the range-separated MRDFT, electron–electron
interaction operator is decomposed into two components: the
long-range term considered by the wave function method
and the short-range term described by a density functional
approximation. Recently, a multiconfigurational hybrid density
functional theory, which is called multiconfigurational one-
parameter hybrid (MC1H) approximation, is proposed by
Sharkas et al. (2012). MC1H is based on a linear decomposition
of electron–electron interactions with a hybrid parameter λ. It
is shown that the accuracy of this multiconfigurational hybrid
scheme matches that of the range-separated multiconfigurational
hybrid method (Sharkas et al., 2012).

To remove the DCE from the DFVB methods, this paper
presents a new VB-based MRDFT method, named λ-DFVB, by
utilizing the MC1H scheme. Different from the MC1H scheme,
which suggests setting λ as 0.25, the value of λ is variable
in λ-DFVB, defined as a function of multireference character.
Furthermore, the energy expression is modified to consider the

dynamic correlation energies of dissociated fragments/atoms,
ensuring the size consistency at the dissociation limit.

METHODOLOGY

In VB theory, the many-electron wave function Ψ is expressed as
a linear combination of VB functions (Hiberty and Shaik, 2008;
Wu et al., 2011; Su and Wu, 2013),

9 =
∑

K

CK8K , (1)

where ΦK and CK are VB functions corresponding to a specific
structure and its coefficient, respectively.

In spin-free quantum chemistry, VB function, which is
an eigenfunction of spin and antisymmetric with respect to
permutations of electron indices, is of the form

8K = Â�02K , (2)

where Â is an antisymmetrizer for electron indices, Ω0 is an
orbital product,

�0 = φ1(1)φ2(2) · · ·φN(N), (3)

and 2K is a spin eigenfunction (Pauncz, 1979), defined as

2K = 2−1/2 [α(k1)β(k2)− β(k1)α(k2)]

× 2−1/2 [α(k3)β(k4)− β(k3)α(k4)] · · ·α(kp) · · ·α(kN)

(4)

In Equation 4, spin pairs (k1, k2), (k−3, k4), etc., correspond to
covalent bonds in structure K, and kp is for unpaired electrons.

Coefficients {CK} in Equation 1 can be obtained by solving the
secular equation:

HC = EMC, (5)

where H, M, and C are Hamiltonian, overlap, and coefficient
matrices, respectively.

In a similar fashion to molecular orbital methods, there are
various ab initio classical VB methods (van Lenthe and Balint-
Kurti, 1980, 1983; Hiberty et al., 1992, 1994; Hiberty and Shaik,
2002; Wu et al., 2002; Song et al., 2004; Chen et al., 2009). Among
them, the valence bond self-consistent field (VBSCF) method is
the basic one. In VBSCF, both VB structure coefficients {CK}
and VB orbitals {ϕi} are optimized simultaneously to minimize
the total energy E. VB orbitals are usually expanded as linear
combinations of basis functions.

φi =
∑

µ

Tµiχµ. (6)
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VB orbitals may be taken as strictly localized hybrid atomic
orbitals (HAOs), semilocalized bond-distorted orbitals (BDOs)
(Mo et al., 1994, 1996), or delocalized overlap-enhanced orbitals
(OEOs) (Bobrowicz and Goddard, 1977; Cooper et al., 1991),
according to the specific purpose of a study. Analogous
to the MCSCF/CASSCF method, VBSCF mainly considers
static correlation.

VB structural weights can be evaluated by the Coulson–
Chirgwin formula (Chirgwin and Coulson, 1950), which is an
equivalence of the Mulliken population analysis,

WK =
∑

L

CKMKLCL. (7)

VB structural weights are typically used to compare the relative
importance of individual VB structures and can be helpful in
the understanding of the correlation betweenmolecular structure
and reactivity.

In dynamic correlation-corrected density functional valence
bond (dc-DFVB), the total energy can be expressed as

E dc−DFVB[ρ] = min
9

{〈9|T + Vext +Wee |9〉 + EC [ρ]}, (8)

where EC[ρ] is obtained from a pure correlation functional with
electronic density computed from the VBSCF wave function. The
dc-DFVBmethod improves the VBSCF results, but it suffers from
the double counting error due to the fact that it simply includes
the total EC energy in the total energy.

