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Seasonal Variability and Drivers of
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Subtropical Estuary
Sean R. Anderson and Elizabeth L. Harvey*

Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, United States

Rates of microzooplankton grazing and phytoplankton growth are seldom measured
with respect to time, yet such estimates may better reflect temporal variability in coastal
phytoplankton communities and offer insight into mechanisms that control populations.
To assess seasonal patterns in rates, we performed 41, weekly dilution experiments over
a full year in the Skidaway River Estuary (GA), measuring rates of phytoplankton growth,
microzooplankton grazing, and viral lysis based on total chlorophyll and group-specific
abundances (Synechococcus spp., picoeukaryotes, and nanoeukaryotes). Seasonal
variability in microzooplankton grazing (0–2.11 day−1) and phytoplankton growth rates
(−0.3–2.43 day−1) was observed, with highest values typically recorded in summer
and lowest in winter. Grazing pressure was strongest in winter-spring, as phytoplankton
accumulation rates were often negative (−0.16–0.28 day−1). Rates varied similarly over
seasons for chlorophyll, pico-, and nanoeukaryotes, while rates on Synechococcus spp.
were rarely significant in dilutions and did not follow seasonal trends. Few experiments
(7%) yielded significant rates of viral lysis. While temperature was an important predictor
of phytoplankton rates via PLS analysis, temperature exhibited stronger linearity with
growth rates (R2 = 0.46–0.56) compared to grazing rates (R2 = 0.11–0.27), which
were more likely driven by observed seasonal shifts in plankton community composition
(e.g., fall diatom blooms). Establishing temporal rate measurements is critical to identify
factors that drive phytoplankton growth and mortality and accurately predict shifts in
phytoplankton population dynamics and food web processes within marine systems.

Keywords: microzooplankton grazing, phytoplankton growth, plankton community composition, estuary,
seasonal dynamics, food web

INTRODUCTION

The fate of phytoplankton populations largely depends on the balance between growth and
mortality, which can determine the productivity of a marine system, as well as the availability
and cycling of carbon and nutrients (Steinberg and Landry, 2017). The bulk of phytoplankton
production in the global oceans is consumed daily by microzooplankton (60–70%), which represent
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a diverse assemblage of 20–200 µm herbivorous grazers (Sherr
and Sherr, 2007; Schmoker et al., 2013). Microzooplankton
are important in marine food webs, as they can ingest a
wide range of autotrophic prey (cyanobacteria to chain-forming
diatoms), grow at rates on par with their prey, and contribute
to the transfer of organic biomass to higher trophic levels
(Sherr et al., 2003; Calbet and Saiz, 2005; Steinberg and
Landry, 2017). Despite the well-understood ecological impact of
microzooplankton grazing (Calbet and Landry, 2004), limited
temporal resolution in grazing rates has made it difficult
to identify drivers of grazing pressure. Yet, knowledge of
what drives trends in microzooplankton grazing is essential
for accurate model predictions of phytoplankton population
dynamics (Li et al., 2011) and related shifts in trophic activity and
biogeochemical cycling.

Compared to an extensive collection of spatial grazing rate
data (>100 studies from polar to tropical regions; Schmoker
et al., 2013), only a handful of studies have consistently
measured microzooplankton grazing rates over an annual cycle
at monthly (Calbet et al., 2008; Gutiérrez-Rodríguez et al.,
2011) to weekly intervals (Kim et al., 2007; Lawrence and
Menden-Deuer, 2012). Such efforts have revealed seasonality in
microzooplankton grazing (and phytoplankton growth), typically
associated with shifts in plankton community composition,
though temperature has also emerged as a potential driver
of grazing rates (Rose and Caron, 2007; Calbet et al., 2008;
Lawrence and Menden-Deuer, 2012; Zhou et al., 2015).
Evidence supports temperature as a reliable predictor of
phytoplankton growth (Eppley, 1972; Bissinger et al., 2008), while
the relationship between temperature and microzooplankton
herbivory remains uncertain. For instance, the average grazing
impact at temperatures <5◦C is often lower than the global
average (i.e., <67%; Caron et al., 2000; Calbet et al., 2011),
yet grazing rates of 0.5 day−1 have been recorded under
these conditions. This suggests that microzooplankton can
remove primary production even at near-freezing temperatures
(Lawrence and Menden-Deuer, 2012; Sherr et al., 2013; Menden-
Deuer et al., 2018). Likewise, temperatures >15◦C may not
always translate in higher grazing rates, due in part to complex
feeding interactions (e.g., grazer–prey selectivity) that may mask
temperature effects (Kimmance et al., 2006; Chen et al., 2012). To
better address the complexities in what drives microzooplankton
grazing, it is therefore necessary to employ temporal sampling
strategies and rate measurements that encompass a wide range
of environmental conditions.

