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Aphanomyces root rot (ARR) is a soil-borne disease that results in severe yield losses
in lentil. The development of resistant cultivars is one of the key strategies to control
this pathogen. However, the evaluation of disease severity is limited to visual scores that
can be subjective. This study utilized image-based phenotyping approaches to evaluate
Aphanomyces euteiches resistance in lentil genotypes in greenhouse (351 genotypes
from lentil single plant/LSP derived collection and 191 genotypes from recombinant
inbred lines/RIL using digital Red-Green-Blue/RGB and hyperspectral imaging) and
field (173 RIL genotypes using unmanned aerial system-based multispectral imaging)
conditions. Moderate to strong correlations were observed between RGB, multispectral,
and hyperspectral derived features extracted from lentil shoots/roots and visual scores.
In general, root features extracted from RGB imaging were found to be strongly
associated with disease severity. With only three root traits, elastic net regression
model was able to predict disease severity across and within multiple datasets
(R2 = 0.45–0.73 and RMSE = 0.66–1.00). The selected features could represent visual
disease scores. Moreover, we developed twelve normalized difference spectral indices
(NDSIs) that were significantly correlated with disease scores: two NDSIs for lentil shoot
section – computed from wavelengths of 1170, 1160, 1270, and 1280 nm (0.12 ≤ |r| ≤
0.24, P < 0.05) and ten NDSIs for lentil root sections – computed from wavelengths
in the range of 630–670, 700–840, and 1320–1530 nm (0.10 ≤ |r| ≤ 0.50, P < 0.05).
Root-derived NDSIs were more accurate in predicting disease scores with an R2 of 0.54
(RMSE = 0.86), especially when the model was trained and tested on LSP accessions,
compared to R2 of 0.25 (RMSE = 1.64) when LSP and RIL genotypes were used as
train and test datasets, respectively. Importantly, NDSIs – computed from wavelengths
of 700, 710, 730, and 790 nm – had strong positive correlations with disease scores
(0.35 ≤ r ≤ 0.50, P < 0.0001), which was confirmed in field phenotyping with similar
correlations using vegetation index with red edge wavelength (normalized difference
red edge, 0.36 ≤ |r| ≤ 0.57, P < 0.0001). The adopted image-based phenotyping
approaches can help plant breeders to objectively quantify ARR resistance and reduce
the subjectivity in selecting potential genotypes.

Keywords: disease severity, RGB imaging, hyperspectral imaging, multispectral imaging, remote sensing,
feature selection
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INTRODUCTION

Lentil (Lens culinaris Medik.) is a leguminous crop grown
worldwide that serves as an important source of protein
for human consumption and animal feed (Infantino et al.,
2006; Hamwieh et al., 2009). The overall annual production
worldwide reached approximately 6 million tons in 2016 with
3 million tons produced in Canada alone (Food and Agriculture
Organization of the United Nations [FAO], 2016). However,
as with other crop species, lentil is subject to numerous abiotic
and biotic stresses. In breeding, crop performances, including
stress tolerance/resistance, are screened based on well-developed
root systems (e.g., root length, number of lateral roots), wilting
score (Idrissi et al., 2016), early vigor, yield potential (Tullu et al.,
2001; Rodda et al., 2017), seed shape, seed weight (Subedi et al.,
2018), and disease resistance (Rubeena et al., 2006; Tivoli et al.,
2006). Soil-borne fungal diseases are one of the limiting factors
negatively affecting plant development and seed yield in pulses
(Gossen et al., 2016). These pathogens can attack their host at
any stage causing great loss in yield (Infantino et al., 2006). The
severity of some root rot diseases may not be visible at early
growth stages, as the initial infection occurs in roots and the
expression of above ground symptoms may be delayed (Gossen
et al., 2016; Bodah, 2017). Among these diseases, Aphanomyces
root rot (ARR), caused by Aphanomyces euteiches Drechs., is one
of the most serious diseases affecting legume production (Gossen
et al., 2016). The damage can lead up to 100% yield loss in pea
production (Gaulin et al., 2007). This oomycete causes rotting of
roots and epicotyls, which results in stunted plant growth, yellow
leaves, and reduced pod fill and production (Ford et al., 1999;
Pilet-Nayel et al., 2002; Gaulin et al., 2007; Gossen et al., 2016;
Bodah, 2017). The severity of A. euteiches is highly influenced by
environmental conditions and agronomic practices. Soil moisture
increases the incidence of disease proliferation (Ford et al., 1999)
and chemical controls alone are not enough for managing the
disease (Pilet-Nayel et al., 2002; Wu et al., 2018). Additionally,
the current high yielding lentil lines show little resistance to
A. euteiches (Moussart et al., 2008; Vandemark and Porter, 2010).
The domestication of lentils has also led to a loss in genetic
diversity, including the loss of some important traits contributing
to disease resistance (Ford et al., 1999; Khazaei et al., 2016). For
these reasons, the development of disease-resistant cultivars is a
critical need for crop protection against this pathogen (Ford et al.,
1999; Infantino et al., 2006; Le May et al., 2017).

Different screening methods have been used to study the
phenotypic characterization of large sets of genotypes and to
select the desirable traits (Furbank and Tester, 2011). The current
assessment relies on visual estimates of disease severity and
effects on the whole plant (Pilet-Nayel et al., 2002; Bani et al.,
2012). However, given that large numbers of plants need to
be evaluated, the conventional phenotyping process – using
resistance scoring or direct measurements – is laborious, time-
consuming (Adu et al., 2014), and can be subjective depending
on the expertise of the plant breeder. A different approach,
such as high-throughput phenotyping using imaging techniques
for objective and quantitative selection of disease resistance,
offers new opportunities to change the subjective evaluation

and to discern minute differences in plant responses that visual
assessments are unable to capture.