In the MC1H approximation by Sharkas et al. (2012), the
energy of the MRDFT can be determined by minimizing the
following expression:

EMC1H = min
9

{

〈9|T + Vext + λWee |9〉 + Eλ
HXC [ρ]

}

, (9)

where T, Vext, andWee are the kinetic energy, external potential,
and electron–electron interaction operators, respectively;
E λ
HXC [ρ]is the complement λ-dependent Hartree–exchange–

correlation density functional for electronic density ρ, and λ is a
coupling parameter. E λ

HXC [ρ]is defined as (Sharkas et al., 2012):

E λ
HXC [ρ] = (1-λ) (EH [ρ]+ EX [ρ]) +

(

1− λ2
)

EC [ρ], (10)

where EX[ρ] and EC[ρ] are the exchange and correlation
functionals, respectively. EH is the Hartree energy, given as

EH =
1

2

∫∫

ρ (r) ρ
(

r′
)

|r − r′|
drdr′. (11)

Equation 10 turns to the KS-DFT formula when λ = 0.0, while it
becomes wave function theory (WFT) if λ = 1.0. As suggested by
Toulouse, the value of λ is approximately taken as 0.25.

It is clear that the parameter λ indicates the hybrid
extent of the WFT and the KS-DFT. Based on the fact that

multiconfiguration-based WFT is suitable for molecules with
multireference character, while KS-DFT is a good tool for
molecules with single-reference character, it is more reasonable
to allow the value of λ to be different with different molecules. In
this paper, we use a variable parameter for λ, which represents the
multireference character of a molecule instead of a fixed value.
There have been various indices for estimating multireference
character or static correlation character (Zeische et al., 1997;
Janssen and Nielsen, 1998; Leininger et al., 2000; Zanardi, 2002;
Huang et al., 2006; Sears and Sherrill, 2008a,b; Tishchenko
et al., 2008; Ramos-Cordoba et al., 2016; Benavides-Riveros
et al., 2017; Ramos-Cordoba and Matito, 2017; Rodriguez-
Mayorga et al., 2017), A large diagnostic value indicates a
strongmultireference character. These diagnostics include the T1
and D1 diagnostics in coupled-cluster wave functions (Lee and
Taylor, 1989; Janssen and Nielsen, 1998; Leininger et al., 2000),
the M diagnostic (Tishchenko et al., 2008), the 1-C2

0 diagnostic
in CASSCF wave function (Sears and Sherrill, 2008a,b), the S2
diagnostic (Zeische et al., 1997; Zanardi, 2002; Huang et al.,
2006); and the IND diagnostic (Ramos-Cordoba et al., 2016;
Ramos-Cordoba and Matito, 2017), etc. In this paper, the
concept of free valence is utilized to diagnose the multireference
character of a molecule and is further used to determine the
value of λ.

The free valence of an atom A, FA, is defined as

FA = VA −
∑

B,B 6=A

OAB, (12)

where VA and OAB are the total valence of atom A and the
bond order between atoms A and B, respectively, defined as
(Mayer, 2003)

VA =
∑

µ∈A

2(DS)µµ −
∑

µ,ν∈A

(DS)µν(DS)νµ, (13)

and

OAB =
∑

µ∈A

∑

ν∈B

[

(DS)µν(DS)νµ +
(

PsS
)

µν

(

PsS
)

νµ

]

, (14)

In Equations 13 and 14, S is the overlap matrix in terms of
basis functions, D = Pα + Pβ is the total density matrix,
and Ps = Pα − Pβ is the spin polarization density matrix
for basis functions, where Pα and Pβ are α and β density
matrices, respectively.

