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Grain protein content (GPC) and yield are of two important traits in wheat, but their
negative correlation has hampered their simultaneous improvement in conventional
breeding. Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is an important
genetic resource for wheat quality improvement. In this study, we report a genome-
wide association study (GWAS) using 13116 DArT-seq markers to characterize GPC in
161 wheat lines derived from wild emmer. Using a general linear model, we identified
141 markers that were significantly associated with GPC, and grouped into 48 QTL
regions. Using both general linear model and mixed linear model, we identified four
significant markers that were grouped into two novel QTL regions on chromosomes 2BS
(QGpc.cd1-2B.1) and 7BL (QGpc.cd1-7B.2). The two QTLs have no negative effects on
thousand kernel weight (TKW) and should be useful for simultaneous improvement of
GPC and TKW in wheat breeding. Searches of public databases revealed 61 putative
candidate/flanking genes related to GPC. The putative proteins of interest were grouped
in four main categories: enzymes, kinase proteins, metal transport-related proteins,
and disease resistance proteins. The linked markers and associated candidate genes
provide essential information for cloning genes related to high GPC and performing
marker-assisted breeding in wheat.

Keywords: wild emmer wheat, common wheat, GPC, wide hybridization, GWAS

INTRODUCTION

Wheat provides approximately 20% of calories and 25% of proteins in the human diet. The
nutritional quality of wheat grains has a significant impact on human health and well-being. The
grain protein content (GPC) is an important trait for both nutritional value and end-use quality
of wheat (Veraverbeke and Delcour, 2002). While the protein and micronutrients levels in modern
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wheat grains are inherently low and therefore, breeding for
improvements in the nutritional quality of wheat, such as
increased protein and micronutrient levels in the grain are
possible and have the potential to alleviate hunger and
nutrient deficiencies.

Breeding wheat varieties with high in both GPC and grain
yield is desirable (Zhao et al., 2009). However, the GPC
was negative correlated with grain yield, where phenotypic
correlations for these two traits usually range between −0.30
and −0.60 (Klindworth et al., 2009). This characteristic has
hampered the simultaneous improvement of these two traits in
the conventional wheat breeding. The transfer of alien genes from
wheat related species has become an effective approach in the
development of new wheat varieties for high GPC or yield.

Wild emmer wheat (Triticum turgidum ssp. dicoccoides,
2n = 4x = AABB) is the tetraploid progenitor of cultivated wheat,
offering wide genotypic variations relevant for improvement of
various agronomic traits in wheat (Cakmak et al., 2004; Peleg
et al., 2008b; Gomez-Becerra et al., 2010), such as GPC (e.g.,
Uauy et al., 2006a; Wang et al., 2018), disease resistance (Hua
et al., 2009; Li et al., 2009), and drought resistance (Peleg et al.,
2005, 2008a). The introgression is feasible due to the occurrence
of homologous recombination between the A and B genomes of
wild emmer and modern wheat.

Dissection of the genetic control of GPC in wild emmer wheat
was conducted using tetraploid wheat mapping population,
derived from a cross between durum wheat (cv. Langdon) and
wild emmer accessions (G18-16 or FA-15-3) (Joppa et al., 1997;
Gonzalez-Hernandez et al., 2004; Peleg et al., 2009). Although
several quantitative trait loci (QTLs) affecting GPC were reported
from these two accessions, the introgression and characterization
of wild emmer GPC-QTL in a hexaploid wheat background
have been less reported. The most important wild emmer GPC-
QTL is the Gpc-B1 on chromosome 6BS. This gene encodes
a NAC-domain transcription factor that accelerates senescence
and increases nutrient remobilization from leaves to developing
grains (Uauy et al., 2006b). The introgression of Gpc-B1 in
breeding programs has shown significant improvement in GPC
(Kumar et al., 2011; Mishra et al., 2015; Vishwakarma et al.,
2016). However, the presence of Gpc-B1 was associated with
reductions in grain weight and yield in some wheat varieties and
environments (Uauy et al., 2006a; Brevis and Dubcovsky, 2010;
Tabbita et al., 2013). Therefore, the exploring of QTLs for GPC
with less negative effect on yield-related traits is required.