Various sensing and imaging techniques were studied for
stress detection, in both controlled environment and field
conditions (Li et al., 2014; Sankaran et al., 2015). The
rapidly evolving technologies, including digital Red-Green-Blue
(RGB), fluorescence, multi/hyperspectral, and thermal imaging
(Sankaran et al., 2010; Mahlein, 2016) coupled with advances
in pattern recognition and machine-learning approaches (Singh
et al., 2016) have increased the potential to phenotype thousands
of plants in a high-throughput manner. For example, Naik et al.
(2017) used RGB imaging to extract yellow and brown color
percentages from soybean leaves to distinguish between severity
classes of iron deficiency chlorosis. The described research tested
the performance of 10 different machine-learning classifiers on
a set of 4500 images and found that hierarchical models were
able to generate a mean per class accuracy of 95.5%. RGB
imaging techniques were also used to extract morphological traits
and study root architecture. Desgroux et al. (2018) employed
root system architecture (RSA) traits extracted from RGB
images in a genome-wide association mapping population to
identify quantitative trait loci (QTL) responsible for resistance
to A. euteiches in pea plants. A color scanner was used to scan
roots at 300 dpi and images were analyzed with Winrhizo

R©

software (Regent Instruments Inc., Quebec, Canada) to extract
four main traits: total root projected area, total root length,
average root diameter, and average lateral root length. They found
that RSA traits were negatively correlated with Aphanomyces
susceptibility and discovered one highly significant single-
nucleotide polymorphism (SNP) marker associated with both
root rot resistance and total root projected area. Shovelomics
(Trachsel et al., 2011) integrated with RGB imaging (Bucksch
et al., 2014; Das et al., 2015; Burridge et al., 2016; Saengwilai
et al., 2018) have been used to extract root features under
field conditions.

Hyperspectral imaging, in contrast, covers a broader
spectrum, including visible and near-infrared regions. Several
studies have demonstrated the efficiency of hyperspectral
techniques in predicting specific pigments, such as chlorophyll
and carotenoid. For example, the pigment content extracted from
the hyperspectral data was related to angular leaf spot disease in
cucumber leaves with correlation coefficients (r) of 0.87 (Zhao
et al., 2016a). Similarly, this imaging technique has been widely
used for detecting diseases in plants (Baranowski et al., 2015;
Calderón et al., 2015; Zhao et al., 2016b). However, studies on
the applications of hyperspectral imaging for root phenotyping
are limited. On the other hand, multiple studies have shown
the potential of proximal remote sensing in evaluating disease
resistance in field conditions including; using hyperspectral
sensing for Xylella fastidiosa infestation in olives (Zarco-Tejada
et al., 2018), multispectral and hyperspectral sensing for citrus
greening disease detection (Kumar et al., 2012), and RGB and
multispectral imaging to assess potato late blight resistance
(Sugiura et al., 2016; Duarte-Carvajalino et al., 2018).

In this study, we investigated the feasibility of applying high-
throughput phenotyping imaging techniques for an objective
assessment of ARR severity symptoms in lentils for rapid and
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accurate identification of resistant genotypes. The objectives
of this study were to: (1) evaluate the relationship between
disease visual scores and digital features extracted from RGB
imaging and hyperspectral imaging (550–1700 nm) using two
independent panels of lentil genotypes in greenhouse (controlled
environment) conditions; (2) develop models for selecting
most relevant features for ARR severity; and (3) investigate
the performance of unmanned aerial system (UAS)-based
multispectral imaging in field conditions for ARR detection.

MATERIALS AND METHODS

Plant Materials, Inoculation, and
Ground Reference Data
In greenhouse conditions, RGB and hyperspectral sensing
systems were evaluated using two independent experiments. The
first experiment was conducted in 2017 (termed as GH_LSP),
where a total of five replicates from a genome-wide association
mapping panel of 351 lentil accessions (USDA lentil single plant-
derived collection/LSP) were grown. Two treatments – control
and inoculated with A. euteiches – were performed using a split-
plot design, where genotypes were allocated to subplots. In the
second experiment (termed as GH_RIL), a recombinant inbred
line (RIL) population of 191 genotypes of lentils were grown
using a completely randomized design in 2018. To increase
the number of plants during evaluation, three replicates with
three seedlings each were used in each treatment (control and
inoculated). Both experiments were conducted in a greenhouse
at Washington State University, Pullman, WA, United States.
Temperatures were maintained at 25◦C (day) and 18◦C (night)
with a photoperiod of 16 h.

Both lentil panels were used to evaluate resistance to a pure-
culture strain of A. euteiches Drechs. F. sp. pisi, acquired from
the USDA-ARS Grain Legume Genetics and Physiology Research
Unit, Pullman, WA, United States. Zoospores were produced
following the method described by Wicker et al. (2001). Zoospore
concentration was adjusted to 1 × 104 spores per mL. Prior to
planting, the seeds were surface disinfected with 95% ethanol for
1 min, 10% sodium hypochlorite for 1 min, and rinsed thoroughly
with distilled water. The seeds were planted in containers filled
with perlite. The 14-day-old seedlings were inoculated with the
zoospore suspension by pipetting 2 mL of inoculum, while non-
inoculated controls were inoculated with 2 mL of sterile distilled
water. The two groups of treatments (control and inoculated)
were kept on different benches in the same greenhouse chamber.
Fourteen days after inoculation, the plants were removed from
the containers, the perlite washed off, and the roots scored
using 0–5 disease scoring scale (standard phenotyping protocol)
adapted from McGee et al. (2012). A score of 0 indicates no
visible symptoms and a white root; 0.5 indicates less than 5%
of discolored lesions on the entire root system; 1 indicates
5–15% of discolored lesions on the entire root; 1.5 indicates
15–25% of discolored lesions on the entire root; 2 indicates 25–
50% minor discoloration on entire root system; 2.5 indicates
50–75% major discoloration on entire root system; 3 indicates
more than 75% of brown discoloration on entire root system;
3.5 indicates brown discoloration on entire root system with
some symptoms on hypocotyl; 4 indicates brown discoloration
on entire root system with a shriveled and brown hypocotyl;
4.5 indicates brown discoloration on entire root system with a
shriveled, brown, and soft hypocotyl; and 5 indicates a dead plant
(Figure 1 and Supplementary Figure S1). After visual scoring
and imaging, shoots and roots (combined by each replicate)
were separated and kept in a drying room for 1 week at 60◦C

FIGURE 1 | Aphanomyces root rot disease severity scale. Images were processed with background removed for better visualization.
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before collecting dry weight data (shoot dry weight/SDW, root
dry weight/RDW).