The molecular free valence index K is defined as

K =

∑

A
FA

∑

A
VA

. (15)

It is clear that K ranges from 0 to 1. The value of K is small at
the equilibrium geometry because all the atoms are bonded. For
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example, at the equilibrium distance, the Mayer bond order of
H2 is 0.953 at VBSCF/cc-pVTZ. Then, FH1 = VH1-0.953= 0.047
(subscript H1 denotes the first hydrogen atom); K = (0.047 +

0.047)/(1.0 + 1.0) = 0.047. At the dissociation limit, K = 1.0, as
OAB = 0 and FA = VA.

Table S1 shows the comparisons of various diagnostics for
diatomic molecules H2, HF, F2, N2, C2, and Cr2 in their
equilibrium geometries, respectively. A large diagnostic value
indicates a strong multireference character. Although the various
diagnostic values are much different, their trends are in good
agreement, showing the validation of K.

In this paper, the hybrid parameter λ is expressed as
a function of the free valence index K. Based on some
numerical investigations, shown in the Supporting Information,
the function is defined as

λ= K1/4. (16)

Clearly, the λ also ranges from 0.0 to 1.0, which satisfies the
requirement of the hybrid parameter.

In Equation 10, the factor (1–λ2) of EC[ρ] arises from the fact
that WFT covers the λ fraction of correlation and thus should
be deducted from the functional EC[ρ]. In λ-DFVB, VBSCF
wave function is used for the WFT part, and thus, only the
static correlation of valence electrons, which results from the
use of multideterminants, is covered by WFT. Therefore, the
corresponding EC functional should be approximately expressed
as EC[ρ]–EC[ρLD], where EC[ρLD] is the EC correlation energy
determined by the electronic density of the leading determinant
(LD), which is a single determinant with the largest coefficient
in the VBSCF wave function. At a short distance, if dynamic
correlation energy is dominating, EC[ρ]–EC[ρLD] is small. At
a long distance, the difference can be large because static
correlation is largest at the bond dissociation limit. At last, the
λ-DFVB energy is expressed as

E λ-DFVB = min
9

{

〈9|T + Vext + λWee |9〉 + E λ-DFVB
HXC [ρ]

}

,

(17)

where

E λ-DFVB
HXC [ρ] = (1-λ) (EH [ρ]+ EX [ρ]) + EC [ρ]

-λ2
(

EC [ρ]− EC
[

ρLD])

. (18)

When a molecule composed of two fragments/atoms A and
B is fully dissociated, λ = 1.0. Then, the total energy can be
expressed as

E λ−DFVB
AB = EVBSCFAB + EC

[

ρLD]

. (19)

At the infinite distance, there is no overlap between
fragments/atoms A and B; thus, the density of the leading
determinant can be expressed as the sum of the densities (ρA

+ ρB) of two fragments/atoms. As such, at the dissociation
limit, EC[ρLD] takes the dynamic correlations of dissociated
fragments/atoms into account.

A λ-DFVB computation can be performed with the
following steps:

(1) Compute a VBSCF calculation to obtain the λ value and the
VBSCF density ρ.

(2) Compute E λ-DFVB
HXC [ρ] by Equation 18.

(3) Compute the operator v λ-DFVB
HXC [ρ], which is defined as

v λ-DFVB
HXC [ρ] =

δE λ-DFVB
HXC [ρ]

δρ
. (20)

(4) Optimize the λ-DFVB wave function with the
following equation:

ελ-DFVB = 〈9|T + Vext + λWee +

∫

drv λ-DFVB
HXC [ρ] n (r) |9〉 .

(21)

where n (r) is the density operator, ρ (r) = 〈9| n (r) |9〉

. The contribution of v λ-DFVB
HXC [ρ] is set into the VB

Hamiltonian matrix. The computation is consistently iterative
until convergence is achieved.

