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Recently, some applications of Process Systems Engineering to physiology and clinical

medicine make use of compartmental analysis to represent transport of material in

biological processes. One of the first steps of this analysis is to generate a set of plausible

models that describe the system under study. In a previous work, we have proposed

an optimization framework to support this task using a superstructure approach which

inherently considers the different feasible flows between any pair of compartments.

In this work, we extend such a framework to a bi-objective optimization that allows

evaluating the trade-off between model fitness and complexity. To discriminate among

the different models in the Pareto frontier, we employ a Bayesian metric which is

approximated using a Markov Chain Monte Carlo sampling. We present a case study

related to an immuno-oncology agent pharmacokinetics to demonstrate the advantages

and limitations of the proposed approach.

Keywords: process systems engineering, physiology and clinical medicine applications, combined bi-objective

optimization, bayesian framework, compartmental, immuno-oncology agent pharmacokinetics models, Markov

Chain Monte Carlo sampling, Bayesian metric

INTRODUCTION

It is recognized that Process System Engineering can play a relevant role in addressing the
problem of delivering appropriate treatment to patients (Rao et al., 2017). In order to achieve
this, pharmacometric models to support the design of individualized therapies are needed.
Compartment models are usually employed to represent drug absorption and disposition in
biological systems.

For instance, Savoca et al. (2018) propose a physiologically-based diffusion- compartment
model for the simulation of melatonin pharmacokinetics. Nacu and Pistikopoulos (2017) utilize
a compartmental model for the drug distribution and drug effect of intravenous anesthesia. They
develop control schemes to deal with inter- and intra-patient variability. Pavurala and Achenie
(2013) present compartmental models in the study of drug release, absorption, and transit in order
to test hypothesis regarding drug delivery mechanisms. They carry out a comparative study on
different cimetidine tablet formulations and used the developed framework to determine optimal
dosages. Sresht et al. (2011) employ a first-order compartmental model to study the side effects

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2019.00037
http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2019.00037&domain=pdf&date_stamp=2019-04-16
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://creativecommons.org/licenses/by/4.0/
mailto:luis.puigjaner@upc.edu
https://doi.org/10.3389/fenrg.2019.00037
https://www.frontiersin.org/articles/10.3389/fenrg.2019.00037/full
http://loop.frontiersin.org/people/563180/overview
http://loop.frontiersin.org/people/120925/overview


Laínez-Aguirre and Puigjaner A Combined Bi-objective Optimization and Bayesian Framework

of cisplatin therapy. A model is developed for the cytotoxicity
of cisplantin to predict cancer cells survival when subjected
to a given dose of the chemotherapeutic agent. One of the
main challenges still remaining in pharmacometrics is to
identify the appropriate model to describe the experimental
data. In a previous work, we proposed a super-structure
optimization framework in order to support the model builder
in elucidating plausible compartmental models. Here, we extend
that framework to provide a better control of over-fitting and
to permit the quantitative assessment of the existing trade-off
between model complexity (i.e., number of estimated parameters
and compartments) and accuracy. To do so, we develop a
bi-objective optimization, which involves maximizing a fitness
metric, log-likelihood, andminimizing the number of themodel’s
active parameters, simultaneously. In addition, to discriminate
the different models comprising the Pareto frontier we propose
the use of a Bayesian metric that quantifies and thus allows
comparing different models adequacy.

BI-OBJECTIVE OPTIMIZATION MODEL

Here, we extend the model presented by Laínez-Aguirre et al.
(2017) to include binary variables to control the number of
unknown parameters. The underlying idea of this model is
to inherently consider all possible flows between any pair of
compartments. The different types of flows are represented by set
s in this model. Figure 1 shows a schematic representation of two
compartments i and i′. The model determines the s connectivity
relations that are active between any pair of compartments.

The optimization model is comprised of four group of
equations, namely, (i) the mass balances, (ii) the predictions, (iii)
the equations to control the number of unknown parameters, and
(iv) the objective functions. They are briefly discussed next.

Mass Balances
The Transportation Phenomena Among Compartments Must
Satisfy the Material Balance Expressed in Equation (1).

d

dt
Âi (t)=k

0
i +

∑

s

∑

i6=i′

kTsi′iÂ
e1s
i′ Âe2s

i −
∑

s

∑

i6=i′

kTsii′ Â
e1s
i Âe2s

i′ ∀i /∈ Ī (1)

This equation enforces that the change rate of the material
amount (Âi[g]) in compartment i to be equal to the difference
between the input transfers from an external source (k0i [kg/h])
and from other compartments i′(kTsi′i [kg/h]), and the transfers

from compartment i to other compartment i′(kTsii′ [kg/h]). The
material elimination can be contemplated as a transfer from
compartment i to a dummy compartment i′. This dummy
compartment is represented by the unitary set Ī. Please, note that
each type of flow rate s comprises a pair of associated parameters
e1s and e2s. They denote the power to which the material amount
in the origin and destination compartment is to be raised in the
mass balance equation, respectively.

FIGURE 1 | Schematic representation of the super-structure for a

compartmental model.

