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It has been suggested that the human nervous system controls motions in the task (or

operational) space. However, little attention has been given to the separation of the

control of the task-related and task-irrelevant degrees of freedom.

Aim: We investigate how muscle synergies may be used to separately control the

task-related and redundant degrees of freedom in a computational model.

Approach: We generalize an existing motor control model, and assume that the task

and redundant spaces have orthogonal basis vectors. This assumption originates from

observations that the human nervous system tightly controls the task-related variables,

and leaves the rest uncontrolled. In other words, controlling the variables in one space

does not affect the other space; thus, the actuations must be orthogonal in the two

spaces. We implemented this assumption in the model by selecting muscle synergies

that produce force vectors with orthogonal directions in the task and redundant spaces.

Findings: Our experimental results show that the orthogonality assumption performs

well in reconstructing the muscle activities from the measured kinematics/dynamics

in the task and redundant spaces. Specifically, we found that approximately 70% of

the variation in the measured muscle activity can be captured with the orthogonality

assumption, while allowing efficient separation of the control in the two spaces.

Implications: The developedmotor control model is a viable tool in real-time simulations

of musculoskeletal systems, as well as model-based control of bio-mechatronic

systems, where a computationally efficient representation of the human motion controller

is needed.

Keywords: motor control, muscle synergy, task space, redundant motion, feedback control, fast control,

uncontrolled manifold, orthogonal basis vectors

1. INTRODUCTION

Two of the major complexities associated with the human motor control system are: (1) The
number of degrees of freedom in the human body greatly exceeds the minimum number required
to finish a task. (2) Each degree of freedom is affected by multiple muscles that need to cooperate
in order to perform the movement. As a result, different movement patterns can accomplish
a given task (the degree of freedom problem, Bernstein, 1967), and a specific movement can
be generated by an infinite number of muscle activation combinations (the muscle redundancy
problem). From a mechanical point of view, the first is a kinematic redundancy, while the second is
a dynamic redundancy.
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It has been observed that the movements exhibit stereotypical
features in the task (or operational) space. Morasso (1981) has
shown that in reaching tasks, the hand follows a straight line
from the origin to the target, and the hand velocity profile
is stereotypically bell-shaped. However, no such consistency
could be observed in joint angle trajectories. Furthermore, the
uncontrolled manifold theory (UCM, Scholz and Schöner, 1999)
also theorizes that the nervous system actively controls the task-
related degrees of freedom, and leaves the rest uncontrolled.
These observations support the existence of a control mechanism
in the task space. However, there are situations when not just
the task-related variables, but all the degrees of freedom need
to be actively controlled (e.g., reaching a target with a specific
hand orientation). How do these situations fit in the “task
space control” theme? In addition to that, it is not clear how
the nervous system may control the muscles (that essentially
rotate the joints) to selectively control some kinematic variables,
and leave the rest uncontrolled. In this paper, we propose
a computational framework that can achieve such a selective
control scheme.

Numerous computational models for the control of
musculoskeletal systems have been proposed. Among these,
many direct optimization-based models exist (Todorov et al.,
2005; Liu and Todorov, 2009; Mehrabi et al., 2015a,b, 2017) that
inherently control all the degrees of freedom at all times, and as
a result are computationally costly. Another challenge to these
optimization methods is the choice of the objective function,
which is the topic of inverse optimal control (searching for the
correct objective function, Mombaur et al., 2010; Laschowski
et al., 2018; Berret et al., 2019). The feedback control models
developed by Park and Durand (2008), Blana et al. (2009), and
Jagodnik and van den Bogert (2010) are joint space controllers
that do not separate task-related and redundant kinematic
variables. Lockhart and Ting (2007) and Sharif Razavian et al.
(2015) have developed feedback controllers using modular
activation of muscles, but for systems without kinematic
redundancy. Stanev and Moustakas (2017) have employed a
task-space formulation and an optimization routine to solve
for the muscle activations. Fu et al. (2015) have developed a
controller for a kinematically redundant system; however, only
the control of the task-variables are reported. The only available
computational framework that formulates the kinematic and
dynamic redundancies in musculoskeletal systems is developed
by Stanev and Moustakas (2019); however, no direct relationship
between the muscle redundancy and kinematic redundancy
is discussed.