(5) Obtain the λ-DFVB energy based on the wave function
optimized in step 4:

E λ-DFVB = ε λ-DFVB + E λ−DFVB
HXC [ρ]

− 〈9|

∫

drv λ-DFVB
HXC [ρ] n (r) |9〉 . (22)

COMPUTATIONAL DETAILS

The λ-DFVB method has been implemented in the Xiamen
Valence Bond (XMVB) package (Su and Wu, 2013; Chen et al.,
2015). All the VB calculations are performed by XMVB, while
all KS-DFT calculations are carried out by General Atomic
and Molecular Electron Structure System (GAMESS) (Schmidt
et al., 1993; Gordon and Schmidt, 2005). Free valence and
Mayer’s bond order are computed with the VBSCFwave function.
The MOLCAS 8.0 program (Aquilante et al., 2016) was used
for CASSCF, MRCI, and CASPT2 calculations. The Davidson
correction is considered for MRCI calculations. Two Generalized
Gradient Approximation (GGA) functionals, Becke88 and Lee-
Yang-Parr (BLYP) and Perdew-Wang 91 (PW91), are employed
for the λ-DFVB calculations. The results of λ-DFVB with BLYP
are shown in the main text, while those with PW91 are shown
in the Supporting Information. In the dc-DFVB calculations,
Lee-Yang-Parr (LYP) functional is used. For comparison, the
corresponding results of B3LYP, BLYP, CASSCF, CASPT2, BOVB,
and dc-DFVB are also provided.

Test calculations involve the potential energy surfaces of
H2, HF, F2, N2, C2, and Cr2, the reaction barriers of
the Diels–Alder (D-A) and Menshutkin reactions, and the
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FIGURE 1 | The λ values for N2 and C2 with various truncation levels of VB

wave function.

energy gaps of carbon atom, oxygen atom, carbene (CH2),
trimethylenemethane (TMM), and organometallics Fe(II)–
porphyrin. The geometry of Fe(II)–porphyrin is optimized
at the B3LYP level. The geometries of TMM, carbene, and
the reactants and the transition states for the D-A reaction
and the Menshutkin reaction are taken from previous papers
(Ying et al., 2012; Huang et al., 2014; Zhou et al., 2017).

The cc-pVTZ (CCT) basis set was used for the potential
energy surfaces of H2, HF, F2, N2, C2, and the energy gaps
(except Fe(II)–porphyrin). 6-31G∗ was used for the two chemical
reactions. For Fe(II)–porphyrin, Lanl2DZ is for the iron atom
and 6-31G∗ is for the C, H, and N atoms. For Cr2, two basis sets,
Stuttgart Royal Society of Chemistry (RSC) 1997 ECP (Andrae
et al., 1990) and ANO-RCC-valence triple-zeta with polarization
(VTZP) (Pou-Amérigo et al., 1995; Roos et al., 2005), were used.

RESULTS AND DISCUSSIONS

The λ Values With Various Truncation
Levels of VB Wave Function
First, the parameter λ is examined with various truncation levels
of VBSCF wave function, including covalent structures only
(denoted as COV, which is the 0th truncation level shown in
Figure 1), covalent structures plus the 1st ∼ nth order ionic
structures, . . . , and all structures (denoted as CAS). Clearly,
the CAS levels for N2 and C2 are the 3rd and 4th truncation
levels, respectively. The numbers of VB structures in various
truncation levels of N2 and C2 are listed in Table S2. Figure 1
displays the λ values of diatomic molecules N2 and C2 using
OEOs, which are fully delocalized over the whole molecules, with
the various truncation levels of VB wave function. As can be
seen, the curves are almost flat, showing that the value of λ is
not sensitive to the truncations of wave function. Meanwhile,
including the ionic structures tends to reduce the λ value. In
general, C2 has the larger λ value compared to N2 because C2

has the stronger multireference.

TABLE 1 | The λ-DFVB energies of H2, F2, HF, Cr2, N2, and C2 energies with

variable λ values at their equilibrium geometries (a.u.).

Active

space

EVBSCF Eλ−DFVB
λ Ecorr a

N2 (6,6) COV −75.589398 −75.924588 0.764 −0.335190

CAS −75.637301 −75.952588 0.728 −0.315287

C2 (8,8) COV −109.065922 −109.524697 0.560 −0.458775

CAS −109.120064 −109.540330 0.546 −0.420266

H2 (2,2) COV −1.151417 −1.173454 0.465 −0.022037

CAS −1.151419 −1.172552 0.465 −0.021133

F2 (2,2) COV −198.828556 −199.505642 0.736 −0.677086

CAS −198.828556 −199.506120 0.727 −0.677564

HF (2,2) COV −100.081614 −100.450733 0.437 −0.369119

CAS −100.081618 −100.450755 0.436 −0.369137

Cr2 (12,12) COV −172.514493 −173.471875 0.911 −0.957382

CAS −172.598336 −173.588538 0.809 −0.990202

aE corr = E λ−DFVB-E VBSCF .