In recent years, genome-wide association analysis (GWAS)
based on linkage disequilibrium (LD) has been extensively used
to decipher the genetic bases of complex traits in crops (Su et al.,
2016; Wang et al., 2016; Ates et al., 2018). Advantages of GWAS
over traditional QTL mapping include high resolution mapping,
cost and time efficiency, and the potential to utilize large sets
of germplasm resources such as landraces, elite cultivars, and
advanced breeding lines. Besides, GWAS was available to analysis
traits in multi-parent populations consisted of backbone parent
and its derived lines in Yu and Tian (2012); Yu et al. (2014);
Xiao et al. (2016). In wheat, this approach has been widely used
to identify loci controlling disease resistance (Joukhadar et al.,
2013; Kollers et al., 2014; Liu et al., 2017a), yield-related traits

(Breseghello and Sorrells, 2006; Tadesse et al., 2015), end-use
quality traits (Battenfield et al., 2016), root traits (Beyer et al.,
2018), and grain zinc concentration (Velu et al., 2018).

In our previous work, the agronomically stable advanced
wheat lines were obtained from common wheat cultivar
Chuannong 16 (CN16 hereafter) as female crossed with wild
emmer accession D1 as male through successive selfing. We
found that majority of the tested wheat lines showed higher
chlorophyll contents and lower chlorophyll degradation rates in
flag leaves than the controls (Liu et al., 2016). Several wheat lines
without Gpc-B1 gene showed thousand-kernel weight (TKW)
and GPC simultaneous improvement (Wang, 2015), implying the
presence of novel loci conferring high GPC and TKW.

In the current study, GWAS was used to study genetic basis
of GPC in a multi-parent population which consisted of wild
emmer as backbone parent and its derived wheat lines. The
objectives of this study were to characterize the wild emmer GPC
loci that associated with no reductions in TKW in a hexaploid
wheat population, and to scan associated candidate genes using
recently published wheat reference sequences (Avni et al., 2017;
Appels et al., 2018). The identified genes and markers will provide
important information for cloning GPC-related genes and be
useful in marker-assisted breeding for enhanced GPC in wheat.

MATERIALS AND METHODS

Plant Materials
The low-gluten wheat cultivar CN16 (T. aestivum, AABBDD,
2n = 6x = 42) was crossed as the female parent with a high-
protein-content wild emmer accession D1 (originating from
Israel) as the male parent. The resulting pentaploid F1 hybrid
was advanced to F12 to generate 106 first recombinant inbred
lines (RILs) include 106 individuals with a number of stable
42 chromosomes. Some RILs with high GPC were selected and
crossed to each of low/medium-gluten common wheat varieties
Mianmai 46 (MM46), Chuanmai 50 (CM50), Kechengmai 2
(KCM2), and Chuanyu 18 (CY18)/YunB 58863 (YB58863) and
eight generations of self-fertilization to create a second RILs
with 55 individuals (Supplementary Table S1). A total of
161 wheat lines were used in this study. All of the materials
were maintained at the Triticeae Research Institute, Sichuan
Agricultural University, China. Wheat plants were grown in a
randomized complete block design with three replicates over two
growing seasons (2015 and 2016) at Chongzhou (2015CZ and
2016CZ) and one growing season (2015) at Wenjiang (2015WJ).
Individual plants were spaced 10 cm apart within a 2 m row, with
30 cm between rows. Each replicate contained twenty individuals
in a 2 m row. Mature seeds were harvested from the middle six
plants of each row and used for GPC and TKW measurement.

Determination of Grain Protein Content
and Thousand Kernel Weight
Wheat seeds were dried to constant weight and ground to a
fine powder with a Chopin CD1 AUTO (Renault, Boulogne-
Billancourt, France) (Jirsa et al., 2008). A 0.5 g powder samples
were measured for GPC by1241 Grain Analyzer (FOSS A/S,
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Hillerød, Denmark) following the method as described by
Pettersson and Eckersten (2007). TKW was evaluated with an
electronic balance by weighing three samples of 300 kernels
(GB T 5519-2008, 2008). Analyses of variance (ANOVA)
and pearson correlation coefficients for measured traits were
performed using the SPSS version 22.0 (SPSS Inc., Chicago,
IL, United States).