Muscle synergy theory was originally proposed as a possible
mechanism employed by the nervous system to reduce the
number of control signals (Tresch et al., 1999; Tresch and
Jarc, 2009). According to this theory, the nervous system
builds the muscle activation commands, by combining a few
sets of activation (called modules, muscle synergies, or motor
primitives). Such a low-dimensionality in muscle activation
signals has been observed in a variety of cases, e.g., healthy
humans movements (Kutch et al., 2008; Meyer et al., 2016; Sharif
Shourijeh et al., 2016; Smale et al., 2016), spinal cord injury
(Zariffa et al., 2012), stroke (Cheung et al., 2009, 2012; Clark

et al., 2010; Roh et al., 2013; Scano et al., 2017), and cerebral palsy
patients (Steele et al., 2015; Tang et al., 2015), frogs (Cheung et al.,
2005; Bizzi et al., 2008), and cats (Ting and McKay, 2007; Sohn
and Ting, 2016). Muscle synergies are especially appealing from
a computational point of view, as the dimension reduction in the
control space contributes to the computational efficiency of the
control algorithms for musculoskeletal systems.

The relationship between the muscle synergies and the task
space is not fully studied. It has been shown that there is a
correlation between the synergies and the endpoint force in
Bizzi et al. (1991) and Ting and Macpherson (2005). Berger and
D’Avella (2014) have used a mapping to estimate the end-point
force from the measured muscle activities. Conversely, Lockhart
and Ting (2007) have used the center of mass kinematics (task
variable) to estimate muscle activations in a balancing task. Sharif
Razavian et al. (2015) have proposed a mathematical relation
between the dimensions of the task space and the number of
muscle synergies required to control the task. There is one
missing point in these articles: how do the synergies affect the
redundant degrees of freedom, besides the task space?

In previous research (Sharif Razavian et al., 2015, 2019),
we proposed a real-time motor control framework that
takes advantage of the explicit relationship between muscle
synergies and the task space forces, to control the movement
in musculoskeletal systems. This framework could effectively
control the movements in the task space, while leaving the
redundant ones uncontrolled. The objective of the present work
is to explore the potential of this framework for the selective
control of some or all of the degrees of freedom in kinematically
redundant musculoskeletal systems.

We start with a brief summary of the proposed motor control
framework. Next, we show how the framework can be generalized
to facilitate the control of redundant degrees of freedom. The
experimental methods to evaluate the feasibility of the framework
is presented next. In the end, the results and discussion are
provided, followed by the concluding remarks.

2. METHODS

According to the uncontrolled manifold theory (Scholz and
Schöner, 1999), the nervous system tightly controls the task-
related kinematic variables, and leaves the unrelated ones
uncontrolled. There is an important complication inherent to
this theory; the task variables (e.g., hand position in a reaching
task) are in general complex functions of all the joint angles. How
does the nervous system activate the muscles (which rotate the
joints) to control some of the kinematic variables and leave the
others uncontrolled?

We use the term task space to describe the collection of
the task-related variables that are actively controlled by the
nervous system. Depending on the task requirement, these
variables could be kinematic (e.g., finger position) or dynamic
(e.g., pinch force). Without losing generalizability, we only
discuss kinematic task variables here. For example during a
reaching task, the task variables are the (x, y, z) position of
the hand, and the task space is the 3D Cartesian space.
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FIGURE 1 | (A) There are multiple ways to perform a certain task. The variables that are related to the task (e.g., finger position in space) form the task space, while

the ones that can change without affecting the task (e.g., elbow height) form the redundant space. (B) An example of a planar robotic system with kinematic

redundancy. The robot has three degrees of freedom and a 2D task space (x, y). Because there is one extra (redundant) degree of freedom besides the task-related

ones, the robot can reach the target in multiple configurations. (C) The representations of the robot in the joint space; each dot on the curved line represents a single

configuration, all of which result in the same target position (x, y). The meshed surface represents the robot configuration at multiple target positions (with the

constraint of θ1 = 0). (D) An equivalent representation of the robot in task/redundant space. The mesh surface represents the same target positions. In this example,

the redundant variable ξ is chosen to be the y-component of the first link’s end point [ξ = l1 sin(θ1)]. The orthogonality of the task space (mesh) and the redundant

space (dotted line) is evident. The dots show equivalent configurations of the robot in the two representations.

Conversely, the collection of the kinematic variables whose
variations do not affect the task form the redundant space
(see Figure 1A). It is readily apparent that the redundant
variables are functions of all the joint angles. However, it
is possible to define generalized kinematic variables that are
in a subspace orthogonal to the task space. Figure 1B shows
an example of a 3-degree-of-freedom (3-DoF) system, which
can be described by three coordinates, such as (θ1, θ2, θ3) or
(x, y, ξ ). The former is the joint angle representation (Figure 1C),
while the latter is a task/redundant variable representation
(Figure 1D). The variable ξ is a generalized coordinate that
can be any linear or non-linear function of the joint angles,
which along with the task variables (x, y) will uniquely define
the system’s configuration. Because ξ can vary without affecting
the task variables, it lies in a subspace that is orthogonal to the
task space.