The field evaluation was conducted in 2018 (termed as
FE_RIL) using genotypes grown in a grower’s naturally infected
field located near Kendrick, Idaho (46◦ 35′ 37.26′′N, 116◦ 33′
42.26′′W). The genotypes were the 173 RILs (evaluated in
greenhouse GH_RIL as noted from previous section). It was
planted on 13 May 2018, with two parental lines and a variety
check (Avondale), using a randomized complete block design
with three replicates and 30 seeds per replicate. Plots consisted of
six 1.5 m long rows with 19 cm row spacing. Within each plot,
the rows 1 and 6 were the check cv “Avondale” and rows 2–4
were the RILs. Every 10th plot, winter wheat replaced Avondale
in row 6. Avondale was used as reference to account for the
variations in field when calculating the adjusted visual score,
while the winter wheat was used as a marker for orientation
and to separate replicates (two plots of wheat). Visual rating of
lentils for resistance to ARR was based on above ground index
(AGI). The AGI was evaluated for each row using a 1–5 scale
adopted from Pilet-Nayel et al. (2002) with 1 as healthy; 2 as slight
yellowing of lower leaves; 3 as necrosis of the lower leaves, some
stunting, a few dead plants; 4 as necrosis of at least half or more
of the plants with stunting, more than half of the row dead; and 5
as all plants dead or nearly so. The visual scores were utilized as
ground reference data in both greenhouse and field conditions.

Greenhouse Experiments: RGB Imaging,
Image Processing, and
Feature Extraction
A 16-megapixel digital camera (Canon

R©

PowerShot
SX530 HS, a CMOS camera with maximum resolution of

4608 × 3456 pixels) was used for capturing high-resolution
images at a distance of 508 mm from the plants. The camera was
mounted on a metal frame to maintain stability. For uniform
lighting conditions, a phenotyping box was used that was covered
internally with white paper and illuminated by two fluorescent
white lights (visible range 400–700 nm). The light sources were
placed at the same level as the camera lens (Supplementary
Figure S2). The setup was evaluated for image quality by
comparing the area of roots extracted from digital images with
plant biomass (dry weight) data and visual scores. The system
produced a stable condition for automated image processing.
During image collection, a white reference panel (Spectralon
Diffuse Reflectance Standard, SRT-99-050, Labsphere, North
Sutton, NH, United States) was also used for radiometric
calibration to correct for variations in light intensity, if needed
(∼99.9% reflectance). White balance was set to auto-mode
throughout data collection. The image resolution was set to
0.17 mm/pixel. Up to five plants for GH_LSP experiment and
six plants for GH_RIL experiment were captured in a single
image frame. Image capturing was performed together with root
uprooting and visual scoring.

All images were processed using customized algorithms
written in MATLAB

R©

(2017a, The MathWorks, Natick, 2017),
which enabled automated feature extraction. Images were,
first, radiometrically corrected according to the values of
reflectance panel and, then, converted from RGB color space
to hue–saturation–value (HSV) color space for background
segmentation. A color mask was created by combining a dual
threshold from both hue and value channels. Pixels with green
and yellow color were included into the plant mask (Hue
< 0.45 and Value < 0.49) (Figure 2). Area filter was applied
to remove small noises (pixels < 200); while keeping larger

FIGURE 2 | RGB image processing steps for background removal: (A) original RGB image, (B) HSV image, (C) hue channel image, (D) resulting mask, and (E) RGB
image with background elimination.
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TABLE 1 | Summary of data analyzed in this study.

Raw data USDA lentil single Recombinant inbred

Imaging technique size (GB) plant-derived collection lines population

RGB (GH_LSP /GH_RIL) 5 Number of genotypes 351 191

Number of images 3474 2825

Hyperspectral (GH_LSP /GH_RIL) 171 Number of genotypes 79 21

Number of hypercubes 1379 705

Multispectral (FE_RIL) 3 Number of genotypes – 173

Number of images – 1125

objects. Individual plants were cropped from each image and
saved for feature extraction. This process resulted in 6299 images
of individual plants (Table 1), since some of the seedlings did not
emerge or develop.

A total of 82 features were extracted from each image
that included color, texture, and geometric features. For color
features, all the background was set to NaN (not a number),
and mean of pixel intensity, standard deviation, variance, and
entropy of each channel were extracted from three different
color spaces (RGB, HSV, and Lab, 36 features). In addition,
these statistical descriptors were, also, extracted from grayscale
images that were converted from RGB images (four features).
For quantifying discoloration, the HSV color space was quantized
into 7 hues × 2 saturations × 1 value, resulting in 14 different
color bins or color combinations. The transformation into
different bins reduces the number of used colors to represent
an image, which helps in finding low-level color descriptors for
the image (Zeng, 2016). Segment partitioning was conducted
by selecting color intervals from the hue wheel. Only colors in
the range of orange to green were selected, which corresponded
to hue in the interval [0.05, 0.40]. The seven intervals were
determined based on the distribution of color pixels in Hue
channel from 50 randomly selected images (Supplementary
Table S1). The saturation range was split into two levels
corresponding to unsaturated pixels [0.00, <0.50] and relatively
saturated pixels [0.50, 1.00]. Consequently, each bin from the
14-bin histogram represents a pixel count of that particular
color (14 features). The obtained color bins were normalized
by the projected area of region of interest (ROI) presented
in that image (ROI = root or ROI = shoot) resulting in
percentages of color for each bin (14 features). For texture
analysis, homogeneity, correlation, contrast, and entropy were
retrieved using gray level co-occurrence matrix (four features).
For geometric features, projected area, convex hull, minor
and major axis length, perimeter, compactness, and solidity
(seven features) were extracted from each plant. The area,
length, and perimeter were converted to cm2 (three features).
These features were extracted from roots and shoots separately
for each plant.

During feature selection, only traits (derived from RGB
images) that exhibited significant correlations with visual scores
(P < 0.05) and were common across both datasets (GH_LSP,
GH_RIL) were considered for further analysis. To reduce the
effect of multicollinearity, the resulting subsets of features were
used to build elastic net regression models using the “caret”

package in R1. This penalized regression model is a combination
of ridge regression and LASSO, which could be used as a feature
selection method even with issues of large number of predictors
and small number of samples (n < p) (Gonzales and De Saeger,
2018) or highly redundant information (Zou and Hastie, 2005).
Data were normalized and centered to zero before using the
model. Hyperparameters (α and λ) were optimized, each time,
on the training data with 15-fold cross validation. Features were
ranked by the importance of contribution in predicting visual
scores, using several train and test dataset combinations. The
initial model was developed using GH_LSP data as training set
and GH_RIL data as testing set. Next, we manually evaluated
the resulting features and removed the multicollinear features
by keeping only the subset that led to the highest coefficient of
determination (R2) and lowest root-mean-squared error on the
testing set. Finally, the selected features were evaluated with four
combinations of datasets: (1) GH_LSP data as training set and
GH_RIL data as testing set; (2) 80% GH_LSP data as training
set and 20% GH_LSP as testing set; (3) 80% GH_RIL data as
training set and 20% GH_RIL as testing set; and (4) GH_RIL data
as training set and GH_LSP data as testing set.