Genotyping and Linkage Disequilibrium
and Population Structure Analysis
The genomic DNA was extracted using CTAB method (Murray
and Thompson, 1980). All of the tested materials were genotyped
using the DArT (Diversity Arrays Technology, Canberra, ACT,
Australia1). The obtained DArT markers data were filtered
based on call rate (minimum threshold value of 85%) and
reproducibility (minimum threshold value of 95%). A total of
24022 DArT markers were recalled from marker data. For the
further analysis, markers with missing data greater than 10%
and minor allele frequency (MAF) less than 5% were filtered,
which resulted in 13116 DArT markers were retained and used.
Linkage disequilibrium (LD) analysis was performed for each
of the 21 wheat chromosomes associated with mapped DArT
markers using software TASSEL 3.0 (Bradbury et al., 2007).
The LD squared allele-frequency correlation (r2), which contains
both mutational and recombination history information, was
evaluated for syntenic loci (p < 0.001). The mean r2 over different
genetic distances was calculated for the A, B, and D subgenomes
as well as the whole genome. The LD decay plots were generated
using r2 and the genetic map distance between markers.

Population structure was estimated using Structure software
2.3.4 (Pritchard et al., 2000). An admixture model with ten
replicates for each number of genetic groups (K = 1–10)
and 100,000 iterations of burn-in followed by 100,000 Markov
Chain Monte Carlo (MCMC) iterations were used. The outputs
of the genetic group analysis were extracted in Structure
Harvester (Earl and von Holdt, 2012). The optimal K-value
was determined using the delta K method as described by
Evanno et al. (2005). Furthermore, principal component analysis
(PCA) of filtered markers was performed with the TASSEL 3.0
(Bradbury et al., 2007) and the first two PCA values were plotted.

Genome-Wide Association Study
for GPC
To eliminate the environmental impact, the best linear unbiased
prediction (BLUP) across all tested environments was carried
out using the META-R (Alvarado et al., 2015). The association
analysis of DArT markers and GPC was performed using a
general linear model (GLM) and mixed linear model (MLM) in
TASSEL. The first three PCA values were used as covariate in the
model to adjust population stratification and kinship matrix (K)
was calculated using Scaled IBS method (Yu et al., 2006; Liu et al.,
2018). A Bonferroni-corrected p value threshold at α = 1 was used
as the cutoff (Yang et al., 2014; Liu et al., 2017b). For the 13116
DArT markers, the p-value threshold at α = 1 was 7.62 × 10−5,

1http://www.DiversityArrays.com/

with a corresponding -log10p value of 4.12. Significant markers
were visualized with a Manhattan plot using Haploview 4.2
software (Barrett et al., 2004). Important p-value distributions
(expected vs. observed p-values on a −log10 scale) were
shown with a quantile-quantile plot. To identify the candidate
genes linked to significant markers, we performed a BLAST
search against the International Wheat Genome Sequencing
Consortium database (IWGSC2) and the International Wild
Emmer Wheat Genome Sequencing Consortium database3 using
the significant marker sequences. When a DArT marker sequence
and a wheat contig were 100% identical, the sequence was
extended to 5 kb for each marker using the IWGSC BLAST
results (Liu et al., 2017b). The extended sequence was explored to
predict flanking genes using BLAST search against the Triticeae
Multi-omics center database4.

RESULTS

Variation for GPC in the Wheat Lines
Derived From Wild Emmer
The variation for GPC in the wheat lines and their core
parents were summarized in Table 1. Most genotypes displayed
relatively stable GPC across the three environments (2015WJ,
2015CZ, and 2016CZ) (Figure 1). The GPC was highly correlated
(p < 0.01) across environments (r = 0.210–0.732) based on the
two-tailed pearson product-moment correlation coefficient test
(Fieller et al., 1957; Table 2). The male parent D1 exhibited
significantly higher GPC (mean range 22.45–23.43%) compared
to female parent CN16 (mean range 12.00–12.90%) across all
test environments (Table 1). The GPC of the wheat lines derived
from wild emmer were ranged from 11.97 to 19.73% (mean
range 14.47–14.70%) across three environments. The lowest
mean GPC (11.97%) was recorded in 2015 at Chongzhou,
whereas the highest mean GPC (19.73%) was recorded in 2015
at Wenjiang. Most of the wheat lines showed significantly higher
GPC than CN16 (Table 1 and Figure 2). A large number of
wheat lines had GPC ranged from 14 to 15% in each environment
(Figures 2A–C). A total of 92 (59%) wheat lines displayed

2http://www.wheatgenome.org/
3http://wewseq.wixsite.com/consortium
4http://202.194.139.32/