We have introduced a computational motor control model
based on a task space formulation in Sharif Razavian et al. (2015,
2019). Furthermore, we have shown that muscle synergies can be
used to further simplify the control process. Here the basics of the
proposed motor control are briefly described.

Assume an n-DoF musculoskeletal system with m muscles
(m > n, Figure 2A), for which a p-dimensional task space is
considered (p ≤ n). To control the motion in this task space, k
synergies are defined. In this context, a “synergy" is defined as
the activation of a group of muscles with predetermined relative
ratios, and is expressed as a column-vector Sm×1 containing
the activation ratios. The synergy matrix, Sm×k, is formed by

concatenating the k synergy vectors. It is further assumed that
the relative activation ratios may change based on the posture
(de Rugy et al., 2012; Sharif Razavian et al., 2015); therefore, the
synergies are posture-dependent.

In this motor control framework, it is also assumed that
each synergy produces a p-D force vector in the task space; the
collection of all synergy-produced vectors can be viewed as a
basis set for the p-D task space (i.e., any arbitrary task space
force vector can be written as a linear combination of these basis
vectors). Therefore, corresponding with the synergies, there is the
basis set Bp×k.

If the needed body motion in the task space is known (which
may be defined by a high-level task space controller), the required
task space force vector can be decomposed onto the basis set,
to find the coefficient of each basis vector. Then, combining the
synergies with the corresponding coefficients will result inmuscle
activations that move the body in the desired direction in the task
space (Figure 2B).

By assuming that the basis vectors have no component in the
redundant space, it is possible to control the task variables and
leave the redundant ones uncontrolled. In other words, under this
assumption, the muscle activities do not induce any extra force in
the redundant space, which implies that these degrees of freedom
are not controlled by the muscles. However, there are situations
where the redundant DoFs are important and need to be actively
controlled (for example to avoid an obstacle or reach a target
at a certain angle). Therefore, the task space in these situations
includes all the degrees of freedom.
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FIGURE 2 | (A) Definition of the parameters used in the motor control

framework. In the example shown, a 3D task space (p = 3) for a reaching task

is considered. k = 4 basis vectors (colored vectors) are shown here

corresponding to the same number of synergies. In this example, the

remaining degree of freedom forms the redundant space (q = 1). (B) The

block diagram of the motor control framework. A reference force vector (Fref)

is decomposed onto the basis set, and the coefficients are used to combine

the corresponding the synergies.

FIGURE 3 | The experimental setup that restricts the arm motion to only two

DoFs. Force plates measure the ground reactions, and the kinematics are

collected by an optical motion capture system.

Our motor control framework requires synergies that are
defined for a specific task space. Thus, a new set of synergies
would ideally be required for the new full-dimensional task
space. However, increasing the dimensions of the problem
exponentially increases its complexity. Therefore, we have made
an assumption to avoid such complexities.

Instead of defining new synergies for the new n-D task space,
we have taken the original ones (Sm×k) and augmented it with l
new synergies (S̄m×l) that produce basis vectors orthogonal to the
original ones. Mathematically, the augmented synergy matrix Ŝ is

written as:

Ŝm×(k+l) =
[

Sm×k S̄m×l
]

(1)

which produces the basis set:

B̂n×(k+l) =

[

Bp×k 0

0 B̄q×l

]

(2)

Here, B̂ is the augmented basis set for new n-D task space, and
B̄q×l is the basis set that spans the original redundant space (q
is the dimensions of the original redundant space, p + q = n).
Therefore, the n-D task space is spanned by the collection of
two basis sets that are orthogonal to each other. To put this
in the motor control framework, the high-level controller may
now define an n-D reference force vector F̂n×1, which is then
decomposed into the basis set:

F̂n×1 =

[

Fp×1
F̄q×1

]

ref

= B̂n×(k+l)Ĉ(k+l)×1 (3)

to find the coefficients of the synergies, Ĉ. These coefficients are
then used as the weightings to combine the synergies as:

um×1 = Ŝm×(k+l)Ĉ(k+l)×1 (4)

The resulting muscle activations, um×1, will produce the force
vectors Fref and F̄ref in the original task and redundant spaces,
respectively.

This formulation, although being sub-optimal compared to
a general n-D basis set, has the advantage of decoupling the
task and redundant spaces. As a result, it is possible to switch
on/off the control of the redundant DoFs by choice. The task
space controller may output a non-zero reference force in the
redundant space (F̄ref 6= 0) to control it, or a zero value (F̄ref = 0)
to leave it uncontrolled. Because of the architecture of the motor
control framework, the condition F̄ref = 0 does not enforce zero
movement—it means no extra force is produced by the muscles.
Another interesting implication of this method is the possibility
of implementing a less strict controller, for a loose control of the
redundant DoFs.