Greenhouse Experiments: Hyperspectral
Imaging, Image Processing, and Feature
Extraction
Based on visual scores of ARR severity, 79 accessions from
GH_LSP data and 21 lines from GH_RIL data were chosen
from greenhouse experiments for hyperspectral imaging. These
genotypes were taken to the laboratory for hyperspectral imaging
immediately after collecting RGB images. A total of 2084
hypercubes or hyperspectral images (Table 1) were acquired
using a push-broom type hyperspectral sensor (Hyperspec

R©

extended VNIR, Headwall Photonics Inc., Fitchburg, MA,
United States) with 12 nm spectral resolution, 320 pixels spatial
resolution, 145 spectral bands/channels (features), and 550–
1700 nm wavelength range.

A UV–visible high-intensity quart tungsten halogen integrated
with pulsed Xenon lamp (380–2500 nm, Headwall Photonics
Inc., Fitchburg, MA, United States) was fixed on one side of
hyperspectral camera (vertically mounted) at an angle of 45◦
to provide illumination for the camera’s field of view. Prior to
imaging, distance from lens to sample and moving speed were

1http://www.r-project.org/; release 3.5.1
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set to 310 mm and 15 mm/s. Roots and shoots were scanned
separately. Each resulting scan was a calibrated image (Icalib),
which is estimated using the following equation:

Icalib =
Iraw − Idark

Iwhite + Idark
(1)

where Iraw refers to the recorded raw hyperspectral image, Idark
refers to the dark reference image (∼0% reflectance) obtained
without illumination unit and camera lens covered with its
opaque black cap, and Iwhite refers to the white reference image
obtained from a white reflectance panel (∼99% reflectance)
with the illumination unit on. In GH_LSP, hyperspectral data
were captured in the presence of indoor illumination; while in
GH_RIL, the data were collected only in the presence of imaging
system light source.

The hyperspectral data were acquired as band interleaved by
line (BIL) format, which is a binary data stream. Each binary
file was imported into MATLAB and converted to a 3-D matrix
with 140 spectral bands. Before automating image processing,
the spectral band “1038 nm” of the hypercube was selected to
separate ROI – whether it is a shoot or root – from background
(Figure 3A). The visual selection was based on the contrast
between foreground and background. The resulting image was
converted to a binary mask and was applied to the rest of channels
(Figure 3B). Next, the spectral bands “1477” and “1535 nm” were
selected, for shoot and root, respectively, to separate a white tag
(that delimited the camera’s field of view) from ROI and to create
a second mask by applying an intensity threshold (≥0.7 and≥0.5
for shoot and root, respectively) and morphological operations

FIGURE 3 | Hyperspectral root image processing and spectral preprocessing
steps. (A,B) mask generation, (C,D) label removal, (E) resulting region of
interest, (F) spectral data extraction, and (G) spectral preprocessing steps.

by removing objects with total number of pixels lower than
130 (Figures 3C,D). The final image consisted of a gray scale
image with a ROI as foreground and null pixels as background
(Figure 3E). Mean spectral reflectance datum was extracted from
each channel by averaging all foreground pixels (Figure 3F).
Once the algorithm was developed and evaluated using a set of
test images, the approach was implemented on all the images in
both datasets (GH_LSP and GH_RIL).

Prior to the feature extraction, the initial and final ten
spectral bands were removed to eliminate potential noisy signals.
Each ROI (root/shoot) spectral signature was normalized such
that the spectra had zero mean and unit variance. Then, the
spectral bands/features were binned every 10 nm to represent
multispectral band filters, resulting in a matrix of 99 spectral
bands/features that was used in feature extraction (Figure 3G).
In the first step of feature extraction, normalized difference
spectral indices (NDSIs) were computed from hyperspectral data.
NDSI is the normalized ratio of spectral reflectance of every
combination of wavelengths, which were estimated using the
following formula:

NDSI =
Bandk − Bandn

Bandk + Bandn
(2)

where Bandk and Bandn represent reflectance at kth and nth
spectral features (Inoue et al., 2008). With 99 spectral features
and every combination of the spectral bands (permutation),
the total number of features extracted were 9702. The feature
selection methods were similar to the one described for RGB
image feature extraction, where NDSI features were used, in place
of RGB image features.

Field Experiment: Multispectral Imaging,
Image Processing, and
Feature Extraction
For FE_RIL genotype evaluation, aerial images were collected
using a quadcopter UAS (AgBot, ATI Inc., Oregon City, OR,
United States). A five-band multispectral camera (RedEdgeTM,
Micasense Inc., Seattle, WA, United States), mounted on a gimbal
of the UAS, was used to acquire the aerial data. The multispectral
images acquired were red (668 ± 5 nm), green (560 ± 10 nm),
blue (475 ± 10 nm), NIR (840 ± 20 nm), and red edge
(717 ± 5 nm) bands with 1.2-megapixel resolution. Images were
collected automatically according to a flight mission, in which the
UAS was set to fly at 25 m above ground level and with a moving
speed of 3 m/s allowing 80% horizontal and 70% vertical overlap.
A reflectance panel (Spectralon Diffuse Reflectance Standard)
used to correct the images was placed in the field during aerial
data acquisition. Data acquisition was conducted on 44, 50, and
66 days after sowing (DAS). Field visual scores were taken on the
same day or within 3 days of aerial data acquisition.