Given the strong temporal variability in environmental
and biological processes in coastal environments, like
estuaries, these systems are ideal for examining drivers of
microzooplankton grazing (Cloern and Jassby, 2010; Blauw
et al., 2012; Lawrence and Menden-Deuer, 2012). Seasonal
changes in primary production, phytoplankton biomass, and
community composition, including episodic bloom events (e.g.,
chain-forming diatoms), are commonplace in estuaries (Cloern
et al., 2014; Carstensen et al., 2015; Cloern, 2018). Further, the
magnitude or duration of a seasonal phytoplankton bloom can
depend on shifting abiotic (e.g., temperature and nutrients) or
biotic processes (e.g., grazing and viral lysis; Cloern et al., 2014;

Tsai et al., 2015). Ultimately, temporal patterns in production
can have globally relevant consequences for carbon cycling, as
estuaries act to mediate land-sea fluxes of dissolved inorganic
and organic matter (DIM and DOM; Bittar et al., 2016). Despite
the importance of microzooplankton in consuming estuarine
production (Calbet and Landry, 2004), trends in grazing,
including potential biochemical drivers of grazing pressure,
have been poorly resolved over seasonal cycles. Incorporation
of microzooplankton grazing rates on these time scales will
help to resolve estimates of annual productivity, phytoplankton
biomass accumulation, and compositional shifts that occur
within coastal areas.

To explore temporal rate dynamics, we performed 41, weekly
to bi-weekly dilution experiments over an annual cycle in the
Skidaway River Estuary (GA, United States), measuring rates
of phytoplankton growth, microzooplankton grazing, and viral
lysis for bulk chlorophyll and specific phytoplankton groups
(Synechococcus spp., pico-, and nanoeukaryotes). Recently, these
methods were used to measure phytoplankton rates over the
tidal cycle in the estuary (see Anderson et al., 2018), though
seasonal patterns in rates remain unclear. Previous long-term
sampling in the estuary has revealed significant seasonal and
interannual variability in many surface-layer properties like
temperature, nutrients, dissolved and particulate organic carbon
(DOC and POC), chlorophyll, and plankton biomass (Verity,
2002a,b; Verity and Borkman, 2010; Bittar et al., 2016). Such
environmental and biological measurements were included in
our weekly sampling to establish possible drivers of growth and
grazing rates over the year. Determining drivers of population
rates, especially microzooplankton grazing, will allow for more
accurate predictions of primary productivity, trophic transfer,
and biogeochemical cycling within marine systems and inform
future climate scenarios.

MATERIALS AND METHODS

Water Sampling
Over a full year (February 21, 2017 to February 21, 2018), 41
weekly dilution experiments were conducted using surface water
(1 m) from the Skidaway River Estuary, which is a well-mixed
and highly productive subtropical system accessible by dock at
the Skidaway Institute of Oceanography (31◦99′′N, 81◦02′′W).
Dilutions were always performed at high tide, which allowed
for temporal comparison between dates and minimized strong
tidal effects previously observed in the estuary (see Anderson
et al., 2018). Tide height predictions were taken from a nearby
station (NOAA ID: TEC3411); semidiurnal tides in the estuary
consistently ranged between 2 and 3 m and sampling dates
rarely coincided with spring or neap tides. Sampling varied due
to tide schedule, either occurring at the first high tide in the
morning (near or after sunrise) or the subsequent high tide
in the afternoon (see Supplementary Table 1). Solar radiation
data was collected at a nearby land-based site on Skidaway
Island (University of Georgia Weather Network). Surface water
temperature, salinity, and dissolved oxygen were measured using
a YSI probe (YSI 600 QS).
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On each experimental day, single water samples (60 ml)
were filtered through a 0.2 µm filter into acid-washed bottles
and stored at −20◦C for nutrient analysis. Dissolved nutrients
(NO3, NH4, PO4, and SiO4) were measured following standard
colorimetric protocols at the UGA Stable Isotope Laboratory
using a Technicon AutoAnalyzer unit (SEAL Analytical).
Particulate organic carbon (POC) and nitrogen (PON) were also
measured each week by filtering single surface water samples
(100 ml) onto pre-combusted 0.7 µm GF/F filters (stored at
−20◦C). Prior to analysis, filters were dried at 60◦C for 24 h
and packed into tin cups (Costech); combusted GF/F filters were
used as blanks (Bittar et al., 2016). Concentrations of POC and
PON were obtained using a Thermo Flash elemental analyzer
(Bittar et al., 2016). Samples for nutrients and particulate organic
matter were not taken for the first 2–3 weeks of sampling (see
Supplementary Table 2).

Modified Dilution Method
Phytoplankton growth, microzooplankton grazing, and viral-
induced mortality rates were measured using a modified dilution
technique (Landry and Hassett, 1982; Evans et al., 2003). We
employed a two-point modification of the method using whole
seawater (WSW) and a diluted fraction of 20% WSW (Worden
and Binder, 2003; Landry et al., 2008; Lawrence and Menden-
Deuer, 2012). The use of an abbreviated dilution approach
has been shown to yield rate estimates that are accurate to
a traditional gradient (Worden and Binder, 2003; Strom and
Fredrickson, 2008) and reliable to non-linearity in grazing (Chen,
2015; Morison and Menden-Deuer, 2017).

Diluent preparation was similar across the 41 sampling
days. Due to time constraints, grazer-free and virus-free
diluents were always prepared a day earlier than the start
of each experiment. At high tide, 12–14 l of WSW was
collected from the estuary and screened through 200-µm
Nitex mesh to limit retention of larger mesozooplankton
grazers (e.g., copepods). The entire volume of WSW was then
gravity filtered through a 0.45 µm filter (PALL AcropakTM

Supor R©membrane capsule) which represented grazer-free
diluent. Half of the grazer-free diluent (∼6 l) was then passed
through a tangential flow filtration unit (TFF; Millipore)
with a 30-kilodalton filter size, creating virus-free diluent.
Diluent carboys were kept overnight at 18◦C in the dark to
mitigate bacteria or viral growth (verified by flow cytometry)
and were acclimated to an appropriate temperature prior to
dilution experiments.

