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Editorial on the Research Topic

Reliability and Reproducibility in Functional Connectomics

Research on functional connectomics of the human brain is exploding (Kelly et al., 2012; Smith
et al., 2013), especially for clinical and neurodevelopmental as well as aging studies. However,
advances in the reliability and validity of functional connectomics have so far lagged the application
of these methods in practice (Zuo and Xing, 2014). In statistical theory, reliability serves as an
upper limit of validity and is measurable in practice while validity is more difficult to measure
directly (e.g., specific trait and disease) thus often approximated by predictive validity (Kraemer,
2014). Therefore, high reliability is a required standard for both research and clinical use. Of
note, excellent reliability (>0.8) serves the clinical standard on measurement scales (Streiner et al.,
2015). This reflects clinical call of tools with high inter-individual differences (easily differentiating
individuals) and low intra-individual differences (high individual stability) (Fleiss et al., 2003;
Zuo and Xing, 2014). This has been recently demonstrated in the anatomy of reliability (Xing
and Zuo, 2018). In reliability studies, statistical quantification of reliability is often implemented
with intracclass correlation (ICC) regarding its well-developed theory in the field of probability
and statistics while the types of ICC are determined by the repeated-measure experimental
design (Shrout and Fleiss, 1979; Koo and Li, 2016). Failure of reliability can be an important
cause of small statistical power (Button et al., 2013), low reproducibility (Poldrack et al., 2017),
puzzlingly high correlations (Vul et al., 2009), and overwhelming need of big data or large
sample sizes (Streiner et al., 2015; Hedge et al., 2018). In the field of human brain mapping
with magnetic resonance imaging (MRI), structural MRI has clinically-acceptable reliability of
mapping brain morphology (Madan and Kensinger, 2017) while most functional MRI measures
are challenged by the clinical standard on the reliability (Bennett and Miller, 2010; Zuo and Xing,
2014). This research topic takes action on further steps of improving the reliability of fMRI-based
connectomics by publishing 12 papers across experimental design, computational algorithm, and
brain dynamics theory.
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Given the sensitivity of resting-state fMRI (rfMRI)
connectivity measurements to physiological variables,
the development of improved strategies for correction
of physiological artifacts is imperative. Golestani et al.
demonstrated significant improvements of reproducibility
of common rfMRI metrics by the low-frequency physiological
correction with end-tidal CO2. Related to human arousal, as
demonstrated in Wang et al., test-retest reliability of human
functional connectomics can be significantly improved by
removing the impact of sleep using measures of heart rate
variability derived from simultaneous electrocardiogram
recording. These findings highlight the need of recordings of
physiological variables for reproducible functional connectomics.
In addition, the use of eyes-open versus eyes-closed resting is
an important aspect of rfMRI experimental design and has
been of great research interest due to its relationships with
visual function (Yang et al., 2007) and arousal (Yan et al.,
2009; Tagliazucchi and Laufs, 2014). The study by Yuan et al.
provides a novel multivariate method to examine the amplitude
differences of brain oscillations between eyes open and eyes close
conditions during resting state as well as their scanner-related
reliability. Head motion during scanning is another potential
source of variability and has been relatively well investigated
regarding its impacts on reliability of rfMRI derivatives by using
various preprocessing strategies (Yan et al., 2013; Ciric et al.,
2017; Parkes et al., 2018). Furthermore, how these variables are
modeled and the order in the preprocessing pipelines they are
modeled can have significant impacts on results (Chen et al.,
2017; Lindquist et al., 2019). These advances have implications
on the way of further optimizing the reliability observed
(Golestani et al.; Wang et al.).

Many computational algorithms exist for characterizing
features of the organization in the functional connectomes
across different spatial and temporal scales (Zuo and Xing,
2014). Reliability can guide both methodological choices between
these algorithms as well as the validation of new algorithms.
Common algorithms have been recently given a state of
art review in terms of their test-retest reliability (Zuo and
Xing, 2014), indicating that network metrics derived from
graph theory applied to rfMRI signal are less reliable (Zuo
et al., 2012) than usually required while both local functional
homogeneity measure (Zuo et al., 2013) and global network
measure with dual regression of independent component analysis
(drICA) (Zuo et al., 2010a) almost reach the clinical standard
of reliability. This topic offers five studies to illustrate more
sophisticated developments of reliability of these algorithms. This
topic proposed a novel algorithm for network generation at
individual level, using topological filtering based on orthogonal
minimal spanning trees to show both functional and structural
networks with highly reliable graph theoretical measures using
magnetoencephalography (Dimitriadis et al.) and diffusion MRI
(Dimitriadis et al.). Reliability evaluations are comprehensively
investigated for group information guided ICA, independent
vector analysis (IVA) (Du et al.). and other high-order functional
connectivity (Zhang et al.). The single-subject spatially-
constrained ICA performs favorably compared to IVA (Du
et al.) and improves detection of clinical differences compared

to drICA (Salman et al., 2018). Additionally, Di and Biswal
warned the field by demonstrating the poor reliability of using
psychophysiological interaction analyses in the context of inter-
individual correlation or group comparisons.

As commented by Sato et al., open science with sharing of
large datasets has paved the way for delineating the fingerprints
of human brain function. This is reflected by the fact that most
studies in the topic employed the data from Consortium for
Reliability and Reproducibility (Zuo et al., 2014), representing
a means of accelerating science by facilitating collaboration,
transparency, and reproducibility (Milham et al., 2018). To
address the reproducibility issue in the field of human brain
mapping, the Organization for Human Brain Mapping (OHBM)
have created a Committee on Best Practices in Data Analysis
and Sharing (COBIDAS) and published its report (Nichols et al.,
2017). Beyond the advances, two studies also raised challenges
of big-data applications to clinical population, particularly in
understanding the high heterogeneity of spontaneous brain
activity in ADHD and autism (Wang et al.; Syed et al.). As noted
in Button et al. (2013), large samples may produce statistically
significant results even for extremely small effects which have
little add to diagnostic or clinical utility. These observable but
small effects are likely caused by weighing the low measurement
reliability with the true effect (Streiner et al., 2015), which could
bemoderate to large. It is thus very fundamental to estimate effect
size in neuroimaging and its relationship with statistical power
although most existing studies have not factored the reliability
in doing so (Reddan et al., 2017; Geuter et al., 2018). This
is particularly valuable for some widely used but less reliable
measures (e.g., seed-based functional connectivity) (Shou et al.,
2013; Zuo and Xing, 2014; Siegel et al., 2017) to be improved
with acceptable reliability ahead of its clinical use (Fox, 2018).
Meanwhile, data harmonization techniques such as ComBat (Yu
et al., 2018) should be developed to reduce inter-scan or inter-
site differences in multi-center big-data studies. One possibility
of filling these gaps between empirical computation and clinical
application is theoretical development of brain dynamics (Woo
et al., 2017). The work by Tomasi et al. demonstrated a power
law of the brain network dynamics, which has been framed
into a theory of neural oscillations (Buzsáki and Draguhn,
2004). Combination of theory and data via structure-function
fusion (Zuo et al., 2010b; Jiang and Zuo, 2016) will remove the
reliability barriers of developing clinically useful human brain
mapping, which is the final call of the current research topic.
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