The aerial images were first pre-processed in Pix4Dmapper
(Pix4D Inc., San Francisco, CA, United States) to generate
a nadir-view image that covered the entire field using the
template for multispectral camera, shown in Figure 4A. After
radiometric correction, six index/reflectance maps (normalized
difference vegetation /NDVI, green NDVI/GNDVI, normalized
difference red edge/NDRE, green, near-infrared/NIR, red edge)

Frontiers in Plant Science | www.frontiersin.org 6 April 2019 | Volume 10 | Article 383

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00383 April 12, 2019 Time: 16:55 # 7

Marzougui et al. High-Throughput Imaging for Disease Resistance

FIGURE 4 | Procedure of multispectral image processing and data analysis:
(A) image stitching in Pix4D; (B) index/reflectance maps generated in Pix4D;
(C) plots identification and row separation; (D) statistical analysis of features.
In C, corners of plots were highlighted by blue circles and masks for odd rows
were overlapped with NDVI image for quality inspection.

were created for further feature extraction (e.g., Figure 4B).
Next, these maps were analyzed with a custom image processing
algorithm developed in MATLAB to extract features from
individual rows. Four corners of each plot were selected from
the NDVI index map and their related positions were stored as
coordinates (number of pixels from the origin of the image).
The corners of plots were highlighted by blue circles right after
being selected, and a sample image was shown in Figure 4C. In
addition, a mask was generated by thresholding the NDVI index
map using empirical thresholds (NDVI > 0, >0.22, and >0.25 for
44, 50, and 66 DAS, respectively). The resulting mask was used
to separate the vegetation and soil in all the six index/reflectance
maps. Using the coordinates and mask generated in the previous
step, the algorithm separated six rows automatically in each plot,
which is shown in Figure 4C, and extracted spectral features
for lentil in each row. These features included NDVI, GNDVI,
NDRE, NIR, green, red edge, NDVI_SD (standard deviation of
NDVI within each row), GNDVI_SD, NDRE_SD, and canopy
area. Finally, the extracted spectral features were exported as
Excel file for statistical analysis (Figure 4D). The visual scores
and image-derived features were also adjusted to account for soil
variability following this formula:

AdjScorej = scorej −

(
jscore01 + (N + 1− j)score02

N + 1
−m.score

)
(3)

where AdjScorej is the adjusted disease score of the jth RIL plot
located between two Avondale check plots, scorej is the non-
adjusted disease score of the jth RIL plot, score01 and score02 are
the disease scores of the two Avondale check plots located on both

sides of the jth RIL plot, m.score is the mean disease score of all
the Avondale check plots from the ith replicate, N is the total
number of RIL plots between two Avondale check plots, and j is
the value of the jth RIL plot (Dagnelie, 2003; Hamon et al., 2011).
Correlation analysis was performed to investigate the relationship
between features extracted from multispectral images and visual
scores using both adjusted and non-adjusted data.

RESULTS

Relationship Between Geometric
Features and Plant Biomass
Geometric features extracted from RGB images, from both lentil
panels (GH_LSP and GH_RIL), had significant correlations
with manual measurements of biomass: root and shoot dry
weights (0.10 < r < 0.90, P < 0.05). We found that correlation
coefficients of projected area indicated a very good fit to the
variation of manually measured dry weight (r = 0.90 for roots,
r = 0.83–0.84 for shoots) (Figure 5). Due to the high variability
in stem color, the image segmentation process resulted in
removal of some pixels from shoot section, which could have
reduced the level of correlation between digital shoot biomass
and SDW. Nevertheless, the strong r value indicates that the
digital biomass such as projected area is a good image-derived
estimate of plant biomass and demonstrates the potential of
RGB imaging as an accurate and high-throughput technique for
measuring plant biomass.

RGB-Derived Features Reflect
Disease Symptoms
Correlation analysis of RGB-derived phenotypic data obtained
from the 351-lentil-single-line collection and 191-lentil-
recombinant-inbred-line population revealed highly significant
relationships with visual scores. In total, we identified 68 digital
features (36 features extracted from root section and 32 features
extracted from shoot section) common for both lentil panels
that exhibited significant correlation with disease severity scores
(features described in Supplementary Table S2). Interestingly,
the correlation pattern between digital biomass features and
visual scores was similar for both panels; where geometric
descriptors extracted from root section expressed a negative
relationship with disease severity (−0.38 < r < −0.07, P < 0.01)
(Figure 6 and Supplementary Table S3). This observation
indicates that susceptible plants – plants with high disease
scores – could be associated with a decrease in digital biomass.
However, this was only applicable for root dry biomass extracted
from GH_LSP (r = −0.10, P < 0.05). Shoot dry biomass for the
same panel was not significantly correlated with disease scores
(r = −0.04). Whereas, both mean SDW and RDW extracted
from GH_RIL image dataset were negatively and significantly
correlated with mean visual scores (r = −0.12 and −0.16,
P < 0.05). Furthermore, a significant relationship was observed
between visual scores and color/texture features extracted from
root section (0.06 < |r| < 0.83, P < 0.05) for both lentil panels.
These relationships decreased for features extracted from shoot
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FIGURE 5 | Correlation between projected area extracted from RGB images with root and shoot dry weight of plants from GH_LSP and GH_RIL lentil panels.

FIGURE 6 | Heat maps of pairwise correlations of retained significant features of shoot and root sections extracted from two lentil panels: (A) shoot traits from
GH_LSP genotypes (upper triangle) and shoot traits from GH_RIL genotypes (lower triangle); (B) root traits from GH_LSP genotypes (upper triangle) and root traits
from GH_RIL genotypes (lower triangle). Note: diagonal data in A and B were changed to zero from one for better visualization and separation of GH_LSP and
GH_RIL results. Supplementary Table S2 describes the image features.

section, where geometric (−0.33 < r < −0.06, P < 0.05), color,
and texture features (0.05 < |r| < 0.48, P < 0.05) had weaker
but significant correlations with visual scores (Figure 6 and
Supplementary Table S4).

To validate the ability of the selected features – extracted
from both root and shoot regions – to predict disease severity,
we applied elastic net regression using GH_LSP data as a
calibration set and GH_RIL data as testing set. In the shoot
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FIGURE 7 | (A) Contribution of shoot and root features (top 20) to disease score prediction estimated by elastic net. (B) Comparison of Pearson’s correlation
coefficients between the standard deviation of saturation channel (HSV) and visual scores across panels and region of interests. (C) Pseudocolor of saturation
channel of inoculated lentils associated with disease scores (Avondale).

model, 29 common features (three features were eliminated by
the model) were only able to explain 23% of the variability in
disease scores with relatively low R2 (R2 = 0.23 and RMSE = 1.30)
(e.g., Figure 7A). Whereas, in the root model, 27 common
features (nine features were eliminated by the model) were able to
significantly predict disease scores for GH_RIL data with higher
R2 (R2 = 0.72 and RMSE = 1.25). Based on their contribution
to the models, three final features were selected for root model
(R2 = 0.67 and RMSE = 0.84), whereas, the shoot model did
not show any improvement, even with removing lower ranked
features (p = 11, R2 = 0.23, and RMSE = 1.34).