The following day (time zero = T0), fresh WSW was collected
at high tide as described above and combined with grazer-
and virus-free diluents at a proportion of 20% WSW. The 20%
dilutions and 100% WSW treatments were gently siphoned into
triplicate 1.2-l bottles and amended with nutrients (10 µM NO3
+ 1.1 µM PO4; Bittar et al., 2016). Additional triplicate 100%
WSW bottles were prepared without nutrients to check for effects
of nutrient limitation. On each sampling day, 12 total bottles were
incubated for 24 h in a clear, 300-l tank situated on a nearby
dock. The tank was maintained at ambient water temperature
using flow-through from the estuary. A HOBO data logger and
screen mesh were used to replicate in situ light intensity. Natural

movement of the dock kept the bottles in the tank well-mixed
over the incubation period.

Estimation of Phytoplankton Growth
and Mortality
Extracted chlorophyll and group-specific phytoplankton
abundances (via flow cytometry) were measured at the start of
each experiment (T0) and after 24 h (T24) and used to quantify
daily phytoplankton growth and mortality rates. For chlorophyll,
triplicate 50–100 ml samples were filtered onto 25 mm 0.7 µm
GF/F filters, extracted in the dark at room temperature for
12–24 h in 91% ethanol, and measured on a Turner AU10
fluorometer (Jespersen and Christoffersen, 1987; Graff and
Rynearson, 2011). Triplicate 5 ml samples were preserved for
flow cytometry with 0.5% glutaraldehyde (final concentration),
frozen at −80◦C, and later analyzed on a Guava flow cytometer
(Millipore) to measure phytoplankton abundances. Three major
phytoplankton groups, (Synechococcus spp., picoeukaryotes, and
nanoeukaryotes) were distinguished based on plots of forward
scatter vs. orange or red fluorescence. Apparent growth rates (k;
day−1) were calculated using the equation:

k = 1/t × ln(Pt/P0) (1)

where t is the incubation time (day−1) and P0 and Pt represent
initial or final concentrations of chlorophyll or phytoplankton
abundance in triplicate bottles.

Given the application of the two-point method with a low
dilution level (20% WSW), microzooplankton grazing rates
(g; day−1) were calculated with the equation:

g = (kd − k1)/(1− x) (2)

where kd and k1 are the apparent growth in the 20% or 100%
WSW treatments and x is the exact factor of dilution (Landry
et al., 1984; Morison and Menden-Deuer, 2017). Accordingly,
the instantaneous phytoplankton growth rate was calculated as
µ = g+ k1 (Landry et al., 2008). Values of µ represent k1 in
bottles without nutrient additions to control for effects of nutrient
limitation, though rates were also calculated using k1 from
nutrient-amended bottles (µn; day−1). To assess phytoplankton
nutrient limitation, paired t-tests (p < 0.05) were performed
between µ and µn and ratios of µ/µn were calculated, with lower
ratios indicative of stronger nutrient limitation (Landry et al.,
1995; Kim et al., 2007). Net phytoplankton accumulation rate
(r; day−1), which describes the relationship between µ and g, was
inferred from the above equations and is equal to the value of k1.

For cases where no grazing was measured, which occurred
when apparent growth was not significantly different between
the two dilution levels (t-test, p < 0.05) or when the growth in
the 100% WSW was higher (e.g., positive slope), grazing rates
were recorded as zero (Strom and Fredrickson, 2008; Anderson
et al., 2018; Menden-Deuer et al., 2018). Negative grazing rates
were observed for Synechococcus spp. (49% of experiments),
but not for total chlorophyll. Insignificant grazing rates that
were set to zero were still included in all downstream statistical
analyses. When grazing was zero, the accumulation rates were
assumed to be equal to µ, unless viral-induced mortality rates
(v; day−1) were measured and accounted for in accumulation.
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Rates from the virus-free treatment represented total mortality
and viral-induced mortality rates were estimated as the difference
between total mortality and microzooplankton grazing rates
(Evans et al., 2003).

Differences in average phytoplankton rates (µ, g, r, and µ/µn)
between seasons were examined for all phytoplankton groups
using a one-way ANOVA with post hoc Bonferroni analysis
(p < 0.05). Seasons corresponded to the astronomical Northern
Hemisphere calendar year and began on the following days:
winter = December 21; spring = March 20; summer = June
21; fall = September 23. To assess the relative importance of
environmental and biological factors in predicting temporal
growth and grazing rates, a partial least-squares (PLS) regression
was applied using the R package pls (Mevik and Wehrens,
2007). Briefly, PLS is a dimensional analysis approach (similar
to PCA) that determines the linear relationship between a set
of predictor variables (x) and a single response variable (y), and
in our case, was chosen to mitigate collinearity of the predictor
variables (Godhe and McQuoid, 2003; Eriksson et al., 2006). Two
separate models were run using the predictor variables and either
chlorophyll-based growth or grazing rates. All variables were
log-transformed prior to analysis and thereafter standardized by
centering and scaling to unit variance (Eriksson et al., 2006). After
initial validation, a 3-component model was used for grazing and
growth as the response variable, which captured 50 and 59% of
the variance in the predictor variables. Variable influence on the
projection (VIP) was determined for each predictor variable, with
VIP values >1 considered more important to the PLS model
(Eriksson et al., 2006). Linear regression analyses (Model 1) were
performed using GraphPad Prism 7 software to further quantify
relationships between rates and specific predictors found to be
important in respective PLS models.

