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Objective: P300-speller is the most commonly used brain-computer interface (BCI)
for providing a means of communication to patients with amyotrophic lateral sclerosis.
However, the performance of the P300-speller BCI is still inadequate. We investigated
whether the performance of P300-speller can be further improved by increasing the
mental effort required of the user.

Methods: We designed two active mental tasks for a P300-speller based on a differently
colored smiling cartoon-face paradigm. The tasks were based on color distinction,
and their difficulty was modulated. One of the active mental tasks (DC task) required
participants to focus on and distinguish the color of a target, while the other task (CN
+ DC task) required participants to simultaneously count the number of times a target
flashed and distinguish its color.

Results: The amplitudes of the event-related potentials (ERPs) in both DC and CN + DC
tasks were higher than that in the CN task. The significant difference in the amplitudes
between the DC and CN tasks was observed around the parietal-central area from 440
to 800 ms (late positive component, LPC), and that between the CN + DC and CN tasks
was observed around the left-frontal and right-frontal areas from 320 to 480 ms (P3a)
and the parietal-central area from 480 to 800 ms (P3b and LPC). The latency of the
P300 potential in the CN + DC task was significantly longer than that in the CN task at
F3, Fz, F4, C4, Pz, and P4 (P < 0.05). Offline (P < 0.05 at superposing once, twice, and
thrice) and online (P < 0.001) classification results showed that the average accuracies
in the CN + DC task were significantly greater than that in the CN task. Similar results
were found for online information transfer rates (ITRs; P < 0.001). In addition, we found
that the average online accuracies in the DC task were greater than those in the CN task,
although the difference was not statistically significant (P = 0.051).

Significance: The active mental task based on task difficulty modulation can significantly
improve the performance of the P300-speller, and that based on color distinction shows
a trend of improved performance.
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INTRODUCTION

Brain-computer interface (BCI) provides a direct channel
of communication between the human brain and external
devices (Wolpaw et al., 2002; Wolpaw, 2004; McFarland and
Wolpaw, 2011). It translates the intent or ‘‘mind’’ of the users
into computer commands using electroencephalogram (EEG)
signals from the scalp. This technology can help patients with
amyotrophic lateral sclerosis communicate with the external
world (Kübler et al., 2001; Nijboer et al., 2008; Mak et al., 2012;
McCane et al., 2015).

P300 is an event-related potential (ERP) induced by an
oddball event (Allison and Pineda, 2003). Farwell and Donchin
(1988) first applied the P300 potential to the P300-speller, which
is a classic BCI application for typing characters (Farwell and
Donchin, 1988). Thirty-six characters arranged in a 6× 6 matrix
are presented on a display in the P300-speller. The six rows and
six columns of the matrix are intensified in a random series.
When a user wants to output a character, he/she need only focus
on the target character. The probability of the target character’s
intensity is 1/6 and is, therefore, an oddball event that will
elicit the P300 potential. The system can output a character by
analyzing the P300 potentials that were elicited by the intensified
row and column containing the target character. Through the
P300-speller, users can spell phrases or sentences by focusing on
target characters. However, the performance of the P300-speller
is not yet satisfactory due to its low speed and accuracy (Farwell
and Donchin, 1988; Kaufmann et al., 2011).

A considerable amount of research has been conducted
to design different paradigms for the improvement of the
performance of the P300-speller (Pires et al., 2012; Li et al.,
2013; Xu M. et al., 2013; Yin et al., 2013, 2014; Wang et al.,
2015). Utilizing face stimuli to induce more distinct potentials
or potentials with more components have especially helped
improve the performance of the P300-speller. The characters
of the P300-speller were overlaid with translucent images of
famous faces (e.g., Albert Einstein, a great scientist or Yaoming,
a famous basketball player) or smiling cartoon faces instead
of flashing, and it was found that the face stimuli can elicit
N170, N400, and vertex positive potentials in addition to the
P300 potential, and these ERPs significantly improved the
performance of the P300-speller (Kaufmann et al., 2011; Zhang
et al., 2012; Chen et al., 2015). The color of the stimuli is one
of the main factors influencing the P300 potential. Different
amplitudes of P300 potentials are induced when people focus
on objects with different colors; this phenomenon is attributed
to the degree of color awakening (Cuthbert et al., 2000). It
has, therefore, been proposed that the performance of the
P300-speller can be further improved by using stimuli of different
colors (Takano et al., 2009; Treder et al., 2011; Li et al., 2015;
Chen et al., 2016). For instance, Li et al. (2015) designed a
P300-speller by combining the use of green and familiar faces,
which evoked four more obvious ERPs (P300, vertex positive
potential, N170, and P600f) and improved both accuracy and
information transfer rate (ITR). Guo et al. (2008) used colored
vertical lines, which induced a higher-amplitude N200 in the
multi-focal visual evoked potential-based BCI spelling paradigm,

and thus, improved the implementation of the spelling system
(Hong et al., 2009; Liu et al., 2010).