In addition to the validation of retained features across
different panels, we tested their performances within each dataset
(Table 2). For instance, models of image derived features from
root section (p = 3) and shoot section (p = 11), that were trained
and tested within GH_LSP data showed better prediction power
(R2 = 0.53 and 0.73 and RMSE = 0.88 and 0.66 for shoot and root,
respectively) than models trained and tested within GH_RIL data
(R2 = 0.32 and 0.67 and RMSE = 1.21 and 0.84 for shoot and

root, respectively). However, it was found that models of root-
derived features outperformed models of shoot-derived features
in predicting visual scores and accounting for the most variance
(around 70%), which aligns with the fact that symptoms of ARR
are more visible in root section in the initial stages. However,

TABLE 2 | Prediction performances of final RGB features for shoot and root
images within and across lentil panels.

Region of interest Training set Test set R2 RMSE

GH_LSP (100%) GH_RIL (100%) 0.23 1.34

Shoot GH_LSP (80%) GH_LSP (20%) 0.53 0.88

(p = 11) GH_RIL (80%) GH_RIL (20%) 0.32 1.21

GH_RIL (100%) GH_LSP (100%) 0.42 0.99

GH_LSP (100%) GH_RIL (100%) 0.67 0.85

Root GH_LSP (80%) GH_LSP (20%) 0.73 0.66

(p = 3) GH_RIL (80%) GH_RIL (20%) 0.67 0.84

GH_RIL (100%) GH_LSP (100%) 0.45 1.00
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FIGURE 8 | (A) Final retained features extracted from root section from GH_LSP genotypes (left) and GH_RIL genotypes (right) datasets. (B) Distribution of pixels
from bin3 (bottom) and bin4 (top) in inoculated lentils (Avondale).

both models of final root and shoot features exhibited similar
prediction power of visual scores when the model was trained
on GH_RIL and tested on GH_LSP (R2 = 0.42 and 0.45 and
RMSE = 0.99 and 1.00 for shoot and root, respectively), which
could be related to the high variability within RIL experiments.

For the final retained features from root section,
“saturation.sd” – standard deviation of saturation channel –
(r = 0.82 and 0.83 for GH_LSP and GH_RIL, respectively),
“bin3.perc” – percentage of bin3 – (r = 0.67 and 0.52), and
“bin4.perc” – percentage of bin4 (r = 0.57 and 0.62) – were
significantly and positively correlated with visual scores. Control
and resistant plants from both lentil panels (GH_LSP and
GH_RIL) had similar phenotypic pattern in almost all retained
root features (Figure 8), except for percentage of bin3 extracted
from HSV color space of control samples that were visually
scored as “1” (Hue = [0.11, 0.15] and Saturation = [0, 0.5] and
value = [0, 1]). In contrast, the susceptible group – samples
visually scored between 3.5 and 5 – had higher values for these
three features. To note, among the final retained features, only
“saturation.sd” was common between root and shoot ROIs
(Figures 7B,C). This feature revealed a different pattern for
shoot region, where it was negatively correlated with disease
scores (r =−0.23, P < 0.0001).

Relationship Between Disease Severity
Rating and Hyperspectral Spectra
The average reflectance spectra of shoot samples demonstrated
typical green plant reflectance patterns, with minor spectral

reflectance differences between the healthy and infected
(Figures 9A,B). In contrast, significant differences could be
discerned in the root spectra; infected roots had lower reflectance
values in the visible region (600–780 nm, Figures 9C,D), than
did healthy samples, probably resulting from darker appearance
due to rotting. However, in the NIR region of 1300–1600 nm,
reflectance values of both shoot and root infected samples were
higher compared to healthy samples. Particularly, there was
a larger difference in the reflectance values between healthy,
resistant/partially resistant, and susceptible samples, near
1450 nm. Nonetheless, the average spectrum of roots did
not capture any differences between resistant and partially
resistant classes, which could indicate a similarity between
these two groups.

Pearson’s correlation analysis was performed on the computed
NDSIs of inoculated roots for both lentil panels (GH_LSP
and GH_RIL) to investigate the relationship between root
spectra and visual scores. We selected, at the first step, spectral
features that were significantly correlated with disease scores
and common for both datasets (Figure 10). Remarkably, we
found that correlations were stronger for NDSIs extracted from
GH_RIL population (0.15 < |r| < 0.50, P < 0.05) compared to
GH_LSP population (0.11 < |r| < 0.45, P < 0.05). Here, not
only the number of features were larger compared to number
of samples but also hyperspectral data presented a problem
of multicollinearity. In order to reduce data dimensionality,
we trained elastic net regularized regression model with 15-fold
cross validation on GH_LSP data and we validated the results
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FIGURE 9 | Average reflectance spectra of lentil (shoots and roots) for two lentil panels (GH_LSP and GH_RIL data). (A) Average spectral curves of lentil shoots in
GH_LSP genotypes. (B) Average spectral curves of lentil shoots in GH_RIL genotypes. (C) Average spectral curves of lentil roots in GH_LSP genotypes. (D) Average
spectral curves of lentil roots in GH_RIL genotypes.

FIGURE 10 | Correlation heat maps of computed NDSIs extracted from root section and visual scores for (A) GH_LSP data and (B) GH_RIL data.

using GH_RIL data. In this case, elastic net becomes more like
ridge regression with α close to 1 to handle multicollinearity in
the dataset. The model found, at this step, 1616 features with

no significant contribution, where their coefficients were reduced
to zero. The rest of features had explained around 30% of the
variation in visual scores (R2 = 0.29 and RMSE = 1.74).
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TABLE 3 | Prediction performances of final NDSI features for shoot and root
hyperspectral images within and across lentil panels.