FIGURE 2 | The curves of λ as functions of bond distances for diatomic

molecules.

Table 1 displays the VBSCF and λ-DFVB energies of H2, F2,
HF, N2, C2, and Cr2 with the CAS and COV levels of the VB
wave function. The number of active electrons and active orbitals
(ne, no) are listed in the second column. The dynamic correlation
correction of λ-DFVB, which is defined as the energy difference
between VBSCF and λ-DFVB, is listed in the last column. The
corresponding data for polyatomic molecules CH3-CH3, C2H4,
and C2H2 are shown in Table S3. In general, the λ values of
CAS are smaller than those of COV. The molecules with strong
correlation tend to have the large λ values. Among them, H2 has
the smallest dynamic correlation correction while Cr2 has the
largest one.

The λ-DFVB calculations in the next are carried out at the
CAS level of the VB wave function.
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FIGURE 3 | The PES curves of diatomic molecules with various methods: (A) H2; (B) HF; (C) F2; (D) N2; (E) C2; and (F) Cr2. The numbers in the brackets after

“CASPT2” denote the IPEA shift.

Potential Energy Surfaces of H2, HF, F2, N2,
C2, and Cr2
The calculation of potential energy surface for bond breaking is
one of the most rigorous tests for electronic structure methods.
Figure 2 shows the curves of the λ values of diatomic molecules
along the potential energy surfaces. As can be seen, the λ value
goes up with the increase in bonding distance and reaches to 1.0
at the dissociation limit. For example, the λ value of H2 is 0.465
at the equilibrium bond distance (0.74 Å), while it is 1.0 at the
dissociation limit. The other curves share similar behavior. It can
be found that the molecules with strong correlation have large
λ values in the short distances, showing the large portions of
electron–electron interaction energy computed by the VB wave

function methods. Based on the λ values shown in Figure 3, the
bond dissociation curves of H2, HF, F2, N2, C2, and Cr2 by λ-
DFVB are plotted in Figure 3. For comparison, the PES curves
with various WFT and KS-DFT methods are also shown.

It can be seen from Figure 3A that the restricted B3LYP
and BLYP calculations for the H2 molecule go to the wrong
dissociation limits, as expected. Both VBSCF and dc-DFVB
predict the dissociation correctly. However, VBSCF gives a higher
energy at the equilibrium geometry due to the lack of dynamic
correlation, while the dc-DFVB curve is underneath the full CI
one because of the double counting error. Encouragingly, the
performance of λ-DFVB is excellent, virtually overlapped with
the full CI and CASPT2 ones along the whole curve. If one zooms
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TABLE 2 | The computed De for diatomic molecules (in kcal/mol).

CASPT2 MRCI BLYP B3LYP VBSCF BOVB dc-DFVB λ-DFVB Expt

H2 106.1 109.4 109.5 110.3 95.3 95.3 118.9 109.1 109.5 (Linstrom and Mallard, 2011; Johnson, 2018)

HF 133.8 135.8 139.4 138.0 113.4 124.4 139.0 142.9 141.3 (Linstrom and Mallard, 2011; Johnson, 2018)

F2 34.0 34.9 52.6 40.1 16.8 33.9 35.7 38.9 38.2 (Linstrom and Mallard, 2011; Johnson, 2018)

N2 215.6 219.9 242.3 230.2 204.1 238.6 263.2 224.3 228.5 (Linstrom and Mallard, 2011; Johnson, 2018)

C2 149.5 137.8 137.5 121.3 137.3 – 176.2 137.4 148.0 (Leininger et al., 1998)

Cr2 28.4(0.25)a

37.8(0.45)a
– – – – – – 38.7 33.9 (Casey and Leopold, 1993)

aValues in parentheses are the IPEA shifts used in CASPT2 calculations.