The subjects’ task in a typical P300-speller is to count the
number of intensified target characters. Recent studies have
improved the performance of an auditory P300-speller by
designing different active mental tasks for the subjects (Guo
et al., 2010; Xu H. et al., 2013). For example, Guo et al. (2010)
changed the subjects’ task in an auditory P300-spelling paradigm
by requiring them to simultaneously focus on the target and
distinguish the direction of the sound or the sex to which it
belongs. The paradigm induced a significant N200 and late
positive component (LPC), and achieved better performance
(Xu H. et al., 2013). The P300 potentials induced by visual
stimuli usually feature larger amplitudes and longer latencies
than those induced by auditory stimuli (Romero and Polich,
1996; Comerchero and Polich, 1999). Therefore, we hypothesized
that the visual P300-speller can be further optimized using an
active mental task.

Compared with a simple task, increasing the difficulty of
discriminating the target (i.e., increasing the difficulty of the task)
can induce more obvious ERPs. In the auditory BCI based on
active mental tasks, Xu H. et al. (2013) designed different tasks
for the subjects, increasing the difficulty without changing the
attributes of the stimuli; this design induced more obvious ERPs
than a simple task. Horat et al. (2016) used an auditory oddball
paradigm to record the change in the ERP (P2, P3a, and P3b)
amplitudes when performing the active mental task at different
levels of difficulty and found that more difficult mental tasks
induced more obvious amplitudes.

Based on a P300-speller with a colored smiling cartoon face
paradigm, in the present study, we conducted two experiments
with different active mental tasks: (1) distinguishing the target’s
color; and (2) simultaneously counting the number of intensified
targets and distinguishing their respective colors (a more
difficult task). We compared the performance on these visual
P300-spellers with that on a traditional task to explore the
influence of active mental tasks (distinguishing the targets’ color)
and the modulation of their difficulties on the performance of the
P300-speller.

MATERIALS AND METHODS

Subjects
Twenty-seven subjects (13 men, aged 21–27 years) were
recruited to the study. Eleven subjects each participated in
Experiments 1 and 2. Ten subjects (five of whom had
participated in Experiment 1 or 2) participated in the online
experiment. The subjects did not have any known neurological
disorders and had normal or corrected-to-normal vision. No
subject had color blindness. All subjects were native Chinese
speakers and were familiar with the alphabet used in this
study. After receiving a full explanation of the purpose
and risks of the study, subjects provided written informed
consent. The study was approved by the ethics committee
of Changchun University of Science and Technology. All
methods were performed in accordance with the approved
guidelines. Before the experiment, the subjects were required
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to have a healthy mental state and sufficient energy to
complete the experimental tasks. The whole process was
conducted under the premise of volition of the subjects,
and when they were in a relaxed state. All participants
were compensated with 100 RMB after the completion of
the experiments.

Experimental Paradigm and Tasks
Experimental Paradigm
We designed a spelling paradigm utilizing smiling cartoon
faces similar to those used by Chen et al. (2015). Thirty-six
characters were arranged in a 6 × 6 matrix, presented at a size
of 30 cm × 30 cm on a 21.8-inch screen with a refresh rate of
60 Hz (Figure 1). The size of each character was 2.5 cm× 2.5 cm.
The distance between two characters was 5 cm. The background
color was black, and the characters were gray.

To mitigate the problem of adjacency flashing, we used rows
and columns of the logicmatrix when characters were intensified,
involving random rearrangement of the characters into a new
matrix, as shown in Figure 2 (Townsend et al., 2010). The rows
and columns were composed of six random characters in the
actual matrix (Figure 1).

Flashing was performed by covering six random
characters with differently colored smiling faces: red, yellow,
green, or white.

Experimental Tasks
DC Task—Distinguishing a Target’s Color
In the DC task, we required subjects to conduct an active mental
task: distinguishing the color of the cartoon face. A smiling face
covered the target character, and the subjects said the color’s
name when the target character flashed.