3. HUMAN EXPERIMENTS

We have performed human motion analysis to evaluate the
validity of the assumptions. Specifically, the goal was to
investigate how well the assumption of the task/redundant space
orthogonality works in practice to estimate the muscle activities
from task/redundant space measurements.

For this purpose, the experimental set-up of Figure 3 was
designed to impose certain constraints on the body. The subject
was asked to hold the handle, and the forearm was strapped to
the armrest. As a result, the set-up allowed only two degrees of
freedom: a linear motion of the hand in the x direction (which is
considered as the task space), plus a rotation of the arm about the
same axis (the redundant space, denoted by angle φ). These two
DoFs and their positive directions are shown in Figure 3.
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TABLE 1 | The muscles recorded in the experiments.

# Muscle # Muscle

1 Anterior deltoid 5 Brachioradialis

2 Middle deltoid 6 Long head of triceps brachii

3 Posterior deltoid 7 Lateral head of triceps brachii

4 Biceps brachii 8 Pectoralis major

Surface electromyogram (EMG) data from eight muscles
(Table 1) was recorded at 1926 Hz (Trigno Wireless EMG,
Delsys Inc.). The arm motion was recorded at 150 Hz (Optotrak
Certus, Northern Digital Inc.), with optical markers placed on
the shoulder (acromion process), elbow (lateral epicondyle),
wrist (ulnar styloid process) and hand (distal end of the third
metacarpal bone). Force plate data was also recorded at 100
Hz (AccuGait, Advanced Mechanical Technology, Inc.). By
assuming negligible body motion, the forces at the hand can be
sensed by the force plate beneath the stool.

The EMG data were processed with the common procedure
(raw EMG → zero-mean → band-pass filter with 6th-order
Butterwork and 5–800 Hz cut-off frequency→ full-wave rectify
→ low-pass filter with 6th-order Butterworth and 2 Hz cut-
off frequency). Since the tested movements did not involve fast
dynamics, a 2 Hz cut-off frequency was chosen for the low-pass
(linear envelope) filter to produce smooth signals. The bandpass
filter cut-off frequencies were chosen to remove the biases in
the signals while retaining as much information as possible. The
EMGs for each muscle were normalized with respect to the 95th
percentile of the observed signal during the entire experiment.

Six subjects (two female, four male, average age 26.3 ±
3.0, all right-handed, no prior musculoskeletal disorder/injury)
participated in the study. The experiment was approved by the
Office of Research Ethics at the University of Waterloo.

The experiments were conducted in two phases. The goal of
the first phase was to obtain the posture-dependent orthogonal
task/redundant muscle synergies, which were used in the second
phase (movement trials) to estimate the muscle activities from
the kinematic/dynamic measurements.

3.1. Phase One: Obtaining the Synergies
First, the subject was asked to exert positive isometric forces
(push) along the task space. The set-up was locked at 9 different
positions (three positions along the task space {close, middle,
far}, each at three angles in the redundant space {0◦, −45◦,
−90◦}). Therefore, a total of nine 5-s sessions were recorded.
At each posture, the average EMG data from the eight muscles

was divided by the average pushing force, F
+
, to obtain the

“synergies” that produce unit force in the task spaces; i.e.,:

positive task space synergy =
[EMG]8×1

F
+ (5)

Next, 8 second-order polynomial surfaces [fi(x,φ), i = 1 . . . 8,
one for each muscle] were fitted to these posture-dependent

synergy data, which allowed estimation of the synergy vector in
any given posture.

S+
task

(x,φ) =











f1(x,φ)
f2(x,φ)
...
f8(x,φ)











(6)

The same procedure was repeated in the negative direction of
the task space (the subject was instructed to pull along the task
space), which resulted in negative task space synergy S−

task
(x,φ).

Additionally, rotations in the positive and negative directions in
the redundant space were also tested to obtain the redundant
synergies S+

red
(x,φ) and S−

red
(x,φ). To calculate these functions,

the posture-dependent synergy data were obtained by dividing
the EMGs by the measured redundant space torque:

positive redundant space synergy =
[EMG]8×1

T
+ (7)

negative redundant space synergy =
[EMG]8×1

−T
− (8)

As no training effect was expected, the order of conducting the
trials was fixed and as follows: (1) positive task, F+; (2) negative
task, F−; (3) positive redundant, T+; (4) negative redundant, T−.
The subject finished the isometric tests in all required postures
before moving to the next force or torque direction.