Region of interest Training set Test set R2 RMSE

GH_LSP (100%) GH_RIL (100%) <0.01 3.09

Shoot GH_LSP (80%) GH_LSP (20%) 0.27 1.08

GH_RIL (80%) GH_RIL (20%) 0.01 1.38

GH_RIL (100%) GH_LSP (100%) <0.01 1.57

GH_LSP (100%) GH_RIL (100%) 0.25 1.64

Root GH_LSP (80%) GH_LSP (20%) 0.54 0.86

GH_RIL (80%) GH_RIL (20%) 0.02 1.50

GH_RIL (100%) GH_LSP (100%) 0.15 3.34

Although elastic net is very effective in removing correlated
variables, the remaining features (number of features, p = 115)
still were highly correlated with each other (r = 0.9–1.0).
Therefore, we selected features with absolute value of coefficients
greater than 2.5 (p = 35, R2 = 0.29 and RMSE = 1.77). Among the
35 features retained, 21 NDSIs were in the range of 630–830 nm
and 14 in the range of 1320–1560 nm. Similarly, NDSIs in these
two ranges were highly correlated to each other. Predictors in this
case can provide the same information. Thus, we only retained,
from the redundant NDSIs, predictors that were highly correlated
with visual scores in both lentil panels. Such a reduction in
number of features (p = 10) translated in a small reduction in
R2 = 0.25 and RMSE = 1.64. Similar to the previous section,
root model trained and tested with GH_LSP data showed higher
prediction power (R2 = 0.54 and RMSE = 0.86) compared to
the model trained and tested on GH_RIL data (R2 = 0.02 and
RMSE = 1.5) (Table 3).

However, for shoot models, only two NDSIs, in the
range of 1160–1280 nm, were found significantly correlated
with ARR visual scores and common across lentil panels
(0.12 ≤ |r| ≤ 0.24, 0.05 < P < 0.0001), but showed no
prediction power (whether trained on GH_LSP and tested
on GH_RIL data or vice versa). The good performance of
this model was exclusive only to GH_LSP (R2 = 0.27 and
RMSE = 1.08) (Table 3). Root-derived NDSIs – computed from
wavelengths of 700, 710, 730, and 790 nm – had strong and
positive correlations with disease scores (0.35 ≤ r ≤ 0.50,
P < 0.0001). Whereas, in the range of 1350–1520 nm, the
significance of correlation decreased for NDSIs extracted from
GH_RIL (0.15 ≤ |r| ≤ 0.18, P < 0.05) compared to NDSIs
extracted from GH_LSP (0.11 ≤ |r| ≤ 0.33, 0.05 < P < 0.0001)
(Table 4). The small size of GH_RIL data could have contributed
to these findings.

Field Phenotyping for Disease Symptoms
Results of correlation analysis of diseased lentil in the field
experiment are shown in Supplementary Table S5 and Figure 11.
Correlation coefficients between spectral features and field
visual scores (AGI) varied across days after sowing and the
type of features ranging from -0.78 to 0.51. Except for mean
intensity of red edge band, all multispectral-derived features were
significantly correlated with the AGI scores (P < 0.001). The
correlation between non-adjusted spectral features and visual

TABLE 4 | Pearson’s correlation between retained NDSIs and visual scores for
genotypes from two lentil panels (GH_LSP and GH_RIL).

Coefficients of correlation

Region of Wavelength (nm)

interest combination in NDSI GH_LSP GH_RIL

Shoot 1170 1160 0.24∗∗∗ −0.15∗

1280 1270 −0.12∗ −0.15∗

Root 630 640 0.15∗∗ 0.45∗∗∗

660 650 0.19∗∗ −0.23∗∗

670 660 0.11∗ −0.26∗∗∗

1320 660 −0.12∗ −0.4∗∗∗

700 710 0.45∗∗∗ 0.43∗∗∗

730 790 0.35∗∗∗ 0.50∗∗∗

840 790 −0.10∗ −0.45∗∗∗

1350 1340 −0.11∗ −0.15∗

1410 1420 0.29∗∗∗ 0.17∗

1530 1520 0.33∗∗∗ 0.18∗

Significance of correlation test: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.0001.

scores were generally higher compared to the adjusted data.
Notably, the correlations between AGI and spectral indices and
their derivatives (0.34 ≤ |r| ≤ 0.78, P < 0.0001) were also higher
than those between AGI and individual bands (0.18 ≤ r ≤ 0.44,
P < 0.0001). The difference between r derived from non-adjusted
and adjusted data reduced as the experiment advanced (from 44
to 66 DAS), which could also result from decline of correlation
coefficients across adjusted and non-adjusted data.

DISCUSSION

Lentil is an important legume crop grown widely for its
nutritional contribution to human diet and animal feed, and for
its effects in improving soil fertility by fixing nitrogen (Infantino
et al., 2006; Hamwieh et al., 2009; Foyer et al., 2016). However, the
susceptibility of lentil to soil-borne pathogens such as A. euteiches
could lead to severe losses in production (Gaulin et al., 2007).
Therefore, plant breeding efforts are focusing on developing new
lentil cultivars resistant to ARR (Ford et al., 1999; Infantino et al.,
2006; Le May et al., 2017).

Disease tolerance is a complex trait to select for in plant
breeding and crop improvement as it can be controlled by
multiple genes (Nelson et al., 2018). Applicability of high-
throughput plant phenotyping systems in deriving digital traits
indicative of the health status in multiple plants subjected to
biotic stresses is currently being investigated. In this study, we
used high-throughput phenotyping methods as a faster, more
accurate, and objective approach for screening ARR resistance in
lentil. We evaluated 542 lentil genotypes (351 accessions collected
worldwide and 191 RILs) using RGB imaging. Among these,
100 genotypes (79 LSP + 21 RIL) were further screened using
hyperspectral imaging in greenhouse conditions and 173 RIL
genotypes were evaluated in field conditions using multispectral
aerial imaging at a flying altitude of 25 m.
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FIGURE 11 | Comparison of Pearson’s coefficient of correlation across days after sowing and multispectral features as canopy area, NDVI, GNDVI, and NDRE
(FE_RIL genotypes).