CN +DC Task—Counting the Number of Intensified Targets
and Distinguishing the Targets’ Colors Simultaneously
In the CN + DC task, the subjects were not only asked to count
the number of smiling faces covering the target characters when
they flashed but also to distinguish their colors. For example,
if the target character was ‘‘A,’’ four smiling faces of different
colors would be presented once or twice on ‘‘A,’’ respectively: red,
yellow, yellow, green, green, and white. The subjects were needed
to silently associate the order in which the colors appeared: 1, red;
2, yellow; 3, yellow; 4, green; 5, green; 6, white.

As a control, we employed the same task as that used in the
traditional P300-speller: we asked the participants to count the
number of intensified targets (CN task) and ignore their colors.
In the present study, we verified the performances in the DC and
CN +DC tasks by comparing their offline and online results with
those of the control task (CN task).

Experimental Procedures
Experiment Setup, Offline and Online Protocols
The present study included two offline experiments
(Experiments 1 and 2) and one online experiment. Each
subject sat comfortably in front of the monitor. Their eyes
were approximately 70 cm from the computer monitor.
The subjects were familiar with the experimental tasks prior
to commencement.

FIGURE 1 | The spelling matrix with colored smiling cartoon faces.

FIGURE 2 | The logical matrix of the experimental paradigm.

In Experiment 1, subjects participated in two separate sessions
that respectively presented the DC and CN tasks. Similarly,
subjects in Experiment 2 participated in two separate sessions
that presented either the CN + DC or CN task. In the offline
experiments, the stimulus onset asynchrony of the flashing
row/column was set at 250 ms: each character changed to the
cartoon smiling face for 200 ms and then reverted to a gray
character for 50 ms (Figure 3). One flash of a row or column
of the logic matrix was referred to as a sub-trial. Twelve flashes
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FIGURE 3 | The time course of the offline experiment. The time course of Experiment 2 is similar to that of Experiment 1, with the DC task being replaced with the
CN + DC task. CN: task involving counting the number of intensified targets, DC: task involving distinguishing the targets’ color.

corresponding to the six rows and six columns were defined as a
trial. A sequence included 15 trials; thus, each sequence consisted
of 180 flashes to output a target character. The output of a word
with five characters was defined as a run. Between each run,
subjects were permitted a 5-min break. Each subject took part
in five runs (five words) for each task in Experiments 1 and 2.
In each task, the five words were presented in a pseudorandom
order, and the order of the two tasks was also pseudorandomized
to avoid learning effects.

The online experiment was implemented on a different day.
Subjects were tested with three tasks (CN, DC, and CN + DC
tasks), each composed of two phases: training and testing. In
the two phases, the sub-trial and trial settings were similar to
those used in the offline experiment; however, trials were only
repeated thrice in each sequence. There were 80 characters for
each task in the training phase (output of 20 characters per
training session, four training sessions), which were inputted
into the classifier to learn. The test phase outputted a total
of 30 characters. Experimental procedures (including offline
and online procedures) were performed following the standard
biosecurity and institutional safety procedures.

Data Acquisition
In the offline experiments, electroencephalogram (EEG) data
from 14 channels (Fz, F3, F4, Cz, C3, C4, Pz, P3, P4, P7, P8,
Oz, O1, and O2; Figure 4) were recorded by means of an
EEG amplifier (SynAmps 2; Neuroscan Inc., Abbotsford, VIC,
Australia) with the AFz channel used as the ground. Vertical
and horizontal eye movements were measured by the VEO
and HEO electrodes, respectively, and the reference electrode
was placed on the mastoid of the right ear. The impedance
was maintained below 5 K�. All signals were digitized at a
rate of 250 Hz. The EEG data were digitally filtered with a
band-pass filter of 0.01–100 Hz. The stimulus presentation
was controlled using a personal computer running E-prime
2.0 software (PST Inc., Savannah, GA, USA). The EEG data
was acquired using NeuroScan 4.5 software (NeuroScan Inc.,
Phoenix, AZ, USA). In the online experiment, the ground and
reference electrodes were set up in the same way as in the offline
experiments. The presentation of stimuli was controlled

FIGURE 4 | Electrode setup and locations.

using the MATLAB software (MathWorks Inc., Natick,
MA, USA).