By concatenating the calculated synergy vectors, the synergy
matrix and the corresponding basis vectors can be constructed as:

Ŝ8×4(x,φ) = [S+
task

S−
task

S+
red

S−
red

] (9)

B̂2×4 =

[

+1 −1 0 0
0 0 +1 −1

]

← task dimension
← redundant dimension

(10)

Here, the basis vectors are the unit force/torque in the combined
2D space of (x,φ).

Note that this definition of muscle synergies is different from
what is generally used in the literature. The usual practice is
to collect EMGs in various conditions, and use a dimension-
reduction algorithm (e.g., non-negative matrix factorization or
principal component analysis) to extract the synergies (Tresch
et al., 2006). In our approach, we have assumed that the directly
measured co-activation of the muscles is a synergy by itself
(no dimension-reduction required). The traditional methods
need significantly more EMG data in each posture for reliable
factorization and provide little control over the directions of the
basis vectors (i.e., to impose orthogonality).

3.2. Phase Two: Motion Trials
In the second phase, the subject was instructed to reach forward
and backward along the slider; therefore, the instructed task
was a point-to-point reach. There was a small resistance on the
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TABLE 2 | The motion trials in the experiments.

Trial name Redundant DoF Trial name Redundant DoF

Fixed-0 Fixed at 0◦ Controlled-0 Free, held at 0◦

Fixed-45 Fixed at −45◦ Controlled-45 Free, held at −45◦

Fixed-90 Fixed at −90◦ Controlled-90 Free, held at −90◦

Natural Free, unattended

slider to increase themuscular activity, and the subject performed
the movement for 120 s at a self-selected speed. The redundant
DoF was once fixed (locked at three different angles {0◦, −45◦,
−90◦}), and once left free to rotate. In the free motion trials,
the subject was asked to actively hold the arm at specific angles
{0◦, −45◦, −90◦} while reaching forward and back. Lastly, the
subject was asked to disregard the redundant angle, and naturally
move back and forth in the task space. The three sets of trials
are designated by fixed, controlled, and natural trials, respectively,
and are summarized in Table 2.

In these trials, it was assumed that a task space controller
(unknown nature at this moment) had decided on the movement
trajectories that satisfied the tasks mentioned above. The
task/redundant space forces are assumed to be the measurable
outputs of this high-level controller. The goal is to use these
observed task/redundant space forces to estimate the muscle
activations. Therefore, the procedure introduced in section 2 is
used to reconstruct the muscle activities.

At any time step [t] during the motion, the coefficients vector,
Ĉ4×1 = [c+

task
, c−

task
, c+

red
, c−

red
]T, was calculated such that:

[

F[t]
T[t]

]

measured

= B̂2×4Ĉ4×1 (11)

where B̂2×4 is defined in Equation (10). The calculated
coefficients are then multiplied by the synergy matrix:

EMGest[t] = Ŝ (x[t],φ[t])8×4 Ĉ4×1 (12)

to estimate the muscle activations. To quantify this estimation
performance for the ith muscle, the variance accounted for (VAF,
Roh et al., 2012; de Rugy et al., 2013) is used:

VAFi = 1−

∑

t(EMGi[t]− EMGest,i[t])
2

∑

t EMGi[t]2
(13)

where the summation is over all the time steps during
the movement.

Note 1: Since the basis vectors in Equation (10) are
orthonormal (they are unit vectors orthogonal to each other),
the decomposition in Equation (11) is essentially a separation of
positive and negative portions of the measured force/torque.

Note 2: The synergy matrix Ŝ (x[t],φ[t]) in Equation (12) is
the posture-specific synergy matrix, calculated using the fitted
polynomial surfaces Equation (6).

Note 3:We have assumed that the redundant DoF control was
turned off in the fixed trials. Therefore, zero redundant space

torque (T = 0) was used in Equation (11) to reconstruct the
muscle activations. In other trials, the redundant space torque
could not be measured with our apparatus; thus it was calculated
as:

T = Tmax cos(φ)
d

dmax
(14)

where Tmax is the torque due to the weight of the arm when
φ = 0◦ and the elbow is fully flexed, and is measured using
counter weights in a static pose. When the arm is fully flexed,
the distance of the elbow from the axis of rotation is dmax, which
is used to scale the measure distance d during the movements.

3.3. Statistical Analyses
Due to the specificity of the recordings to the individual subjects
and measurement conditions, direct inter-subject comparison
of the recorded signals was not practical. Therefore, to make
statistical arguments, the calculated VAF (as the quantitative
similarity measure between the measured and estimated muscle
activations) was used. The Kruskal-Wallis test was used to
test whether the distribution of the results was different across
subjects, test scenarios, or muscles.