FIGURE 1 | GPC analysis of the wheat lines derived from wild emmer grown
at 2015WJ, 2015CZ, and 2016WJ.
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consistently high GPC (≥14%) across three tested environments
(Figure 2D). The mean TKW of wheat lines were higher than
that of female parent CN16 under 2015WJ, 2015CZ, and 2016CZ
environments (Table 1). Pearson’s correlation analysis showed
that there was no significant negative correlation between GPC
and TKW across environments (Table 2). Therefore, according to
the phenotypic BLUP data of GPC and TKW, a total of 132 wheat

FIGURE 2 | Frequency distributions of GPC values under three environments
in the wheat lines derived from wild emmer. (A), 2015WJ; (B), 2015CZ; (C),
2016CZ; (D) Wayne chart: the number of wheat lines with GPC ≥14% in
tested environments (Blue color, 2015WJ; Yellow color, 2015CZ; Green
color, 2016CZ).

lines with strong gluten (GPC ≥14%) and high TKW (≥46.24 g)
were identified (Supplementary Figure S1).

Analysis of DArT Markers, Population
Structure and Linkage
Disequilibrium (LD)
A total of 13116 polymorphic DArT markers (MAF≥5% and
missing ≤10%) were used to estimate the underlying population
structure. Of these, 4710, 6718, and 1688 markers were mapped
on the A, B, and D genomes, respectively. The total map length
was 5941.15 cM, and the average distance between markers
for the A, B, and D genomes was 0.44 cM, 0.30 cM, and
1.11 cM, respectively (Supplementary Table S2). Chromosome
1B contained the largest number of markers (1708) and
the average distance between markers was 0.33 cM, whereas
Chromosome 4D contained the smallest number of markers (52)
and the average distance between markers was 3.47 cM.

Base on structure analysis, the highest delta K-value was 3,
the 163 genotypes were divided into three main sub-groups,
namely Gp1, Gp2, and Gp3, representing 41, 75, and 47
genotypes, respectively. Gp1 only included individuals from the
106 RILs; Gp2 included individuals from both RIL populations;
the two core parents and most of the individuals from the 55
RILs were belonged to Gp3 (Supplementary Figure S2A and
Supplementary Table S1). PCA was also performed to investigate
population structure. The first two PCs explained 12.64 and
7.54% variation in the population of wheat lines (Supplementary
Figure S2B). The PCA results were basically agreed with that of
structure analysis, which clearly divided the genotypes into three
main sub-groups.

LD between pairs of markers was estimated for each of
the 21 chromosomes (Supplementary Table S3). In the whole

TABLE 1 | The variation for GPC and TKW in wheat lines derived from wild emmer under three environments.

Trait Environment Parents Derived lines

CN16 D1 Mean ± SD Range CV (%)

GPC 2015WJ 12.89a
± 0.25 22.45c

± 0.44 14.70b
± 0.82 12.35–19.73 5.58

2015CZ 12.00a
± 0.10 22.96c

± 0.46 14.47b
± 0.78 11.97–19.18 5.39

2016CZ 12.90a
± 0.08 23.43c

± 0.94 14.48b
± 0.94 12.25–17.33 6.49

TKW 2015WJ 43.19b
± 4.99 19.21a

± 4.39 45.78b
± 4.94 31.35–57.00 10.79

2015CZ 49.33b
± 1.54 15.00a

± 0.67 52.82b
± 4.40 37.08–64.63 8.33

2016CZ 42.70b
± 4.97 31.63a

± 0.71 48.94c
± 4.55 35.00–60.88 9.30

The small letters a, b, and c indicate the significant differences at the 0.05 level. CV, coefficient of variation.

TABLE 2 | Pearson correlation coefficient of GPC and TKW among all measured environments in the wheat lines derived from wild emmer.