Plankton Biomass and
Community Composition
The relative abundance and biomass of the 20–200 µm plankton
assemblage was measured via an automated FlowCam (Fluid
Imaging Technologies, Scarborough, Maine). Samples were not
taken on 3 days (March 16, May 16, and August 30), resulting
in biomass data for 38 of 41 experiments. At T0 and T24, 100–
200 ml samples of 100% WSW were collected, fixed in buffered
formalin (final concentration 1%), and stored at 4◦C (Poulton,
2016). Fixed samples were prefiltered through 200 µm mesh
and analyzed (duplicate 10 ml runs) on Autoimage mode using
a 300-µm flow cell and a flow rate of 2 ml min−1 (Poulton,
2016). Duplicate runs were pooled for each experiment, resulting
in ∼27,000 images captured per sample on average. Based on
previously curated library sets, diatoms and microzooplankton
grazers were grouped to finest possible taxonomic resolution
(often genus level). Group-specific counts were converted to
abundance using the volume analyzed and the efficiency of
particle capture (39.7%), which accounts for cells outside the flow
cell (Poulton, 2016). Chain-forming diatoms were counted and
sized as one cell.

Biovolume was estimated using cellular length and width
measurements from the FlowCam, along with the closest

geometric formula for diatom and microzooplankton groups
(Hillebrand et al., 1999). Biovolume was converted to carbon
biomass (µg C L−1) using conversion equations (Menden-Deuer
and Lessard, 2000). Abundances of the <20 µm phytoplankton
groups counted via flow cytometry (Synechococcus spp., pico-,
and nanoeukaryotes) were also converted to carbon biomass
using conservative literature conversion factors (see Anderson
et al., 2018 and references therein).

To evaluate shifts in community composition over the year,
the multivariate statistics package PRIMER Version 7 (Clarke
and Gorley, 2015) was used. Initially, carbon biomass from
FlowCam (genus level diatoms and microzooplankton) and
flow cytometry groups were log-transformed to reduce bias of
highly abundant taxa; total chlorophyll concentration was also
included. A Bray–Curtis similarity matrix was generated using
transformed biomass and non-metric multidimensional scaling
(NMDS) was performed to visualize the relationship between
plankton communities on different days throughout the year. To
capture week-to-week variability, samples were classified by date,
though seasonal shifts in composition were examined using the
above-mentioned seasonal delineations (see section “Estimation
of Phytoplankton Growth and Mortality”). Significant differences
in total composition between seasons was tested using analysis
of similarity (ANOSIM), which computes a global R statistic
(range from 1 to−1), with values of R that approach 1 indicative
of high similarity within and dissimilarity between seasons
(Clarke and Warwick, 2001). Similarity of percentages (SIMPER)
was also performed to examine how much (percentage) each
plankton group contributed to the average sample similarity or
dissimilarity between seasons (Clarke and Warwick, 2001).

RESULTS

Environmental Conditions in the Estuary
Annual variability was observed in surface temperature (6.15–
31.23◦C), salinity (22.68–31.14), and solar radiation (0.86–
22.34 MJ m−2), all reaching highest values in late spring
and summer (Figure 1A and Supplementary Table 1).
Concentrations of dissolved NO3 (0.01–1.77 µM) and SiO4
(18.38–139.24 µM) were highest in the summer, while NH4
(0–4.99 µM) peaked in fall-winter and PO4 (0.36–0.82 µM)
remained stable over the year (Figure 1B and Supplementary
Table 2). Measurements of N:P ratio (1.18–10.77; often < 5),
dissolved oxygen (4.2–21.67 mg L−1), POC (32.21–154.27 µM
C L−1), and PON (5.93–21.08 µM N L−1) fluctuated on
weekly scales over the year and did not exhibit seasonal signals
(Supplementary Tables 1, 2). Total chlorophyll a concentration
(<200 µm) exhibited a narrow range over the year (1.32–
6.39 µg L−1), though weekly variability in chlorophyll was
stronger in spring-summer compared to fall-winter (Figure 1C
and Supplementary Table 1).

Phytoplankton and Microzooplankton
Biomass and Composition
Biomass estimates for phytoplankton and microzooplankton
varied over an annual cycle in the estuary (Figure 2A). Total
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FIGURE 1 | Surface water temperature and salinity (A), dissolved inorganic nutrients (µM; nitrate, NO3; phosphate, PO4; silicate, SiO4; B), and chlorophyll a
(µg L−1; C) at time zero (T0) of each weekly experiment. Error associated with chlorophyll represent ± 1 standard deviation of the triplicate sample mean.
Temperature, salinity, and nutrients represent single replicates. Seasons are below x-axis.

biomass in winter-spring was often <400 µg C L−1, while
biomass in late summer-fall was marked by high weekly
variability and reached a maximum of ∼1700 µg C L−1

(Figure 2A). Biomass of combined <20 µm phytoplankton was
stable over the year, ranging from 17.99 to 126.02 µg C L−1,
whereas diatom biomass greatly varied (5.04–697.25 µg C L−1)
and the presence of chain-forming taxa (e.g., Chaetoceros and