The results of the orthogonality condition were compared
against other methodologies. Specifically, to compare the
estimation performance of the proposed method to a baseline, a
random (by-chance) estimator was constructed, which matched
the mean and standard deviation of the measured muscle
activities. Additionally, to evaluate the significance of the
orthogonal synergies, the framework was re-applied to the
movement data with two alterations: (1) with the redundant
synergies turned off, and (2) with double the effect [coefficients
c+
red

and c−
red

multiplied by a factor of two in Equation (12)]. These
two conditions do not change the results for the fixed trials, and
have effect only on uncontrolled and natural trials.

4. RESULTS

Six subjects participated in the experimental trials. In the
following, the results belonging to subject #1 are shown. The
detailed results for all subjects are provided in the Appendix.

4.1. Posture-Dependent Synergies
The experimentally obtained synergies from subject #1 are shown
in Figure 4. These plots show the fitted polynomial surfaces for
each muscle in different synergies, and how the activity of the
muscles in the synergies changes by posture. At a given posture
(x,φ) the value of each surface corresponds to the elements
of the synergy matrix S. The plots “task+" and “task−" show
the task space synergies (pushing and pulling along the linear
guide, respectively), while the “redundant+" and “redundant−"
plots show the redundant space synergies (roughly translate into
elevating the arm and lowering it, respectively).

4.2. Motion Trials
Subject #1’s recorded motion in the task and redundant spaces
are shown in the top two rows of Figure 5. These plots show
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FIGURE 4 | The experimentally obtained synergies that correspond to the task space (top row) and the redundant space (bottom row). The plots show fitted

polynomial functions to the measured data. Each surface (color coded) show how a muscle’s activation in a synergy changes across various postures. Each synergy

produces unit force (or torque) in the task space (or redundant space). These synergies belong to subject #1. Detailed plots are available in the Appendix.

nine repetitions of the motion (reach out, rest, and return).
Overlaid on each plot is the average variation in the trial, which is
calculated as the mean of the point-by-point standard deviations
during the movement. The third row shows the measured task
space force, as well as the estimated redundant space torque.
Finally, the comparison of the measured and estimated muscle
activities during movements are shown in the subsequent rows of
Figure 5. To obtain these results, the measured x and φ values at
a given time are used to calculate the synergies from the surfaces
shown in Figure 4. Next, the obtained synergy matrix along with
the measured force at this time is used in Equations (11) and
(12). This process is performed for the entire duration of the
movement. The average computation time in each time step is
231µs (Intel Core i7-6700 CPU and 16GBRAM, runningMatlab
2018b).

The VAF Equation (13) has been used to quantify the
estimation performance of the method. The numbers presented
in the plots of Figure 5 are the VAF calculated for the individual
muscles during the specific trial.

To compare the overall estimation performance of themethod
across the subjects, the overall VAF (weighted mean of VAF over
all muscles/scenarios) is used. These numbers are reported in
Table 3 and are calculated as:

VAFoverall =

∑

(EMGi.VAFi)
∑

EMGi

(15)

where EMGi is the average value of the recorded EMG for the ith
muscle and during a test scenario. The summations in Equation
(15) are taken across all muscles and scenarios. The mean of the
overall VAF across all subjects is 0.695 with a standard deviation
of 0.098.

4.3. Statistical Analysis
For each subject, 8 × 7 = 56 VAF values are calculated
(8 muscles in 7 test scenarios). The non-parametric Kruskal-
Wallis test shows that there is no statistical difference between
subjects’ results (p = 0.32). Considering all subjects’ data
together, statistical analysis (Figure 6) reveals that the estimation
performance for the controlled-0 trial is better than the fixed trials
(p = 0.026, 0.034, 0.020 for fixed-0, –45 and –90, respectively), but
not different from the rest. Furthermore, the estimation quality
for biceps is significantly lower than those for middle deltoid (p
= 0.008), brachioradialis (p < 10−5), long head of triceps (p =
10−4), and pectoralis major (p = 0.023). All other muscle pairs
have insignificant VAF differences (p > 0.05).

The baseline from the by-chance estimator is calculated to be
VAF = 0.467 ± 0.126 (inter-subject mean ± standard deviation),
which is statistically inferior to the results of the synergy-based
method (p < 10−5). Additionally, including the orthogonal
synergies reconstructs the muscle activities better than ignoring
them (overall VAF = 0.597 ± 0.233, p < 10−5), or using them
with double the effect (overall VAF = 0.329 ± 1.66, p = 0.011).
A noteworthy observation is that the estimation results from
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FIGURE 5 | The experimental results (subject #1) during the motion trials. The measured motion in the task and redundant spaces, measured forces, and the

recorded EMGs are shown. The EMGs (gray lines) are overlaid with the reconstructed activities (black) during the motion trials.
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TABLE 3 | The overall VAF calculated for individual subjects.