Correlations 2015WJ GPC 2015CZ GPC 2016CZ GPC 2015WJ TKW 2015CZ TKW

2015CZ GPC 0.732∗∗

2016CZ GPC 0.263∗∗ 0.210∗∗

2015WJ TKW −0.02 −0.035 0.171∗

2015CZ TKW −0.017 0.115 0.129 0.436∗∗

2016CZ TKW 0.029 0.135 −0.062 0.031 0.367∗∗

∗Correlation is significant at the 0.05 level (2-tailed). ∗∗Correlation is significant at the 0.01 level (2-tailed).
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genome, 55.55% of pairwise DArT markers had a significant
LD (p < 0.001), and 37.37% of significant pairwise markers
had an r2 > 0.2. In the A, B, and D subgenomes, 51.12, 62.58,
and 39.71% of pairwise DArT markers had a significant LD
(p < 0.001), and 32.06, 43.90, and 25.98% of the significant
pairwise markers had an r2 > 0.2, respectively. The extent of
LD in each chromosome was different. Chromosome 1B showed
the highest percentage of pairwise markers with significant LDs
(75.64%), with r2 > 0.2 (62.14% of significant pairwise markers).
In contrast, chromosome 4D had the lowest percentage of
pairwise markers with significant LDs (17.58%), with r2 > 0.2
(7.35% of significant pairwise markers). The mean r2-values for
the A, B, and D genomes as well as the whole genome were rapidly
decreased with increasing pairwise distance (Supplementary
Figure S3). The LD decay distances were approximately 9, 12,
13, and 12 cM for the A, B, and D genomes as well as the whole
genome, respectively (Supplementary Figure S3).

GWAS for GPC in the Wheat Lines
Derived From Wild Emmer
A total of 141 markers had significant results in the three
environments by GLM with PVEs ranged from 9.90 to 22.79%
(Supplementary Table S4). These markers were distributed on
all wheat chromosomes except chromosomes 1A, 1B, 4A, and
7A (Figure 3A). In the MLM, four significant markers (three
on 2B and one on 7B) were detected with PVEs of 11.92–
12.93%, and these markers were also detected by GLM (Figure 3B
and Tables 3, 4). To determine the confidence interval for the
potential QTL identified in this study, markers significantly
associated to the GPC that were co-locating together and/or
adjacent within intervals inferior to the LD decay distance
of ± 5 cM from the association peak were considered as a same
QTL region. In total, the 141 significant markers detected were
grouped into 48 loci (Supplementary Table S4). Of these, four
significant markers by both models were grouped into two loci
on chromosomes 2B (QGpc.cd1-2B.1) and 7B (QGpc.cd1-7B.2)
(Table 3 and Figure 3B) that potentially contain GPC genes. In
particular, the mean PVE of three markers on chromosome 2B
in these two stable major loci was 12.78 and 20.49% in MLM
and GLM, and the PVE value of marker 1166404 located on
chromosome 7B was the highest at 22.79% in GLM. Quantile-
quantile plots of p-values comparing the uniform distribution
of the expected −log10p value to the observed −log10p value
for GPC showed that the MLM was more conservative than
GLM (Figure 3C).

Candidate Genes That May Be
Associated With GPC
Sequences of DArT markers related with GPC were utilized
to predicate candidate genes using the recently annotated
wheat reference sequence (RefSeq v.1.0) and wild emmer
wheat reference sequence (WEWSeq v.1.0). The enzymes and
proteins related to 61 putative candidate genes were predicated
(Supplementary Table S5). These candidate genes could be
roughly divided into four groups according to the types of
protein they encoded. The first group of candidate genes included

enzymes associated with nitrogen transport, such as aspartic
peptidase, peroxidase, and peptidase. The second group consisted
of genes including kinase proteins. The third group included
metal transport related proteins, such as zinc transporter, and
heavy metal transport proteins. The last group consisted of
disease resistance proteins, such as MYB transcription factor and
NAC domain-containing proteins (Supplementary Table S5).

DISCUSSION

Wild emmer wheat has been found to show higher concentration
of protein in grain when compared to common cultivated wheat
(Cakmak et al., 2004). Several QTL analyses were employed to
dissect the genetic basis of grain protein using a tetraploid wheat
RIL population (Joppa et al., 1997; Gonzalez-Hernandez et al.,
2004; Peleg et al., 2009). In this study, the 161 RILs derived
from wild emmer were phenotyped in multiple environments and
genotyped using the DArT markers to dissect the genetic basis of
grain protein accumulation in hexaploid wheat. GWAS identified
141 significant markers for GPC by GLM, and 61 associated
candidate genes were predicated using the sequences annotation
(RefSeq v.1.0; WEWSeq v.1.0). Two large effect QTL regions on
chromosomes 2B and 7B were detected by both GLM and MLM.
Our findings are consistent with previous studies that the group 2
and 7 chromosomes harboring genes for nutritional quality traits
in wheat (Crespo-Herrera et al., 2017; Velu et al., 2018).