Correlation analysis between retrieved digital traits and
ground truth data, consisting of root and shoot dry biomass
and ARR visual scores, were investigated and significant
relationships were found. Indeed, most of the geometric/shape
features extracted from RGB images including projected area,
convex hull area, perimeter, compactness, solidity, major and
minor axis lengths exhibited significant and positive correlations
with dry weight (RDW and SDW). Notably, projected area
showed the strongest correlation with dry weight, which can
be considered as a good predictor for plant biomass. These
findings were in line with a recent study by Chen et al. (2018),
where a combination of relevant features – by incorporating
physiological descriptors such as near-infrared intensity and
geometric features such as projected area – were used to predict
plant biomass. These additional features slightly enhanced the
predictive power of models used compared to predicting plant
biomass with only one single trait. In addition, we found
that color and texture features derived from RGB images,

NDSIs extracted from hyperspectral images, and multispectral
indices from aerial images were significantly correlated with
ARR disease scores.

Accordingly, application of high-throughput phenotyping
platforms generates many features that cannot be evaluated
manually or visually. Therefore, to predict ARR visual scores
from extracted phenotypic traits, we built an elastic net penalized
regression model. The choice for this model was based on
the challenge of multicollinearity in our dataset, particularly
in hyperspectral imaging data, in which, not only features
were collinear, but also the total number of computed NDSIs
was larger than the total number of samples from both years
GH_LSP and GH_RIL data. Through this approach, we selected
subsets of digital features extracted from RGB and hyperspectral
images that resulted in accurately explaining the variance in
disease scores. Intriguingly, in terms of model performances,
features extracted from root section (three features from RGB
images and 10 NDSIs from hyperspectral images) were able to
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accurately predict disease scores with coefficient of determination
of (R2 = 0.67 and R2 = 0.25, respectively) when model were
trained on GH_LSP and tested on GH_RIL data. These accuracies
increased more when models were trained and tested on GH_LSP
data but decreased when trained and tested on GH_RIL data.
The differences in performance could be explained by the fact
that features were selected at first from training the model
with GH_LSP data and testing the model with GH_RIL data.
Nevertheless, we confirmed the stability of RGB models trained
on root features (0.45 ≤ R2

≤ 0.73), which could be explained by
the fact that visual scores of ARR severity are closely associated
with discoloration and browning of root tissues. For instance,
saturation channel in the HSV color-space corresponds to the
pureness or the depth of a certain color that is hard to perceive
with human eyes (Sural et al., 2002). The ARR infection had
resulted in necrosis and colored lesions on the root section
(Chan and Close, 1987), which was translated by greater values of
standard deviation of saturation channel. This feature indicates
the dispersion of color-pureness and the range of variation in
color shades, a reason that could explain why the mean of
saturation channel failed to capture the spatial variability of
pixel values in saturation channel. Additionally, in a recent
study by Desgroux et al. (2018), a significant SNP marker was
found associated with both resistance to ARR in peas and total
root projected area as RSA trait. The projected root area was
eliminated by elastic net models from initial steps because of
it is high correlations with other features. Combining this trait
with the final three selected RGB features slightly improved visual
scores prediction results by a 2% (R2 = 0.68 and RMSE = 0.83)
when GH_LSP was used as training set and GH_RIL as testing
set. On the other hand, the moderate performance of models
developed from hyperspectral features could be related to the
fact that ARR resistance is a complex trait and descriptors
from visible range, visual scores, or RGB traits, are not enough
to decipher the disease interaction with lentil roots in near-
infrared region.

The phenotypic response patterns to A. euteiches infection
differed between root and shoot. For instance, we found,
from multispectral traits extracted from FE_RIL experiment,
that percentage of canopy area, NDVI, GNDVI, and NDRE
were negatively correlated (Figure 11) with AGI. This finding
could indicate that ARR resistance is associated with high
canopy cover. In contrast to foliar diseases, several studies
explained that a high foliage cover of the above ground or
“aerial organs” will create a favorable humid microclimate for
disease development (Calonnec et al., 2013; Richard et al.,
2013; Desgroux et al., 2018). As for roots, projected area along
with other geometric RGB traits were negatively correlated
with visual scores, which supports previous findings (Djébali
et al., 2009; Desgroux et al., 2018). Furthermore, the decreasing
pattern of multispectral traits associated with higher AGI
could be explained by the senescence/necrosis of foliage.
For instance, several studies have found low NDVI/GNDVI
values are associated with stressed plants and low chlorophyll
concentrations (Richardson et al., 2002).

Hyperspectral imaging provided a high-dimensional
reflectance data with information expanding over 140 spectral

bands, with more than 110 spectral bands in the near-infrared
region. Although HSI imaging demonstrated a great potential
for phenotyping disease resistance in literature, in our study
and with our adopted approach, this imaging technique
showed a moderate performance. Such performance could have
resulted from the type of validation data as the ground-truth
relied only on disease visual scores. This technique could
be improved by extracting other types of ground-truth data
(e.g., biochemical constituents, gene expression). A similar
finding was observed with multispectral imaging. With two
spectral bands in near-infrared region, vegetation indices
such as NDVI, GNDVI, and NDRE were significantly and
moderately correlated with disease scores in field conditions.
Although root RGB-derived features were highly correlated
with disease scores in comparison to shoot RGB-derived
features in controlled environment, the same may not be
practical in field conditions, given that only above ground
lentils/legumes biomass are assessed. Considering the need
for rapid screening for above ground lentils/legumes in field
conditions, UAV coupled with multispectral imaging could
enable a faster assessment for ARR severity. The selection of
one of these imaging techniques relies on three main questions:
(1) how big is the variability of disease expression within
lines/accessions? (to select the appropriate image resolution),
(2) what is the type of ground-truth data? (to validate the
acquired image features), and (3) is the assessment in controlled
environment or field conditions? (to decide on the feasibility
of imaging). It should be noted that although results from all
imaging techniques were promising, the reliability of these
extracted features can be further strengthened on integration
with genetic studies.

In this study, we identified RGB, multispectral, and hyper-
spectral traits that exhibited significant correlations with visual
scores. The validation of such high-throughput methods,
however, depends largely on the quality of image acquisition
(Lobet, 2017). The more standardized the protocol of imaging is,
the more automatic and faster the data processing will be. The
results from our approach were highly influenced by the variation
of disease symptoms among lentil plants within accessions/lines,
even among the checks. This variation was translated by a
variability in disease scores even for cultivar checks, which
could be addressed by taking the average score for each line or
accession. However, we preferred to investigate the efficiency of
our approach at an individual plant level in order to correspond
with the plant breeder’s rating. As a further step toward adopting
such approaches in evaluating A. euteiches severity in lentil,
digital traits will be integrated in QTL analysis to check for
related expressions.
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