Skeletonema) accounted for a high proportion of total biomass
on days in late summer-fall (Figures 2A,B). Commonly observed
microzooplankton included the mixotrophic dinoflagellate
Akashiwo sanguinea (1.26–579.76 µg C L−1) and heterotrophic
dinoflagellates (0–431.2 µg C L−1), both of which contributed
most to total biomass on days in spring and fall (Figure 2A).
Commonly identified diatoms included other chain-forming
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FIGURE 2 | (A) Carbon biomass (µg C L−1) of plankton groups measured via FlowCam [diatoms; Akashiwo sanguinea (A. sang); heterotrophic dinoflagellates
(Hdino); ciliates] and flow cytometry [Synechococcus spp. (Syn); Nanoeukaryotes (Nano); Picoeukaryotes (Pico)] at the start of each weekly experiment.
(B) Log-transformed biomass of <20 µm combined phytoplankton (Syn, Nano, Pico; open symbols) versus diatoms (closed symbols). (C) Non-multidimensional
scaling (NMDS) of total plankton composition on each sampling day (month/day) using log-transformed carbon biomass from (A). A color gradient based on day of
year (red = winter; purple = spring; blue = summer; green = fall) was applied to observe weekly and seasonal differences in composition. Asterisk above 2/21
indicates first sampling day in 2017. Seasons are listed below the x-axis.

Frontiers in Marine Science | www.frontiersin.org 6 April 2019 | Volume 6 | Article 174

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00174 April 15, 2019 Time: 17:40 # 7

Anderson and Harvey Seasonal Grazing and Growth Dynamics

groups like Thalassiosira and Guinardia, as well as solitary
groups such as Coscinodiscus, Ditylum, Nitzschia, and
unidentified benthic diatoms. Heterotrophic dinoflagellates
were represented by Gyrodinium and Gymnodinium-like cells
and Protoperidinium; identified ciliates consisted of aloricated
and loricated types.

Seasonal shifts in plankton composition were revealed via
NMDS analysis of biomass estimates (Figure 2C). Significant
differences in community composition were identified between
all seasons (ANOSIM R = 0.48, p < 0.01, Supplementary
Table 3). However, fall-winter and spring-fall communities were
most different from each other (R = 0.64, 0.61, p < 0.01,
Supplementary Table 3), with most dissimilarity due to
changes in Chaetoceros biomass between seasons (SIMPER
29.66 and 33.47%, Supplementary Table 4). Seasonal shifts
in composition were less pronounced between winter–spring
and spring–summer, likely due to the importance of smaller
scale (e.g., weekly) variability in composition during these
transitions (Figure 2C and Supplementary Table 3). Changes
in A. sanguinea biomass contributed most to the differences
in composition between winter–spring (20.09%) and spring–
summer (21.75%, Supplementary Table 4).

Phytoplankton Rate Estimates
Similar annual trends were observed for phytoplankton growth
and microzooplankton grazing rates based on bulk chlorophyll
(µ = −0.3–1.61 day−1; g = 0–2.11 day−1, Figure 3A),
picoeukaryotes (µ = −0.01–2.43 day−1; g = 0–1.72 day−1,
Figure 3B), and nanoeukaryotes (µ = −0.3–2.18 day−1;
g = 0–1.72 day−1, Figure 3C). Grazing rates were significantly
higher than zero for total chlorophyll in 66% of experiments
(Supplementary Table 5), while significant rates were measured
in 61 and 32% of experiments for pico- and nanoeukaryotes,
respectively (Supplementary Tables 6, 7). Grazing rates on
chlorophyll and picoeukaryotes were similar in spring (0.64 and
0.59 day−1) and summer (∼0.69 day−1; ANOVA, p > 0.05),
though grazing rates in summer were significantly higher than fall
(0.08 and 0.18 day−1) or winter (0.37 and 0.23 day−1; ANOVA,
p < 0.01, Figures 3A,B). Grazing rates on nanoeukaryotes
were significantly different between winter (0.07 day−1) and
spring (0.4 day−1; ANOVA, p = 0.01, Figure 3C). Phytoplankton
growth rates for all groups were significantly higher in summer
(1.22–1.78 day−1) relative to any other season (ANOVA,
p < 0.002, Figures 3A–C). Viral-induced mortality rates
were observed twice over the year for chlorophyll (0.17 and
0.52 day−1, Supplementary Table 5), in three experiments
for picoeukaryotes (0.28–0.52 day−1, Supplementary Table 6),
and in four experiments for nanoeukaryotes (0.13–0.96 day−1,
Supplementary Table 7). Unlike other phytoplankton groups,
grazing rates on Synechococcus spp. were rarely significant
(12%), and growth rates were mostly negative through the
year (Supplementary Figure 1 and Supplementary Table 8).
Viral lysis rates of Synechococcus spp. were detected in four
experiments (0.29–0.57 day−1, Supplementary Table 8).

Phytoplankton accumulation rates (µ-g) ranged from −0.99
to 1.61 day−1 and exhibited remarkable similarity over an annual
cycle for chlorophyll, picoeukaryotes, and nanoeukaryotes

(Figures 3D–F and Supplementary Tables 5–7). For all
phytoplankton groups, net accumulation was significantly
higher in summer–fall (0.48–1.09 day−1) compared to
winter-spring (−0.16–0.28 day−1; ANOVA, p < 0.003), with
negative accumulation common in the spring (Figures 3D–F).
Phytoplankton growth rates in nutrient-amended treatments
(µn) were significantly higher than in non-amended treatments
(µ) in 68% of experiments for chlorophyll and in 41 and 32%
for pico- and nanoeukaryotes, respectively (t-test, p < 0.05,
Supplementary Tables 5–7). Growth ratios (µ/µn) had a similar
annual range across all phytoplankton groups (−0.47–1.45;
Figure 4), except for three unusually negative or positive
ratios (e.g., −31.55) that occurred at random in pico- and
nanoeukaryotes. Due to strong weekly variability in spring
and winter there were no significant differences in µ/µn
among seasons for any phytoplankton group (ANOVA,
p > 0.05, Figure 4). However, µ/µn frequently approached
a 1:1 ratio in summer–fall, whereas ratios decreased in
winter–spring (Figure 4).