TABLE 3 | The barriers of the D-A and Menshutkin chemical reactions (in kcal/mol).

Menshutkin reaction Diels–Alder reaction

H3N + CH3Cl → H3N…CH+
3 …Cl− → H3NCH

+
3 + Cl−

Reactant TS Product

CASPT2 40.5 23.5

BLYP 27.0 17.7

B3LYP 29.9 21.3 (Zhou et al., 2017)

VBSCF 41.5 41.7

dc-DFVB 38.5 34.5

λ-DFVB 32.4 24.6

Expt 33.0 (Webb and Gordon, 1999) 23.3 ± 2 (Webb and Gordon, 1999; Guner et al., 2003)

in the figure, it can be found that the λ-DFVB curve is the closest
to that of the full CI near the equilibrium geometry.

For the HF molecule, shown in Figure 3B, the λ-DFVB
curve is quite close to those by dc-DFVB, MRCI, and CASPT2.
Interestingly, although the dc-DFVB curve virtually overlaps
with the others around the equilibrium geometry, it deviates from
the others at about 1.7 Å and converges again at the dissociation
limit. For the F2 results in Figure 3C, the VBSCF curve is the
highest, while that of the dc-DFVB is the lowest after 1.60 Å.
The λ-DFVB curve almost coincides with those of the MRCI
and CASPT2 after 1.60 Å. However, the λ-DFVB curve is lowest
around the equilibrium distance. For the N2 curves, shown in
Figure 3D, the performance of λ-DFVB is very close to MRCI
and CASPT2, better than those of VBSCF and dc-DFVB. For the
C2 curves in Figure 3E, the three VBmethods (VBSCF, dc-DFVB,
and λ-DFVB) and CASPT2 predict the bonding dissociation of
C2 in a similar fashion. It is shown that the λ-DFVB curve is
slightly higher than that of the VBSCF around the equilibrium
bond length, indicating that the dynamic correlation does not
play a key role in the relative energy surface.

It is well-known that Cr2, which has sextuple bond with a
small bonding energy, is a challenging molecule to quantum
chemical methods due to its strong multireference character.
Traditional KS-DFT calculations are unable to provide the
potential energy surface properly (Brynda et al., 2009). For
CASPT2, different values of the ionization potential and electron

affinity (IPEA) shift lead to different results (Ruipierez et al.,
2011). Figure S1 displays the CASSCF curves with the Stuttgart
RSC 1997 ECP basis set (abbreviated as ECP) and the ANO-
RCC-VTZP basis set (abbreviated as ANO), and the VBSCF
curve with the ECP. It is found that the three curves are
quite similar, and all of them predict a minimum around
3.0 Å, far away from the experimental equilibrium distance.
In Figure 3F, ECP is used for VBSCF and λ-DFVB, and ANO
is used for CASPT2. As expected, CASPT2 is sensitive to
the value of the IPEA shift (Ruipierez et al., 2011; Manni
et al., 2014). The CASPT2 curve with a value of 0.45 a.u.
is close to that of the experimental. It is interesting that λ-
DFVB successfully predicts the global minimum around 1.60 Å.
Meanwhile, the barrier around 2.8 Å is in agreement with the
curves computed by the modified generalized valence bond
(MGVB) method and the curve by the MC-PDFT method
(Manni et al., 2014).

The Bond Dissociation Energies of
Diatomic Molecules
The computed bond dissociation energies (BDEs; De) for
the six diatomic molecules at their optimized geometries
are shown in Table 2. The BDEs of BLYP and B3LYP are
computed as the energy difference between the equilibrium
bond distances and the sum of atomic energies. Generally
speaking, CASPT2 and MRCI perform well, showing the small
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TABLE 4 | The singlet–triplet energy gaps of C, O, carbene (CH2), and trimethylenemethane (TMM) (in kcal/mol).