EEG Processing and Feature Extraction
For offline data, the original EEG data were first corrected
for ocular artifacts with VEOG using a regression analysis
algorithm and were then digitally filtered using a band-pass
filter of 0.01–30 Hz. The EEG signals were divided into epochs
from 100 ms before the onset of each trial to 800 ms after
the onset. Baseline corrections were made against −100 to
0 ms. We then used bior4.4 tool in MATLAB to decompose
the EEG signals in three dimensions and reconstructed the
data using a low-frequency coefficient. We used decomposed
and reconstructed data as a feature. The EEG data was
down-sampled from 250 to 62.5 Hz by selecting every fourth
sample from the epoch (33 time points/epoch). Because we
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used 14 channels, the size of the feature vector was 14 × 33.
The mean amplitudes were calculated for all the electrodes
at a consecutive 20-ms window between the stimulus onset
and 800 ms after stimulus presentation. The data were then
analyzed using a one-way repeated measure analysis of variance
with the within-subjects factors of tasks (CN and DC in
Experiment 1, CN and CN + DC in Experiment 2), time
windows (40 levels), and electrodes (14 levels). In order to
determine the electrodes and time periods in which there was
a significant difference between the CN and DC/CN + DC
tasks, a multiple comparison was conducted with the within-
subject factors of two tasks (CN and DC/CN + DC) × 40 time
windows × 14 electrodes. All statistical analyses were conducted
using the SPSS version 19.0 software package (IBM Corp.,
Armonk, NY, USA).

For online EEG data, a third-order Butterworth bandpass
filter between 0.1 and 30 Hz was used. The EEG data
was then down-sampled from 250 to 62.5 Hz by selecting
every fourth sample from the filtered data. We extracted the
data between 150 and 750 ms after stimulus presentation
(this epoch included the specific waveforms induced by the
oddball event and the face stimuli) in order to reduce the
computation time.

Classification Scheme
Bayesian linear discriminant analysis was used to classify the
EEG data in the offline and online experiments; this is an
extension of Fisher’s linear discriminant analysis, which avoids
overfitting. The details of the algorithm can be found in
previous studies (Hoffmann et al., 2008; Jin et al., 2014a,b).
We used five-fold cross-validation to calculate the individual
accuracies in the offline experiment: we sequentially selected
one of the five words as the test, and obtained five different
training and test groups; the accuracy of each of the five
groups was computed, and the accuracy of each subject was
obtained by averaging the five results. In the online experiment,
data acquired from the training phase were used to train
the classifier using Bayesian linear discriminant analysis and
obtain the classifier model. The model was then used in the
test phase. If there was a tie between multiple characters,
the classifier would automatically select the last output as the
target character.

Information Transfer Rate
ITR is generally used to evaluate the communication
performance of a BCI system and is a standard measure
that accounts for accuracy, the number of possible selections,
and the time required to make each selection (Wolpaw et al.,
2002). The ITR (bits min-1) can be calculated as follows:

ITR =
60(P log2(P)+ (1− P) log2

1− P
N− 1 + log2N)

T

where P denotes the probability of recognizing a character, T
denotes the time taken to recognize a character, and N denotes
the number of classes (N = 36).

RESULTS

ERP Results
The superimposed grand-averaged ERP waveform elicited by
non-target and target stimuli in the CN and DC tasks are shown
in Figure 5; this figure shows that the target stimuli induce larger
amplitudes than the non-target stimuli at all 14 electrodes in both
DC and CN tasks. A clear positive peak was clearly observed
at P3, Pz, and P4 between 200 and 600 ms, which indicates
the P300 potential. In addition, a clear negative waveform was
observed between 100 and 300 ms at the P7, P8, O1, Oz,
and O2 electrodes, which is the N200 potential. Therefore, the
P300 and N200 potentials were successfully induced in the DC
and CN tasks of Experiment 1.

The topographic regions corresponding to the statistically
significant difference between the waveforms elicited in the DC
and CN tasks are shown in Figure 6. The statistically significant
difference between the ERP waveform elicited in the DC and CN
tasks was found at the parietal-central area from 440 to 800 ms
(F(1,10) = 16.46, P < 0.05).

The superimposed grand-averaged ERP waveforms elicited
by non-target and target trials in the CN and DC + CN tasks
are shown in Figure 7. Similarly, the target stimuli induced
larger amplitude waveforms than the non-target stimuli at all
14 electrodes. In both tasks, a P300 potential was observed
between 200 and 600 ms in the P3, Pz, P4, P7, and P8 electrodes
for the target trials. In addition, there was a N200 potential
between 100 and 300ms in the P7, P8, O1, Oz, and O2 electrodes.
Therefore, P300 and N200 potentials were successfully induced
in the CN + DC and CN tasks of Experiment 2.

The topographic regions corresponding to the statistically
significant differences between the waveforms elicited by the CN
+ DC and CN tasks are shown in Figure 8. The statistically
significant difference between the ERP waveform elicited in
the CN + DC and CN tasks was found at the left- and right-
frontal areas from 320 to 480 ms (F(1,10) = 14.54, P < 0.005;
Figure 8A), and around the parietal-central area from 480 to
800 ms (F(1,10) = 22.56, P < 0.02; Figure 8B), especially between
480 and 620 ms (F(1,10) = 51.89, P < 0.001; Figure 8B).