Environmental and Biological Drivers
of Rates
Partial least-squares regression was used to reveal potential
drivers of rates. Among all predictor variables tested, surface
water temperature (VIP = 1.75) and dissolved nutrients
(VIP = 1.01–1.79) were most important in explaining
chlorophyll-based growth rates and were positively correlated
to growth (Supplementary Table 9). A significant linear
relationship was observed between temperature and growth
rates for all phytoplankton groups (R2 = 0.46–0.56, p < 0.001,
Figure 5A and Supplementary Table 10), which confirmed PLS
model predictions. Single linear relationships between dissolved
nutrients and growth rates spanned a wide range of variation and
were typically weaker compared to temperature (R2 = 0.04–0.56,
p < 0.05, Supplementary Table 10). PLS analysis with grazing
rates were also well-explained by temperature (VIP = 1.2), though
additional predictor variables were important such as dissolved
nutrients (SiO4, PO4, NH4,VIP = 1.01–1.43), solar radiation
(VIP = 1.3) and POC (VIP = 1.12, Supplementary Table 9).
Unlike growth rates, temperature was not linearly related to
microzooplankton grazing rates across phytoplankton groups
(R2 = 0.11–0.27, p < 0.05, Figure 5B). Additional predictor
variables exhibited poor and often insignificant (p > 0.05) linear
relationships with microzooplankton grazing rates (R2 = 0.01–
0.27, Supplementary Table 11), likely related to estimates of zero
grazing in late summer–fall.

DISCUSSION

Microzooplankton are ecologically important in marine food
webs, as their grazing activity can elicit shifts in phytoplankton
populations (e.g., biomass and diversity) and influence trophic
transfer and carbon cycling (Schmoker et al., 2013; Steinberg
and Landry, 2017). Few studies have considered changes
in grazing rates over time at a fixed location (Schmoker
et al., 2013), despite such resolution being relevant in
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FIGURE 3 | Rates (day−1) of instantaneous phytoplankton growth (µ; open circles), microzooplankton grazing (g; closed circles), and net accumulation (r; closed
triangles) measured each week based on total chlorophyll (A,D; green), picoeukaryotes (B,E; orange), and nanoeukaryotes (C,F; purple). Seasons are shown below
the x-axis. Error bars represent one standard deviation of the mean and small error is contained within symbols. Grazing rates equal to zero (dotted line) were not
significant from zero (p < 0.05).

coastal regions which often experience temporal variability
in environmental factors (e.g., temperature and nutrients)
and phytoplankton populations (Cloern and Jassby, 2010;
Blauw et al., 2012; Anderson et al., 2018). Moreover, recurrent
estimates of grazing over a range of biochemical conditions
may offer valuable insight into mechanisms that control
microzooplankton grazing in natural communities (Strom
et al., 2007; Chen et al., 2012). Assessing temporal grazing
rates will not only help to predict shifts in phytoplankton
(and microzooplankton) populations but will also elucidate
possible environmental or biological drivers of rates that may
benefit population modeling under future climate scenarios
(Caron and Hutchins, 2013).

Seasonal Variability in Rates
Phytoplankton growth and microzooplankton grazing rates
varied seasonally in the estuary and were highest in the
summer, which is consistent with seasonal trends found

in temperate and high latitude waters (Kim et al., 2007;
Calbet et al., 2008; Gutiérrez-Rodríguez et al., 2011; Lawrence
and Menden-Deuer, 2012). The magnitude of grazing rates
presented here (0–2.11 day−1) are similar to previous estimates
from the region (southeast United States; Murrell et al.,
2002; Wetz et al., 2006; Sitta et al., 2018) and support
the role of microzooplankton as important consumers in
subtropical systems. Seasonal differences were also observed
in the ratio of growth to grazing, resulting in either negative
or positive accumulation of plankton biomass. For instance,
microzooplankton grazing exerted more control on winter–
spring primary production, as evidenced by low (and often
negative) accumulation rates (i.e., g ≥ µ). Increased grazing
pressure during this time may have been facilitated by
poor phytoplankton growth conditions, as temperatures were
low and phytoplankton groups were often nutrient-limited
(µn > µ; Landry et al., 1995; Chen et al., 2009). Phytoplankton
communities were likely limited by NO3, as other nutrients
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FIGURE 4 | Ratio of instantaneous phytoplankton growth versus nutrient-amended growth rates (µ/µn) measured each week for chlorophyll (green), picoeukaryotes
(orange), and nanoeukaryotes (purple). Seasons are below x-axis. Red line indicates 1:1 growth ratio, with smaller values indicating enhanced phytoplankton nutrient
limitation. Error bars represent one standard deviation of the mean. Ratios >2 or –2 were measured once for picoeukaryotes (12/18) and twice for nanoeukaryotes
(1/18, 3/22) and were excluded (see Supplementary Tables 4, 5).