Predictions
The material balances drive the predictions for the experimental
data. Since the relationship to estimate such predictions can
vary significantly depending on the experimental exercise, the
generic Equation (2) is used to represent their formulation. This
equation must be adjusted for each case study. Here, ŷ(t) [kg
or kg/m3] is the vector of predicted values for the experimental
observations, while f is a function relating the material amount
in the compartments to the predicted values.

ŷ(t) = f
(

Âi (t) , ..., ÂI(t)
)

(2)

Unknown Parameters
Equations (3) to (4) control the number of parameters in the
model. In these equations, Xsi′i is a binary variable which takes
the value of 1 if kTsi′iactive model parameter. Equation (3) forces

parameter kTsi′ito be 0 when it is not active, otherwise its value is

within the limits kMin
si′i and kMax

si′i .

kmin
sii´ Xsii´ ≤ kTsii´ ≤ kmax

sii´ Xsii´ ∀s, i, í 6= i (3)

P =
∑

s

∑

i

∑

i′ 6=i

Xsii´ (4)

The Fitness Function
The model utilizes the log-likelihood as fitness function.
Assuming that the experimental error is a zero-mean Gaussian
process with covariancematrixV, the log-likelihood function can
be expressed as the first term in the right hand side of Equation
(5). The covariance matrix V can be represented as a constant
diagonal matrix for homoscedastic errors; while, correlation
functions can be used when heteroscedasticity is considered
(Rasmussen and Williams, 2006). In order to control the over-
fitting phenomenon, in this work we don’t use a regularization
term. Instead a bi-objective optimization is formulated. The
objective functions are the log-likelihood Z and the total number
of active parameters P.

Z = lnN([y1, ..., yn]|[ŷ1, ..., ŷn],V) (5)
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Then, the compartmental model can be mathematically posed
as follows:

Min
X,Y

{−Z, P}

subject to Equations (1) to (5)
where the sets X and Y denote the model binary and

continuous variables, respectively. To deal with the optimization
of the resulting set of differential equations, orthogonal
collocation on finite elements is employed. The interested reader
is referred to Cuthrell and Biegler (1987) for details about this
methodology. With regard to the bi-objective optimization, the
ǫ-constraint method (Messac et al., 2003) is used to generate
the Pareto frontier. This is achieved by imposing a limit in the
number of active unknown parameter kTsii′ , as shown in Equation

(6). In this equation P̄ is an integer representing the upper limit
imposed to P.

P ≤ P̄ (6)

MODEL DISCRIMINATION

A Pareto frontier is obtained as result from the optimization
model described in the previous section. Such frontier provides
a set of non-dominated plausible models. To discriminate and
select the most adequate model from the set, we will use
the Bayesian methodology proposed by Blau et al. (2008).
The authors suggest to obtain and use for each model
under evaluation the posterior probability distribution of the
unknown parameters.

p(Mn|D) =
L(Mn|D)p(Mn)

∑

n
L(Mn|D)p(Mn)

(7)

Equation (7) is the application of the Bayes’ theorem
by considering that each model Mn is an alternative
to explain the experimental data. In this equation,

p(Mn|D) is the posterior probability quantifying the
belief that model Mn explains the data D, p(Mn) is the
prior probability for model Mn, and L(Mn|D) is the
likelihood associated with model Mn given the data D.
Blau et al. (2008) propose to calculate this likelihood
as follows:

L(Mn|D) =

∫

kTn

L(kTn |D)p(k
T
n |D)dK

T
n (8)

This is the average likelihood of the model n unknown
parameters given the data D [Equation (5)] over the
posterior probability distribution of those parameters.
To approximate L(Mn|D) in Equation (8), we will
employ a Markov Chain Monte Carlo (MCMC)
sampling method. Computing p(Mn|D) will allow us
to rank the compartmental models represented in the
Pareto frontier.

The overall proposed methodology is summarized in the flow
diagram depicted in Figure 2.

FIGURE 2 | Flow diagram summarizing the proposed methodology.

COMPUTATIONAL STUDY

To demonstrate the capabilities and limitations of
the proposed approach, a case study related to the
pharmacokinetics of an oncological therapeutic agent,
Cyclophosphamide (CY), is reported. CY is activated in the
body to hydroxy-cyclophosphamide (HCY), which is then
metabolized to Carboxyethylphosphoramide mustard (CEPM)
(McDonald et al., 2003).

We employ the data published for 20 patients as obtained
from the clinical study carried out by Salinger et al. (2006) to
postulate some plausible models by using the proposed approach.
In their study, blood was sampled over 16 h to measure plasma
concentrations of CEPM and HCY. This data was collected by
administering an initial intravenous infusion of 45mg CY per kg
body weight (Dose1) during approximately 1 h. The experimental
data is listed in Laínez-Aguirre et al. (2017).

For this case study, we consider in the optimization model
a maximum of four potential compartments and one dummy
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TABLE 1 | Type of flows considered in the compartmental model.