We subtracted the waveform elicited in the CN task from that
elicited in the DC task, as well as the waveform elicited in the
CN task from that elicited in the CN + DC task; we compared
these two results in order to assess the effects of task difficulty
(Figure 9). The amplitude of the difference between the CN +
DC and CN waveforms in Experiment 2 was larger than the
amplitude of the difference between the DC and CN waveforms
in Experiment 1. These statistically significant differences in the
ERP waveforms were found around the left- and right-frontal
areas from 460 to 640 ms (F(1,10) = 18.209, P < 0.02; Figure 9A),
and the parietal area from 500 to 600 ms (F(1,10) = 10.401,
P < 0.05; Figure 8B).

Latency
We computed the latency of the P300 potential in the DC and
CN tasks of Experiment 1 and the CN + DC and CN tasks of
Experiment 2.We then conducted a pairwise t-test for the latency
between the DC and CN tasks, as well as that between the CN +
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FIGURE 5 | Superimposed grand-averaged waveforms of the event-related potentials (ERPs) elicited by non-target and target stimuli in the CN and DC tasks of
Experiment 1. CN: task involving counting the number of intensified targets, DC: task involving distinguishing targets’ color.

FIGURE 6 | Comparison of the waveforms obtained during the DC and CN tasks, and scalp topographies at the parietal-central area between 440 and 800 ms
obtained from the difference in the waveforms generated by subtracting the waveforms of the ERPs elicited during CN task from that elicited during the DC task. The
color-bar represents the magnitude of the activation of the scalp areas. CN: task involving counting the number of intensified targets, DC: task involving
distinguishing targets’ color.
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FIGURE 7 | Superimposed grand-averaged waveforms of the ERPs elicited by non-target and target trials in the CN and CN + DC tasks of Experiment 2. CN: task
involving counting the number of intensified targets, CN + DC: task involving simultaneously counting the number of intensified targets and distinguishing their color.

DC and CN tasks. The results of the statistical analysis showed
that although the average latencies of the P300 potential induced
in the DC and CN + DC tasks were both longer than those
elicited in the CN task; there was no significant difference in the
latency of the P300 potential between the DC and CN tasks in
Experiment 1, while the latency of the P300 potential between the
CN+DC and CN tasks at the F3, Fz, F4, C4, Pz, and P4 electrodes
showed a significant difference in Experiment 2 (Figure 10).

Offline Classification Results
Individual and average accuracies in the DC/CN + DC and
CN tasks for the 11 subjects in Experiments 1 and 2, with
different superposition times, are shown in Figure 11. Using
more superposition times can improve the robustness of the
spelling process, but leads to lower ITR. Thus, it is important
to improve the performance of the P300-speller so as to achieve
100% accuracy with fewer superposition times. From the average
accuracies in Experiments 1 and 2, we observed that the
superposition times in the DC and CN + DC tasks were both less
than the superposition times in the CN task when the average
accuracies reached 100% (six, five, and four times in the CN,
DC, and CN + DC tasks, respectively). Further, the average
accuracies in the DC and CN + DC tasks were both higher

than those in the CN task at each superposition time before the
accuracy reached 100%. We conducted a t-test for the accuracies
at each superposition time of the DC/CN + DC and CN tasks in
Experiments 1 and 2 before the accuracy rates reached 100%.

We found that although the average accuracies in the DC task
were greater than those in the CN task before the accuracies
reached 100%, there was no significant difference between the
two (Table 1). In Experiment 2, we found significant differences
between the CN and CN + DC tasks for one, two, three, and four
superposition times (Table 1).

Online Experiment Results
We recorded the online accuracies and ITRs of 10 subjects for the
three types of tasks. The results are shown in Table 2.