FIGURE 5 | Model 1 linear regressions (dotted lines) of phytoplankton growth (A) and microzooplankton grazing (B) vs. surface water temperature (◦C) for
chlorophyll (green), picoeukaryotes (orange), and nanoeukaryotes (purple). Values of coefficient of determination (R2) indicate strength of linear relationship;
regressions were significant for growth and grazing across all phytoplankton groups (∗p < 0.05 and ∗∗p < 0.001).

(PO4 and SiO4) were either stable over the year or in
high enough concentrations to support growth (Verity and
Borkman, 2010; Bittar et al., 2016). Furthermore, cases of
nitrogen limitation are common in the Skidaway River Estuary
(Verity, 2002a) and many other southeastern United States
estuaries (Howarth and Marino, 2006; Sitta et al., 2018), which
supports the nitrate-limiting system we observed. During the
summer, environmental conditions improved (e.g., increased
temperature, sunlight, and nutrients), which likely contributed
to estimates of positive accumulation rates. Seasonal differences
in growth and grazing rates observed in our study emphasize
the importance of temporal rate dynamics in predicting plankton
biomass accumulation, trophic transfer, and carbon cycling in
coastal estuaries.

Despite differences in overall magnitude, trends in
phytoplankton rates were remarkably similar between those
estimated via bulk chlorophyll concentration and those
estimated from abundances of pico- and nanoeukaryotes. The
exception was grazing on nanoeukaryotes, which was often
zero throughout the year (68%), though annual trends in
accumulation mirrored other groups. Interestingly, group-
specific growth of and grazing rates on Synechococcus spp.
did not resemble chlorophyll or other group-specific rate
estimates. Grazing on Synechococcus spp. has been measured
in estuaries (Chen et al., 2009; Tsai et al., 2015), though
significant grazing rates were hardly measured over the year
in our study. Positive slopes were often detected among
diluted and non-diluted treatments for Synechococcus spp. (i.e.,
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negative grazing rates), which suggests that specific grazer–
prey dilution assumptions were violated or growth conditions
(e.g., nutrient regeneration) in the non-diluted fraction were
enhanced due to grazing activity (Modigh and Franzè, 2009).
Similar seasonal patterns in rates between phytoplankton
groups indicates there may be overarching environmental
factors which universally constrain phytoplankton growth and
mortality within natural communities. However, identifying
what controls phytoplankton rates has been challenging in the
field, especially microzooplankton grazing, which may not only
depend on environmental factors like temperature, but also on
the composition (or quality) of prey (Rose and Caron, 2007;
Lawrence and Menden-Deuer, 2012). Weekly sampling over an
annual cycle allowed us to examine possible environmental or
biological drivers of phytoplankton growth and grazing within a
seasonally dynamic estuary (e.g., broad temperature and nutrient
range), which may inform the response of coastal phytoplankton
communities to future climate shifts.

Drivers of Observed Rates
Grazing activity is driven by complex grazer–prey interactions,
which can be guided by grazer selectivity of prey sources
(e.g., based on size or nutrition) and result in mismatches
between resident grazers and prey (Irigoien et al., 2005;
Poulin and Franks, 2010). In these instances, bulk proxies
like chlorophyll concentration or total grazer biomass may not
accurately reflect microzooplankton grazing rates (Strom et al.,
2001; Olson and Strom, 2002; Lawrence and Menden-Deuer,
2012; Menden-Deuer et al., 2018). This was likely the case
here, where grazing was poorly explained by prey or grazer
biomass. Moreover, our results contradict density-dependent
prey ingestion kinetics often seen when culturing single
grazer–prey pairings (Holling, 1959; Frost, 1972; Jeong et al.,
2010), as evidenced by poor relationships between nano- and
picoeukaryote-specific grazing rates and their abundances (data
not shown). It may be that in a natural setting, microzooplankton
grazing rates are poorly explained by the amount of plankton
biomass, because grazer assemblages in situ are mixed with
species-specific feeding activities and physiological demands.
To determine important drivers of growth and grazing
rates over the annual cycle, we applied several statistical
techniques using collected environmental and biological data
(PLS analysis), as well as plankton biomass measurements
(multivariate clustering). These approaches highlighted several
factors (likely compounding) that were important in driving the
observed seasonal differences in phytoplankton rates, including
plankton community composition, temperature, and other
mortality processes.

Multivariate clustering of group-specific biomass revealed
seasonal shifts in plankton community composition over the year,
with a winter–spring community of <20 µm phytoplankton that
transitioned to a diatom-dominated community in late summer–
fall. While fall diatom blooms have been recorded in the Skidaway
River Estuary (Verity and Borkman, 2010), typical seasonality in
coastal systems is characterized by winter–spring diatom blooms
(Carstensen et al., 2015; Cloern, 2018), which was not seen here.
Interestingly, the lowest microzooplankton grazing rates (often

zero) were measured in the fall across all phytoplankton groups,
which may have been influenced by the transition to weekly
diatom blooms (mainly Chaetoceros and Guinardia). Diatom
blooms captured during this time may have been facilitated by
upstream or downstream transport of communities that had
previously bloomed under more favorable conditions. Though
SiO4 (>50 µM) was not limited, total chlorophyll in the fall
was low (<3 µg L−1), which suggests diatom communities
were likely stressed by other environmental factors (e.g., low
NO3 and/or sunlight). Diatoms have been shown to release
polyunsaturated aldehydes in response to physiological (Ribalet
et al., 2007) or mechanical stress (e.g., grazing or lysis; Ribalet
et al., 2014), which can inhibit microzooplankton feeding and the
growth of other phytoplankton species (Franzè et al., 2018). These
inhibitory factors may explain low phytoplankton mortality in
the fall compared to other seasons. We cannot rule out the
effect of additional factors (e.g., trophic cascades, prey switching,
or mixotrophic activity) that may have also contributed to low
microzooplankton grazing at this time (Calbet et al., 2008;
Strom and Fredrickson, 2008).