Peleg et al. (2009) identified ten GPC-QTLs related to GPC
using a mapping population derived from LDN crossed with
wild emmer G18-16 that showed high GPC phenotype; these loci
were distributed on 10 wild emmer chromosomes except 1A,
1B, 3A, and 4B; A few genomic regions (2A, 5A, 6B, and 7A)
were found to contain clusters of QTLs for GPC. In the current
study, 48 significant GPC-QTLs were scattered across all wheat
chromosomes (except 1A, 1B, 4A, and 7A) using a GLM model.
We found the GPC-QTLs on chromosomes 2A, 3B, and 6A are
located in the same region as compared to Peleg et al. (2009)
and the remaining QTLs in our studies were novel. However,
GPC-QTLs on chromosomes 4A and 7A in the G18-16 tetraploid
mapping population were not detected in our hexaploid RILs.

Candidate genes prediction revealed that some QTL were
related to nitrogen metabolism and disease resistance. For
example, QTLs on chromosome 5B were associated with
glutathione S-transferase (GST) and proline transporter.
Previous research showed that GSTs are critical for nitrogen
fixation in plant (Dalton et al., 2009). In particular, the
marker 1064158 (55.28 cM) located on chromosome 5B
was consistent with the results reported by previous study
(Kumar et al., 2018b). QGpc.cd1-2A.2 and QGpc.cd1-5A were
associated with methyltransferase, cytochrome P450 and NAC
domain-containing protein. QGpc.cd1-6A.1 were associated
with nitrogenase-stabilizing. Kim et al. (2005) reported that
the function of nitrogenase (NA) is closely related to plant
nitrogen metabolism, and nitrogenase activity has a positive
effect on wheat growth, total plant N-yield, and protein content.
Moreover, although QGpc.cd1-1D.1 was only detected under
one model, it showed a very high PVE value 19.06% and was
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TABLE 3 | Significant DArT markers for GPC identified by MLM and GLM.

QTL Marker Chr. Position (cM) Environment MLM GLM

−log10(p) PVE (%) −log10(p) PVE (%)

QGpc.cd1-2B.1 1116535 2B 3.93 BLUP 4.39 12.55 7.84 20.19

3022213 2B 8.70 BLUP 4.47 12.93 8.42 21.35

1088696 2B 8.70 BLUP 4.44 12.87 7.89 19.93

QGpc.cd1-7B.2 1166404 7B 216.46 BLUP 4.29 11.92 9.07 22.79

Chr., chromosome; PVE, phenotypic variation explained.

TABLE 4 | MTAs identified by GWAS base on the BLUP data.

Model No. sig.a Average -log(p) Range -log(p) Average PVE (%) Range PVE (%) No. Sharedb

Mixed linear model (MLM) 4 4.4 4.29–4.47 12.57 11.92–12.93 4

General linear model (GLM) 141 5.76 4.12–9.45 14.15 9.90–22.79

aThe total number of MTAs identified by GLM or MLM at the threshold of −log10(p) = 4.12, respectively. bThe number of shared significant markers. PVE, phenotypic
variation explained.

FIGURE 3 | Manhattan plots of genome-wide association scan for GPC in three environments. Manhattan plot showing –log10 p values of the markers for GPC. Red
lines indicate the -log10 p threshold of 4.12. Chromosomes carrying significant markers detected by GLM (A) and MLM (B); (C), Quantile-quantile plots of GPC.
Green plot, GLM model; Red plot, MLM model; Black line, the expected values.

associated with disease resistance protein. Note worthily, we
detected two QTLs QGpc.cd1-6B.2 and QGpc.cd1-6B.3 on 6BS
that associated with zinc transporter and glutenin macropolymer

(GMP) synthase. In barley, the zinc transporter (for example
HvMTP1) was associated with enhancement of grain Zn content
(Menguer et al., 2018). The glutenin macropolymer (GMP)
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content of flour was confirmed to be significant related to high
protein content (Weegels et al., 1996). Uauy et al. (2006b)
reported the Gpc-B1 on 6BS that was associated with N, Zn,
and Fe remobilization in plants. However, this locus was not
detected in the current study and the physical position of the two
QTLs on 6BS was larger than 10 Mb away from the functional
Gpc-B1. Different hypotheses may explain this observation: (1)
the relatively low density of DArT markers; (2) the low frequency
of Gpc-B1 in the current wheat lines that cannot detected by
GWAS. Additional studies are required to test these hypotheses.