The average online accuracies and ITRs in the DC and CN +
DC tasks were both higher than the average online accuracies in
the CN task, and the average online accuracy and ITR in the CN
+ DC task was higher than those in the DC task. The results of
the paired t-tests for each pair of tasks show that the accuracy
and ITR were significantly different between the CN and CN +
DC tasks (accuracy: t = −6.244, P < 0.001; ITR: t = −6.111,
P < 0.001), while there was no significant difference in the
accuracies and ITRs between the CN and DC tasks, or between
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FIGURE 8 | Comparison of the waveforms of the ERPs elicited during the CN + DC and CN tasks, and scalp topographies obtained from the difference in the
waveforms generated by subtracting the waveforms elicited in the CN + DC task from that elicited in the CN task. (A) Results for the frontal area at 320–480 ms.
(B) Results for the parietal-central area at 480–800 ms. The color-bar represents the magnitude of the activation of the scalp areas. CN: task involving counting the
number of intensified targets, CN + DC: task involving simultaneously counting the number of intensified targets and distinguishing their color.

the DC and CN + DC tasks [(CN, DC): accuracy, t = −2.247,
P = 0.051, ITR, t =−2.044, P = 0.071; (DC, CN + DC): accuracy,
t =−1.036, P = 0.327, ITR, t =−1.302, P = 0.225, respectively].

DISCUSSION

The purpose of this study was to verify the effect of DC-based
active mental and CN + DC tasks on the performance of the
P300-speller. We found that the amplitudes of the P300 potential
induced in the DC and CN + DC tasks were larger than those
induced in the CN task, and the largest amplitudes were induced
in the CN + DC task. The offline and online results further

showed that the average accuracies in the DC and CN + DC tasks
were greater than those in the CN task.

ERP and Latency Analyses
The ERP analysis revealed that the stimuli in the DC and CN +
DC tasks all elicited amplitudes and latency different from those
elicited in the CN task in the two experiments.

In Experiment 1, the significant difference between the ERP
waveforms elicited in the DC and CN tasks was mainly localized
at the parietal-central area between 440 and 800 ms after
stimulation (Figure 6); the ERP waveform induced between
440 and 620 ms may correspond to P3b (Figure 5), while that
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FIGURE 9 | Comparison of waveforms of the ERPs for (CN + DC)-CN and DC-CN, and the corresponding scalp topographies. (A) Difference in the frontal area was
found at 460–640 ms. (B) Difference in the parietal area was found at 500–600 ms. The color-bar represents the magnitude of activation of the scalp areas. CN: task
involving counting the number of intensified targets, DC: task involving distinguishing targets’ color, CN + DC: task involving simultaneously counting the number of
intensified targets and distinguishing their color (CN + DC)-CN: the waveform generated by subtracting waveform in CN task from that in CN + DC task. DC-CN: the
waveform generated by subtracting waveform in CN task from that in DC task.

found between 480 and 800 ms may be the LPC (Figure 5).
Polich (2007) proposed a decomposition of the P300 potential
into P3a and P3b subcomponents. The latter is a neural marker
of cognitive processing and decision-making operations that has
a more parietal distribution and longer latency, usually between
280 and 600 ms (Polich, 2007). The LPC is an ERP component
related to selection response in memory-updating operations
and is a positive deflection during 400–800 ms at the central-
parietal area (Guo et al., 2010). The LPC and P3b have similar
latencies and scalp-topography distribution, but the former
could reflect even later mental processes than the P3b (Sellers
and Donchin, 2006; Krusienski et al., 2008). Therefore, the
ERP waveform with a significant difference at the parietal area
between 440 and 620 ms may indicate an overlap of the LPC with
the P3b; however, we could not determine whether the increased
amplitude between 440 and 620 ms in the DC task corresponds

to the increased LPC amplitude or an increase in both P3b and
LPC amplitudes. Therefore, we compared the amplitude increase
in the two different time windows (440–620 and 620–800 ms)
by averaging the difference in the waveform observed in the
(DC-CN) during the two time windows (Figure 12A) at the
Pz electrode. The result showed that there was no significant
difference in the amplitude increase between 440 and 620 ms
and between 620 and 800 ms. We speculated that the increased
amplitude during the earlier time window in the DC task may
correspond to an increased LPC amplitude. Some studies have
proposed that the task of discriminating the stimuli’s features
provides a more active selection response than the counting task,
and the results from these studies showed that the LPC amplitude
increased in a more active mental task (Guo et al., 2010; Xu H.
et al., 2013). As shown in the study by Huang and Pashler (2007),
focusing on the visual features of the target can induce more
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FIGURE 10 | The comparison of average latency of the P300 potential between the CN and DC tasks of Experiment 1 and between the CN and CN + DC tasks of
Experiment 2 at the F3, Fz, F4, C4, Pz, and P4 electrodes. CN: task involving counting the number of intensified targets, DC: task involving distinguishing targets’
color, CN + DC: task involving simultaneously counting the number of intensified targets and distinguishing their color.

obvious amplitudes. Therefore, the amplitude of LPC waveforms
was higher in the DC task than that in the CN task, which may
be due to the DC task eliciting a more active response than the
CN task. In the study by Xu H. et al. (2013), the stimuli elicited
significant ERP amplitude by changing the counting task to
one involving discrimination of the auditory stimulus properties
(laterality, sex to which of the sound belongs).