VBSCF CASPT2 BLYP B3LYP dc-DFVB λ-DFVB Expt

C 3P→ 1D 34.5 30.0 39.2 40.3 24.6 25.3 29.1 (Ess et al., 2011)

O 3P→ 1D 50.3 46.3 60.9 62.4 40.3 41.1 45.4 (Ess et al., 2011)

CH2
3B1→

1B1 39.2 26.9 7.3 29.8 25.9 31.3 32.9 (Ess et al., 2011)

TMM 3A
′

2→
1A1 21.5 20.1 34.7 43.9 14.7 18.4 18.1 (Li and Paldus, 2008)

deviations from the experimental data. With a large IPEA
shift of 0.45 a.u., CASPT2 provides a satisfactory result for
Cr2. Both BLYP and B3LYP are unable to provide the proper
descriptions for C2 and Cr2 molecules, as mentioned in literature
(Carlson et al., 2015; Kepp, 2017).

Because of the lack of dynamic correlation, VBSCF is unable
to provide satisfactory BDEs for H2, HF, F2, and N2. Analogous
to CASSCF, VBSCF is unable to describe the Cr–Cr bonding
properly, but it predicts the bonding of C2 quite well. BOVB
uses different orbitals for different VB structures to consider
the dynamic electron correlation. It cannot be employed in the
molecules with large active spaces (for example, C2 and Cr2
in this work). In the BOVB calculations, the active orbitals
are HAOs, while the remaining orbitals are OEOs. It is shown
that the BOVB results are better than those of the VBSCF. By
incorporating EC functional into VBSCF, the BDEs of dc-DFVB
are larger than their corresponding VBSCF values and are mostly
overestimated for N2 and C2 compared to the experimental data,
because of the DCE. Similar to VBSCF, dc-DFVB is also incapable
of predicting the stable Cr–Cr bonding.

For λ-DFVB, in general, its computational results are
excellent, close to the MRCI and CASPT2 values and superior
to the BOVB and dc-DFVB ones. For N2, the λ-DFVB value
is 224.3 kcal/mol, which is close to the experimental data of
228.5 kcal/mol and even better than the CASPT2 one. The λ-
DFVB value of C2, 137.4 kcal/mol, is close to the MRCI result of
137.8 kcal/mol and that of ICMRCI+Q/cc-pVTZ, 138.8 kcal/mol
(Pradhan et al., 1994). For Cr2, the BDE value of λ-DFVB is
38.7 kcal/mol, close to the experimental data, 33.9 kcal/mol,
and the CASPT2 result of 32.8 kcal/mol with the IPEA shift of
0.45 a.u. and cc-pVTZ-DK basis set by Truhlar (Carlson et al.,
2015), better than the MC-PDFT result, 13.8 kcal/mol, at the
tPBE/cc-pVTZ-DK level (Manni et al., 2014).

Chemical Reaction Barriers
Table 3 lists the reaction barriers for the Diels–Alder reaction
and the Menshutkin reaction. The λ values for the reactants and
transition states of the two reactions are shown in Table S4. It
can be seen that VBSCF overestimates the values of barriers due
to the lack of dynamic correlation, while KS-DFT underestimates
the reaction barriers, as expected. The dc-DFVB results are
much improved from those of the VBSCF. The performance
of λ-DFVB is very good. For the Diels–Alder reaction, the
barrier of 24.6 kcal/mol is very close to those of the CASPT2
(23.5 kcal/mol) and the experimental (23.3 kcal/mol). For the
Menshutkin reaction, the λ-DFVB value of 32.2 kcal/mol is even
better than that of CASPT2, 40.5 kcal/mol, compared to the
experimental value of 33.0 kcal/mol.

FIGURE 4 | The Fe(II)–porphyrin complex.

The Excitation Energy Gaps
The singlet–triplet energy gaps of carbon atom, oxygen atom,
carbene (CH2), and trimethylenemethane (TMM) by various
methods are shown in Table 4, the corresponding λ values for
the λ-DFVB calculations are shown in Table S4. As expected, the
KS-DFT results show very large deviations from the experimental
data and the CASPT2 results for all atoms and molecules
except porphyrin. Meanwhile, VBSCF predicts the excitation
and transition energies quite well. Compared to VBSCF and
dc-DFVB, the performance of λ-DFVB is much improved,
particularly for molecules. As can be seen, the deviation values
from the experimental data are 1.6 and 0.3 kcal/mol for CH2 and
TMM, respectively, even smaller than those of CASPT2.