Temperature emerged as a strong predictor of phytoplankton
growth rates (via PLS) and was strongly related to phytoplankton
growth on its own, which supports extensive theoretical (Eppley,
1972) and empirical evidence of this relationship (Rose and
Caron, 2007; Bissinger et al., 2008; Kremer et al., 2017). Along
with temperature, dissolved nutrients were important covariables
in driving phytoplankton growth rates, though individual
nutrient concentrations poorly explained growth rates over the
year. Temperature is also thought to affect microzooplankton
grazing (Rose and Caron, 2007). Despite temperature being
identified as an important predictor of grazing in the PLS
analysis, linear relationships between temperature and grazing
were poor over a wide temperature gradient in the estuary
(6–31◦C). Others have noted, based on field measurements,
that the relationship between temperature and grazing may
not behave linearly (Chen et al., 2012; Lawrence and Menden-
Deuer, 2012; Liu et al., 2018) and grazing rates >0.5 day−1 are
frequently recorded at near-freezing temperatures (Sherr et al.,
2013; Menden-Deuer et al., 2018). Often in our study, grazing
was zero at higher temperatures (20–31◦C), which contradicts
expected acceleration of heterotrophic processes (e.g., ingestion
and respiration) with temperature (Brown et al., 2004; Chen
et al., 2012). Rose and Caron (2007) predicted higher capacity for
microzooplankton growth compared to phytoplankton growth
rates at temperatures >15◦C, which has been confirmed in
field-based temperature incubations with natural assemblages
(Chen and Laws, 2017; Liu et al., 2018). It is important to
note these experiments exposed the same community to rapid
shifts in temperature, whereas our study measured fluctuations
in plankton composition over a wide temperature gradient that
likely masked temperature sensitivity of grazing. Though other
environmental factors (e.g., nutrients, sunlight, and POC) were
relevant to grazing rates in our study, these relationships were not
supported by single linear regressions. The lack of temperature
effects (or any other parameter) on grazing we observed indicates
the importance of community composition and complex grazer–
prey interactions in driving rates within marine environments.
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Additional loss processes were likely important in controlling
primary production in the estuary, as average accumulation
rates over the year remained positive (0.28–0.58 day−1). Viral
lysis represents an important loss process for phytoplankton
in coastal ecosystems, particularly during periods of high,
monospecific prey biomass (e.g., phytoplankton blooms; Tsai
et al., 2015). Nevertheless, in our dilution experiments, viral lysis
was rarely measured over an annual cycle among phytoplankton
groups, which may be attributed to infection dynamics. For
instance, viruses are known to exert host specificity, and so it
is possible the viral community present during our dilutions
was not specific or in dense enough concentrations to affect
population rates (Kimmance et al., 2007). The incubation
period used in our dilutions may have been too short to
capture viral infection, as often the viral lytic cycle can
exceed 24 h (Evans et al., 2003; Jacquet et al., 2005). Lastly,
recent meta-analysis revealed that over half of viral-induced
mortality rates measured via the modified dilution approach
were minimal (−0.1–0.1 day−1), which suggests that typical
dilution assays may lack the sensitivity needed to detect viral
mortality (Staniewski and Short, 2018). Other sources may have
contributed to phytoplankton mortality in the estuary, such
as consumption by mesozooplankton or benthic invertebrates
(e.g., bivalves), though both processes were not measurable via
dilution incubations and typically account for less consumption
of primary production compared to microzooplankton (Cloern
et al., 2014; Steinberg and Landry, 2017).

CONCLUDING REMARKS

Our findings of seasonal variability in growth and grazing
contributes to the growing knowledge on the importance of
time in structuring phytoplankton rate dynamics, particularly in
complex coastal regions (Lawrence and Menden-Deuer, 2012;
Anderson et al., 2018). Over seasonal scales in the Skidaway
River Estuary, phytoplankton growth was universally controlled
by temperature and to a lesser extent by concentrations of major
dissolved nutrients. Though several environmental factors were
important in predicting grazing rates, there was no clear linear
relationship between temperature (or any other single factor)
and microzooplankton grazing. While temperature may affect
grazing under controlled conditions (e.g., single grazer–prey;
Rose and Caron, 2007), we demonstrate that temperature fails
to explain temporal variability in grazing over wide biochemical
gradients in the field. Such empirical evidence supports modeling

efforts that have found it difficult to predict microzooplankton
grazing rates (and accumulation rates) based solely on remotely
sensed variables like temperature and chlorophyll (Chen et al.,
2012, 2013; Schmoker et al., 2013). Poor correlations between
grazing rates and any single factor is likely related to the
fact that grazing is heavily dependent on plankton community
composition, a factor not easily incorporated into model
scenarios. Certainly, additional temporal rate studies, which
include measures of community composition, will help to reveal
biological and environmental drivers of grazing and inform
future phytoplankton population models (Li et al., 2011; Caron
and Hutchins, 2013). Ultimately, our ability to accurately predict
the fate of primary production and of related food web processes
will rely on continued measurements of microzooplankton
grazing and phytoplankton growth rates over time and across
marine ecosystems.
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