Subject # VAF Subject # VAF

1 0.826 4 0.772

2 0.694 5 0.575

3 0.595 6 0.709

Mean ± SD = 0.695 ± 0.098

the natural trials change slightly when turning the redundant
space control on or off. Although using the orthogonal synergies
improves the overall estimation for this trial across all subjects
(turned on: VAF = 0.619 ± 0.474; turned off: VAF = 0.590 ±
0.232, p = 0.044), it introduces significantly more variability into
the estimation performance.

Figure 7 shows the distribution of the point-by-point
standard deviations across multiple repetitions, in various test
scenarios (the mean value is the one reported in Figure 5).
This figure compares the standard deviations between the
natural and controlled scenarios. As expected, the natural trial
exhibits larger standard deviations than controlled tests in all
subjects (p < 10−5). Moreover, the controlled-0 trial also shows
significantly larger variation than controlled-90 and controlled-45
in all subjects (p < 3× 10−4). The controlled-45 and controlled-0
are not different, except for subjects #5 and #6 (p < 2× 10−2).

5. DISCUSSION

The advantages of task space representation in motor control
were previously shown in Sharif Razavian et al. (2015, 2019),
where explicit synergy/task relations were used to estimate the
muscle activities that satisfied task requirements. Although this
framework was successful in real-time control of the motion in
the task space, the redundant degrees of freedom were essentially
left uncontrolled. Similar studies that considered task/synergy
relationships (e.g., D’Avella et al., 2008; Berger and D’Avella,
2014; Fu et al., 2015) also lack discussion of the redundant DoFs.
The present paper introduces an extension to the motor control
framework of Sharif Razavian et al. (2019) by proposing how the
same framework can be used to control the redundant degrees of
freedom alongside the task-related ones.

The main assumption made here was the orthogonality of
the basis sets in the task and redundant space. This assumption
stems from the observations that the nervous system controls
the task-related variables more tightly than the task-irrelevant
ones (see the uncontrolled manifold theory, Scholz and Schöner,
1999). This separation of control suggests that the actuations
affecting the task variables do not strongly affect the redundant
ones; thus, the actuator actions in the task space must be
orthogonal to the redundant spaces. Although our experimental
results cannot be used as a proof for the existence of orthogonal
synergies within the human nervous system, they showed that,
at least at the behavioral level (i.e., EMG), the orthogonality
assumption yielded acceptable estimation performance; about
70% of the muscle activation variations can be reconstructed

FIGURE 6 | The estimation performance (VAF) comparison by trials and by

muscles. Asterisks indicate statistical significance.

FIGURE 7 | The comparison of the standard deviation distribution of the

redundant DoF during various test scenarios. The natural trial exhibits the

largest standard deviations.

using the assumption of orthogonal bases for the task/redundant
spaces. As a practical conclusion, the control of motion in the
task and redundant spaces can be separated in a computational
model by employing orthogonal basis vectors, and the results
are not far from reality. Therefore, we can build mathematical
motor control models more confidently using this orthogonality
assumption, which are especially useful for the real-time model-
based control of bio-mechatronic systems (Mehrabi andMcPhee,
2019), rehabilitation robots (Ghannadi et al., 2018), exoskeletons
(Kuhn et al., 2018), and functional electrical systems (Sharif
Razavian et al., 2017, 2018).
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The orthogonality condition simplifies the computations in
a feedback motor control model, as the task-related synergies
will not induce motion in the redundant space, and vice versa.
This assumption also introduces the ability to switch on/off
the redundant space control, without the need to change the
control structure. Furthermore, it is possible to construct separate
feedback loops with different tracking properties to control the
task and redundant degrees of freedom (e.g., a tight control of
task variables, and a less strict controller for the redundant ones).

The downside to using the orthogonal synergies, however, is
the sub-optimality of the calculated muscle activities. The “gold
standard” computational tool to estimate muscle activities in
the literature is optimization, which is computationally intensive
and requires significantly more information (e.g., full kinematic
measurements, body segment mass properties, and muscle
parameters). Our motor control model is easier to compute and
relies on less information (only positions/forces in the task and
redundant space). To improve the results, it is possible that a
general (non-orthogonal) n-D basis set would result in more
efficient muscle activations. Reflecting upon the physiological
aspects of this issue, one idea is similar to that presented by
Raphael et al. (2010) and Loeb (2012): it might be possible that
in a novel situation, the nervous system starts employing the
previously known solutions (a basis set for the task space, plus
another one orthogonal to the first for the redundant space),
and eventually explores the neighboring solutions until it reaches
a “good-enough” solution (a non-orthogonal basis set, with
possibly fewer synergies).