Using a MLM model, we identified two significant stable
GPC-QTLs QGpc.cd1-2B.1 (3.93–8.70 cM) and QGpc.cd1-7B.2
(216.46 cM), explaining 11.92–12.93 and 19.93–22.79% of the
phenotypic variance. A GPC-QTL (95.4 ± 13.8 cM) on wild
emmer chromosome 2B was detected by Peleg et al. (2009). In
durum wheat, Suprayogi et al. (2009) identified a QTL on 2B
which was associated with higher GPC in all tested environments.
Recently, two environmental stable GPC-QTLs QGpc.mna-2B
(Tsilo et al., 2010) and QGpc.2B-yume (Terasawa et al., 2016) were
reported in wheat. QGpc.mna-2B was located between the markers
Xwmc245-Xgwm271 at position 64.0–65.0 cM on chromosome
2B; whereas QGpc.2B-yume was sited near the marker Xgpw4382
at position 67.1 cM. The position of QGpc.cd1-2B.1 (3.93–8.70 cM)
in our study is different to the previous reported GPC-QTLs on
chromosome 2B. On chromosome 7B, at least five GPC-QTLs
with stable effects across environments have been reported in
different studies (reviewed by Kumar et al., 2018a). Of these,
most GPC-QTLs were located on the short arm of chromosome
7B. Blanco et al. (2006) reported a QTL located on 7BL explained
9.1% of the phenotypic variance of the GPC which close to the SSR
marker Xgwm577 at position 137 cM. QGpc.cd1-7B.2 in our study
is located at position 216.46 cM on the long arm of chromosome
7B. Therefore, we concluded that the two wild emmer QTLs on
2B and 7B conferring high GPC were novel.

In this study, the highly associated markers sequences were
used to predicate putative candidate genes for QGpc.cd1-2B.1
and QGpc.cd1-7B.2. We found that the ABA-responsive binding
factor and processing peptidase genes may play crucial roles in
conferring of higher protein content in wheat grain. For example,
the ABA-dependent NAC transcription factor (OsNAC5) in rice
was reported to be associated with Fe, Zn and amino acids
remobilization from green tissues to seeds (Sperotto et al.,
2009). In addition, the QGpc.cd1-7B.2 was associated with
processing peptidase. Peptidases are key enzymes that involved
in nitrogen metabolism, such as nitrate reductase, endopeptidase,
aminopeptidase, and carboxypeptidase. It was known that leaf
senescence and nitrogen metabolism of senescing tissues are
two important factors that determining the GPC in cereals
(Jukanti and Fischer, 2008). Moreover, the peptidase plays a
role in regulating the redistribution and utilization of nitrogen
in wheat plants that affects the grain protein quality of wheat
(Waters et al., 1980). Functional analyses are needed to further
understand the pathways of these candidate genes for regulating
high GPC in wheat.

The wheat grain yield and GPC are negatively correlated
and the negative correlation was mainly due to the dilution
effect that making the simultaneous increase of the two traits

challenging (Cox et al., 1985; Day et al., 1985; Simmonds, 1995).
In our previous studies, we confirmed that the introgression of
high GPC and TKW traits from wild emmer wheat to common
wheat is feasible by wide hybridization (Wu et al., 2008; Wang
et al., 2018). The TKW was positively correlated with grain yield
as reported by previous studies (Bhatta et al., 2018a,b). In the
present study, no significant negative correlation between GPC
and TKW were detected in the wheat lines derived from wild
emmer, suggesting presence of novel GPC-QTLs that are not
associated or less associated with TKW. Our results indicate
the improvement of GPC without sacrificing yield could be
possible by dissection and introgression of wild emmer QTLs.
In addition, our study indicates the potential value of QGpc.cd1-
2B.1 and QGpc.cd1-7B.2 for GPC improvement and provides
comprehensive use of wild emmer wheat for offering new source
of alleles to increase GPC in wheat.

CONCLUSION

Wild emmer is a valuable resource for wheat quality
improvement. The wild emmer derived wheat population
showed high GPC and a weak correlation between GPC and
TKW, indicating simultaneous improvement of GPC and TKW
could be possible. A GWAS identified 48 QTLs (141 MTAs), of
which two novel major QTL regions (chromosomes 2B and 7B)
for high GPC were stable detected in two models. The QTLs have
no negative effects on TKW and would facilitate the development
of cultivars with both high GPC and TKW. Furthermore, at
significant loci and flanking regions, we identified 61 putative
candidate genes that might play crucial roles in conferring of
higher protein content in wheat grain. The identified markers
and genes offer information for cloning genes related to GPC
and may be used in wheat breeding programs.
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