Type (s) e1s e2s

1 1 0

2 1 1

3 2 0

FIGURE 3 | Pareto frontier from the bi-objective optimization. Each point

represents a different compartmental model.

compartment for the elimination processes. The rates that are
considered for the material flows are shown in Table 1. Four
elements each including four collocation points corresponding
to the roots of a Legendre polynomial are utilized for the
orthogonal collocation. The model was implemented in GAMS
(Rosenthal, 2011) and consists of a Mixed Integer Nonlinear
Program (MINLP) with 880 equations, 781 continuous variables,
and 52 binary variables. The total CPU time for its solution was
limited to 8 h using the solvers CONOPT3, CPLEX and SBB
on an Intel i7 at 2.67 GHz computer. The MCMC has been
implemented using the R (R Development Core Team, 2008)
software and its package MCMCpack (Martin et al., 2011). DAE
models have been coded in C++ and integrated with R using the
Rccp package. The convergence of theMCMC approach has been
assessed using both the average likelihood plot and trace plots for
the parameters (Cosma and Evers, 2010).

Figure 3 depicts the Pareto frontier obtained after applying
the proposed optimization model to the Cyclophosphamide
pharmacokinetic data. The Pareto frontier could include models
with less than four unknown parameters. Nevertheless, such
models are not relevant from the applicability standpoint given
their low data fitness. Figure 3 shows that there is a significant
improvement when moving from a four to a five parameter
model. As expected the error decreases as we increase the model
complexity. However, the higher the total number of unknown
parameters that are included in the model, the more significant
the impact of overfitting becomes. For this reason, the Pareto
frontier has been truncated at nine unknown parameters.

The additional reduction in the square error by adding an
extra parameter at this point is less than 1.5% of the error
resulting from the four-parameter model.

Figure 4 shows an schematic of the six parameter
compartment model and its equations are listed in Equation (9),
while the seven parameter compartment model is depicted in

FIGURE 4 | Compartmental model with six unknown parameters.

FIGURE 5 | Compartmental model with seven unknown parameters.

Figure 5 and expressed in Equation (10). One can notice that the
structure of these two models are very similar. They only differ
in that the seven parameter model includes a second order flow
originating from the CEPM to the HCY compartment. This extra
flow/parameter results in an error reduction of 26%.

dÂ1

dt
= k0 − k13Â

2
1 + k31Â3 − ke1Â1

dÂ3

dt
= k13Â

2
1 − k31Â3 − k34Â

2
3 + k43Â3Â4 − ke3Â3

dÂ4

dt
= k34Â

2
3 − ke4Â4 (9)

k0 =

{

Dose1/h, if 0h ≤ t ≤ 1h
0, otherwise

}

Â1(0) = 0; Â3(0) = 0; Â4(0) = 0

dÂ1

dt
= k0 − k13Â

2
1 + k31Â3 − ke1Â1

dÂ3

dt
= k13Â

2
1 − k31Â3 − k34Â

2
3 + k43Â3Â4 − ke3Â3

dÂ4

dt
= k34Â

2
3 − k43Â3Â4 − ke4Â4 (10)

k0 =

{

Dose1/h, if 0h ≤ t ≤ 1h
0, otherwise

}

Â1(0) = 0; Â3(0) = 0; Â4(0) = 0

We then apply to these two models the Bayesian discrimination
method- ology previously described. A random walk Metropolis
algorithm is employed which has been implemented in the
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MCMCpack package of the R software. A total of 100 × 103

samples are drawn from the posterior probability distribution
for the unknown parameters of each model. We assume that
the model prior distribution is uniform between these two
models [i.e., p(M6) = p(M7) = 0.5). Likewise, a non-informative
prior probability distribution is utilized for the parameters. The
resulting posterior probabilities are 7.07 × 10−80 and 1 for the
six-parameter and seven-parameter model, respectively. Based
on this metric, the model depicted in Figure 5 describes more
accurately the Cyclophosphamide pharmacokinetic data. By
comparing the structures of themost likelymathematical models,
the model builder can gain insights about the pharmacokinetics
of the drug (e.g., linearity vs. non-linearity, multicompartment
behavior, absorption vs. elimination rates).

CONCLUDING REMARKS

In this work a combined bi-objective optimization and
Bayesian model discrimination approach is proposed to
tackle the problem of postulating compartmental models.
We extend a previous super-structure model, which allows
evaluating and discriminating simultaneously a significant
number of potential compartmental models in a straight-
forward manner. Equations are added to control the resulting
model complexity. The mathematical model is posed as

a bi-objective optimization that maximizes the fitness
metric, while minimizing the total number of unknown
parameters. The optimization provides a Pareto frontier, which

is comprised by a set of non-dominated plausible models.
To discriminate and select the most adequate model from
this set, the Bayesian methodology proposed by Blau et al.
(2008) is employed. The posterior distributions required by
this evaluation are obtained using a Markov Chain Monte
Carlo sampling.

A case study related to Cyclophosphamide pharmacokinetics
is presented. In this exercise, the selection of the compartmental
model has been driven completely by the experimental data. We
would like to point out that we do not intend to suggest that
the resulting model is a final model for this problem. Instead,
we believe that the proposed methodology could deliver valuable
insights to practitioners to support the process of building new
models that explain experimental data.

To address the computational expense of solving the proposed
model decomposition techniques can be applied. This is part of
our ongoing work.
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