Note that the definition of the synergies in our experiments
was different from themainstream in the literature. Although our
synergies comply with the concept of “coordinated recruitment
of a group of muscles with specific amplitude balances” (D’Avella,
2016), they are not obtained through a dimension reduction
procedure (e.g., non-negative matrix factorization, Tresch et al.,
2006). Instead, we took the recorded activity of the muscles
for a certain force direction, and directly defined them as a
synergy. The reason for this approach is that the considered
task/redundant spaces are both one-dimensional, and therefore,
only two synergies are observable from themeasured data (one in
each direction of movement along the task or redundant space).
It is the same approach suggested by Sharif Razavian et al. (2015)
that only two synergies suffice to fully and optimally control a
one-DoF task space.

Another contrasting point between our synergies and the
literature is their posture-dependence definition. This added
flexibility in the synergies is a key feature that allows explaining
more muscle activity variation with a smaller number of
synergies. For maximum control performance, the synergies can
also be velocity-dependent (D’Avella et al., 2008). However, the
added benefit of velocity dependence is small compared to that of
the posture-dependence (Sharif Razavian et al., 2015).

Our results show that switching off the redundant space
controller significantly degrades the estimation performance
(overall VAF across all subjects drops from 0.695 to 0.597,
p < 10−5); however, this effect on the natural trials is less
profound (VAF changes from 0.619 to 0.590, p = 0.044). These
results indicate that the redundant controller is essential for a

better estimation in the controlled trials, but is not as important
in the natural trial. This suggests a less active control of the
redundant DoFs by the nervous system. Furthermore, the larger
variation of the VAF across subjects during the natural trial
(VAF standard deviation = 0.474 and 0.232, for redundant
synergies turned on and off, respectively) might be due to
the subject-specific differences in the level of engagement of
redundant space controller.

Although the estimation of the muscle activities was not
significantly different between subjects and most trials/muscles,
a few differences were observed. The biceps was the only
muscle that showed a different distribution (and had lower
estimation quality), which could be attributed to poor EMG
collection conditions. The bicepsmuscle bellymoves significantly
under the skin-mounted electrode, which degrades the quality
of EMG signals. Another observation is the higher estimation
performance for the controlled-0 trial (compared to fixed
scenarios, p < 0.034). We speculate that, since this trial is the
most demanding one (holding the arm at an elevated position
against gravity while moving back and forth), muscles are
the most active, resulting in higher signal-to-noise ratio and
better estimations.

The experimental results were obtained following an inverse
approach; i.e., the muscle activations were estimated from the
measured kinematics/dynamics of the arm. In the context of a
motor control model, considering a forward approach (estimate
the motion from the muscle activation commands) is also
important, especially when predictive control is intended (Berger
and D’Avella, 2014). In general, the muscle activation estimated
from an inverse approach will not result in the same desired
motion, mostly due to estimation errors, disturbance/noise, and
unknown dynamics. However, by putting this inverse mapping
in a hierarchical feedback control scheme, it is possible to
compensate for much of the error, and achieve acceptable control
performance (Sharif Razavian, 2017; Sharif Razavian et al., 2018;
Sharif Razavian et al., 2019.

Lastly, the calculated motion variation in the redundant
space (φ trajectories in Figure 5, further detailed in Figure 7) is
expectedly higher in the natural trial in all subjects compared to
other test scenarios. This observation is in agreement with the
notion of an uncontrolled manifold (Scholz and Schöner, 1999),
as the arm angle is actively kept constant during controlled trials.
This observation suggests that φ is controlled less tightly by the
nervous system during natural reaching tasks. Additionally, it
was noted that the controlled-0 trial exhibits higher variation than
controlled-0/45, which is expected given that elevating the arm is
a more demanding task.

6. CONCLUSIONS

A motor control framework for fast feedback control of
complex musculoskeletal systems was previously presented
(Sharif Razavian et al., 2019), which was based on the
relationship between muscle synergies and the task space. In
this paper, the idea of task space control was extended by
introducing orthogonal basis sets in the task and redundant
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spaces. As a result, the motor control framework is now
capable of handling kinematic redundancies, with the option to
selectively switch off their control (leave them uncontrolled).
We performed an experimental trial to examine how well this
computational model (with orthogonal synergies) can estimate
muscle activities from task/redundant space measurements. The
experimental data showed that the assumption of orthogonal
task/redundant bases can estimate the muscle activities from
the measured kinematics/dynamics in the task and redundant
spaces with approximately 70% accuracy. These observations
build confidence in using this motor control framework
with orthogonal bases in computational models and control
applications, as a fast alternative to optimization-based methods.
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