Fe(II)–porphyrin, shown in Figure 4, is an important
organometallic compound comprising the active center of several
important biological proteins. Experimental studies show that
the triplet state is lower than the quintet state. However, it
is a challenge to describe the relative stability of the quintet
and triplet states correctly with multireference wave function
methods. Manni and Alavi (2018) and Smith et al. (2017) found
that only the CASSCF calculations with very large active spaces
are able to predict the triplet–quintet gaps properly. For the
VB and CASSCF calculations, the active space includes the six
valence electrons of the metal center and its five 3d orbitals.
Our computed triplet–quintet gaps for Fe(II)–porphyrin with
various methods are displayed in Table 5. It is found that the
VBSCF, dc-DFVB, CASSCF, and CASPT2 results predict that
the quintet state is more stable than the triplet state. Only
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TABLE 5 | The triplet–quintuplet energy gap of Fe(II)–porphyrin by various

methods (in kcal/mol).

Method Energy gap

VBSCF −26.2

dc-DFVB −17.0

λ-DFVB 2.4

MCSCF (6,5) −26.0

CASPT2 (6,5) −6.7

B3LYP (Kozlowski et al., 1998) 6.2

SHCI (44,44) (Smith et al., 2017) 1.9

Stoch-CAS (32,34) (Manni and Alavi, 2018) 3.1

λ-DFVB and B3LYP describe the gap correctly. The λ-DFVB
result of 2.40 kcal/mol is close to the reference data of ca
3.0 kcal/mol by stochastic-CASSCF (32,34) (Manni and Alavi,
2018) and 2.0 kcal/mol by heat-bath configuration interaction
with semistochastic perturbation theory at the active space
(44,44) (Olivares-Amaya et al., 2015).

The λ-DFVB with the PW91 functional is also performed
for BDEs, chemical barriers, and singlet–triplet gaps. In general,
the results are close to those of λ-DFVB with BLYP. Details are
shown in Tables S5–S7. The structure weights and orbitals of N2

are displayed in Figures S2, S3 showing that the wave function of
λ-DFVB is similar to that of the VBSCF.

CONCLUSION

A new hybrid multireference density functional theory method
based on the VB theory, named λ-DFVB, is presented in
this paper. Based on the MC1H approximation presented by
Sharkas et al. (2012), λ-DFVB combines VBSCF and KS-DFT
with a linear decomposition for electron–electron interactions.
In λ-DFVB, the hybrid parameter λ is variable, ranging from
0.0 to 1.0, and defined as a function of the free valence
index K, which diagnoses the multireference character for a
given system. Furthermore, an additional correlation term,
EC(ρLD), is introduced to consider the correlation energies of
fragments/atoms in the dissociation limit, which ensures that the
λ-DFVB method is size consistent.

The λ-DFVB method was carefully examined by performing
test calculations for various chemical properties, including
potential energy surfaces, bond dissociation energies,
chemical reaction barriers, and singlet–triplet energy gaps.
The performance of λ-DFVB is promising, close to those of
CASPT2 and MRCI. Especially, the proper descriptions of the
Cr2 bonding and the triplet–quintet gap of the model molecule
Fe(II)–porphyrin in their equilibrium geometries, which are
challenging both to the WFT and DFT methods, show the
capability of λ-DFVB for strong correlation systems.

The λ-DFVB method shares its dual advantage. On the one
hand, λ-DFVB improves the accuracy of the VBSCF method
by incorporating dynamic correlation; on the other hand, it
overcomes some problems with KS-DFT that result from the
use of a single determinant. Though the current strategy of the
λ-DFVB is applied to the GGA functionals in this paper, it
will be extended to more general functionals, such as hybrid
functionals and meta-GGA functionals, which will be discussed
in the near future.
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