In Experiment 2, the significant difference between the ERP
waveforms elicited in the CN + DC and CN tasks were found
in two regions: the left- and right-frontal area between 320 and
480ms (Figure 8A) and the parietal-central area between 480 and
800 ms (Figure 8B). The significant differences found in the
first region may correspond to the subcomponent P3a. This
subcomponent occurs after a novel event and features more
frontal distribution; its latency is usually between 220 and 400ms,
which is associated with attention processing (Polich, 2007).
Corbetta et al. (1991) proved that focusing on multiple features
of a stimulus requires more attention than focusing on only one
of its features. The CN + DC task was designed to require the
subject to pay attention to both the number of times a target
was presented and the its color, which requires more attention
than the CN task. Riccio et al. (2013) investigated the influence
of attention on the performance of a P300-based BCI system
and found a significant positive correlation between attention
and the P300 amplitude. Thus, a significant increase in the P3a
amplitude may be due to increased attention. Similarly, as the
ERP waveform with a significant difference in the parietal area
between 480 and 620 ms indicated a possible overlap of the LPC
with the P3b (Figures 7, 8), we compared the amplitude increase
in two different time windows (480–620 and 620–800 ms) by

averaging the difference of [(CN + DC)-CN] across the two time
windows (Figure 12B). We found a significant difference in
the amplitude increase between 480 and 620 and that between
620 and 800 ms (P < 0.05). This finding supported our
speculation that the increased amplitude between 480 and 620ms
in the CN + DC task corresponded to both P3b and LPC
amplitudes. In a study on the assessment of mental workload,
the P3b amplitude was found to increase when the subjects’ task
was changed from a counting-number to a reverse counting-
number type because the reverse counting number task increased
the difficulty of the decision-making operation (Horat et al.,
2016). In the present study, the subjects were required to count
the number of targets and distinguish their colors at the same
time in the CN + DC task, which doubled the decision-making
operation and increased the difficulty of the CN task. Thus, the
P3b amplitude was heightened in the CN + DC task relative to
that in the CN task. Furthermore, the subjects were required
to engage in a more complex selection response (the number
of times a target was presented and its color) in the CN +
DC task than that in the CN task, as the former presented
a more active mental task to the participants; the significant
increase in the LPC amplitude in the CN + DC task is thus
accounted for.

In addition, we found that the amplitude difference between
the CN + DC and CN tasks was larger than that between the DC
and CN tasks. We subtracted the waveform of the CN task from
that of the CN + DC task and the waveform of the CN task from
that of the DC task and compared the two results. We found
that the two subtracted waveforms have significant differences
at the left-frontal, right-frontal, and parietal areas (Figure 9).
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FIGURE 11 | Individual and average accuracies of the P300-speller for all subjects in the two experiments. (A) Individual and average accuracies of the DC and CN
tasks for the 11 subjects in Experiment 1. (B) Individual and average accuracies of the CN + DC and CN tasks for the 11 subjects in Experiment 2. CN: task involving
counting the number of intensified targets, DC: task involving distinguishing targets’ color, CN + DC: task involving simultaneously counting the number of intensified
targets and distinguishing their color.

TABLE 1 | Results of paired t-tests between the CN and DC tasks, and between
the CN and CN + DC tasks for one, two, three, and four superposition times.

Superposition times Tasks t P

One (CN, DC) −1.203 0.257
(CN, CN + DC) −4.224 0.002

Two (CN, DC) −1.505 0.163
(CN, CN + DC) −2.232 0.050

Three (CN, DC) −0.167 0.875
(CN, CN + DC) −2.319 0.043

Four (CN, DC) −1.936 0.062
(CN, CN + DC) −2.206 0.052

CN: task involving counting the number of intensified targets; DC: task involving
distinguishing targets’ color; CN + DC: task involving simultaneously counting the number
of intensified targets and distinguishing their color. The significance of bold values is
p < 0.05.

This indicated that the CN + DC task required more attention,
cognitive processing, and decision-making processes than not

only the CN task but also the DC task. This finding validated the
settings of our experimental tasks, which were designed to make
the CN + DC task more difficult.

In addition to inducing significantly different ERP amplitudes
in the DC and CN + DC tasks compared with the CN task;
the latency of ERP was also different between the DC and CN
tasks, and between the CN + DC and CN tasks. In Experiments
1 and 2, the average latency of ERP waveforms in the DC and
CN + DC tasks were both longer than that in the CN task
(Figure 10). In Experiment 1, however, there was no significant
difference in latency; the significant differences were localized to
the frontal and right-parietal areas in Experiment 2 (Figure 10).
Some studies demonstrated that the more difficult the task, the
longer is the latency (Bennington and Polich, 1999; Katayama
and Polich, 1999). In this context, the difficulty of the DC task
was not obviously different from that of the CN task, while the
difficulty of the CN + DC task relative to the CN task was clear.
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TABLE 2 | Online classification accuracy and ITR of each subject for the three tasks.

Accuracy (%) ITR (bit/min)

CN DC CN + DC CN DC CN + DC

Subject 1 70 80 73 15.0 18.7 16.1
Subject 2 63 73 70 12.7 16.1 15.0
Subject 3 97 100 97 26.3 27.5 26.3
Subject 4 83 87 90 19.7 21.5 22.9
Subject 5 77 80 87 17.5 18.7 21.5
Subject 6 87 80 93 21.5 18.7 24.2
Subject 7 77 77 83 17.5 17.5 19.9
Subject 8 83 90 90 21.5 22.8 22.8
Subject 9 80 80 83 18.7 18.7 21.5
Subject 10 60 67 67 11.7 14.0 14.0
Avg. ± SD 77.7 ± 11.12 81.4 ± 9.17 83.3 ± 10.19 18.21 ± 4.39 19.42 ± 3.76 20.42 ± 4.12

ITR: information transfer rate, CN: task involving counting the number of intensified targets, DC: task involving distinguishing targets’ color, CN + DC: task involving simultaneously
counting the number of intensified targets and distinguishing their color, SD: standard deviation.

FIGURE 12 | Comparison of average amplitude difference between different time windows in Experiments 1 and 2 at the Pz electrode. (A) Comparison of average
amplitude difference of (DC-CN) between 440–620 and 620–800 ms for 11 subjects in Experiment 1. (B) Comparison of average amplitude difference of (CN +
DC)-CN between 480–620 and 620–800 ms for 11 subjects in Experiment 2. CN: task involving counting the number of intensified targets, DC: task involving
distinguishing targets’ color, CN + DC: task involving simultaneously counting the number of intensified targets and distinguishing their color (CN + DC)-CN: the
waveform generated by subtracting waveform in CN task from that in CN + DC task. DC-CN: the waveform generated by subtracting waveform in CN task from that
in DC task.

This is consistent with our having designed the active mental
tasks according to difficulty.

Classification Accuracies and ITRs
From the offline and online results, the superposition times
(before the accuracy reached 100%) of the offline experiment
in the DC and CN + DC tasks were both less than that in
the CN task; the ITRs of the online experiment in the DC and
CN + DC tasks were both larger than that in the CN task.
The average offline and online accuracies in the DC and CN
+ DC tasks were both larger than that in the CN task. This
shows that the performances of the P300-speller based on the
DC and CN + DC tasks were better than that based on the CN
task. We found a significant difference between the CN + DC
and CN tasks in offline accuracies, online accuracies, and ITRs
(Figure 11; Tables 1, 2), which is consistent with the ERP results:
the larger amplitude and longer latency of the CN + DC task. Xu
H. et al. (2013) found that the benefit of the active mental task
paradigm likely originates from the P300 latency and amplitude.
Therefore, the significant improvement in the performance of
the P300-speller based on the CN + DC task is likely to be
related to the higher amplitude and longer latency than that in the
performance of the P300-speller based on the CN task. There was
no significant difference between the offline and online results

of the DC and CN tasks, but our results indicated that although
there was no significant improvement in the performance of the
P300-speller based on the DC task compared with that based on
the CN task, there was a trend of improvement (offline accuracies
of three superposition times (CN, DC): t = −1.936, P = 0.062;
accuracy of online (CN, DC): t = −2.247, P = 0.051; ITR of
online (CN, DC): t = −2.044, P = 0.071). Further, the DC task
is meaningful for further improving the performance of P300-
speller, which provides certain references for us to change the
task from the perspective of visual features. For example, when
the stimuli are of different shapes, such as triangles, rectangles,
etc., we can ask the subjects to discriminate among different
shapes instead of counting.

CONCLUSION

This study investigated the influence of different active mental
tasks on the performance optimization of the P300-speller.
We found that mental tasks based on color distinction and
varying in difficulty induce different ERP amplitudes that are
more obvious than those elicited by a counting task. Active
mental tasks based on task difficulty can, therefore, significantly
improve the accuracy and ITR of the P300-speller and optimize
its performance.
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