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Conjugated microporous polymers (CMPs) have attracted intensive attention owing to

their permanent nanoporosity, large surface area and possibility for functionalization,

however their application in energy storage suffers from poor conductivity and low

hetero-atom content. Here, we demonstrate a hybrid of conjugated microporous

polymers and graphene aerogel with improved conductivity. After treating at 800◦C in

NH3, the nitrogen content increases to 9.8%. The resulting microporous carbon exhibits

a significant rise in supercapacitive performance up to 325 F g−1, 55% higher than

pristine triazine-based CMPs, with energy density up to 12.95 Wh kg−1. Moreover, it

has high stability with 99% retention after 10,000 cycles at 5 A g−1. The synergy of

hierarchical porous structure, graphene-based conduction path and high percentage

of hybridization with nitrogen ensures effective ion/electron transport and diffusion,

making NH3-treated graphene aerogel/CMP hybrid a promising electrode material in

high-performance supercapacitor.

Keywords: conjugated microporous polymer, graphene aerogel, supercapacitors, triazine-based electrode

materials, nitrogen-doped carbon

INTRODUCTION

Conjugated microporous polymers (CMPs) are one kind of covalently linked organic porous
materials which have attracted extensive interest in recent years due to their strong π-conjugated
linkage, permanent nanoporosity, large surface area, possibility to modify functional groups as well
as high stability compared with other porous organic materials (Xu et al., 2013). Until now, CMPs
have been used in various fields, including gas adsorption and storage (Yuan et al., 2010; Reich et al.,
2012), gas separation, heterogeneous catalysis, light harvesting devices, photoluminescence, electric
energy conversion and storage, etc. Among them, supercapacitor, as one kind of electrochemical
energy storage devices, shows great potential for daily appliances (Pang et al., 2015; Zhang
et al., 2015, 2016; Xie and Zhang, 2016) owing to its fast charge-discharge rate, high power
density, less environment pollution, etc. (Zhang and Zhao, 2009; Wang G. et al., 2012; Peng
et al., 2014; Salunkhe et al., 2014; Wang Q. et al., 2014)Compared with traditional supercapacitor
electrode materials, CMPs have high specific surface area and the possibility to tailor pore and
channel structures. Recently, the CMPs are normally produced by solvothermal method, which is
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suitable for carbon-carbon bond-forming reactions. However,
CMPs produced by solvothermal method have relatively poor
orbital overlap due to the twisted benzene rings, leading to
low electrical conductivity (Lee et al., 2016). To improve the
conductivity, CMPs with high carbon content are synthesized by
coupling reactions, however it usually results in poor wettability
of CMPs-based electrode.

To improve the performance of CMPs as electrode material,
hybridization with other heteroatoms are widely used, which
can increase both the wettability and the pseudocapacitance.
With higher nitrogen content, the supercapacitive performance
of a triazatruxene-functional CMP are remarkably improved,
however the value only reaches 183 F g−1 (Li et al., 2017).
Moreover, to increase the material conductivity, CMPs are
usually carbonized under high temperature, which graphitizes
the framework of carbon-based materials (Li et al., 2014; Wang
L. et al., 2014). As an example, Cooper et al. improve the
electrical conductivity and pseudocapacitive contributions of
CMPs by combining molecular design and carbonization under
an ammonia atmosphere, however the value only increased to
about 260 F g−1 and the performance still restricts by the limited
intrinsic conductivity of CMPs, which is also a common problem
for other porous organic electrode materials (Lee et al., 2016).

Here, graphene aerogels (GA) are hybridized with CMPs,
for the first time, to improve three-dimensional intrinsic
conductivity of CMPs. After carbonization under ammonia
atmosphere, the nitrogen content increases to 9.8%, while the
ratio of pyridinic nitrogen increase from 15 to 25.5%. Owing
to the improved electrical conductivity and higher nitrogen
content, the resulting NH3-treated GA/CMPs (N-GA /CMPs)
has extraordinary specific capacitance up to 325 F g−1 at 0.5 A
g−1 with excellent long-term cycling stability, showing its great
potential in high performance supercapacitors.

MATERIALS AND METHODS

Preparation of CMP, GA/CMP, N-GA/CMP
CMPs were synthesized by the ionothermal method (Kuhn et al.,
2008a). The proportional (1:20) monomer (m-phthalodinitrile)
and ZnCl2 were added to a Pyrex ampoule in an argon
atmosphere, and then the ampoule was evacuated and sealed.
With a 10◦C min−1 heating rate, the ampoule was heated to
600◦C for 40 h, and then was cooled down to room temperature.
If the synthesis temperature was higher than 500◦C, the ampule
was under pressure and would be released during opening (Kuhn
et al., 2008b). The product was subsequently grounded in an
agate mortar to get powder, and washed by deionized water to
remove ZnCl2. After that, the sample was stirred in 5% HCl
for 15 h to remove the residual ZnCl2. After purification, the
black powder was filtered and washed with deionized water and
tetrahydrofuran. Finally, it was dried in vacuum at 150◦C for 15 h.
Graphene oxide was synthesized from natural graphite according
to a modified Hummers method (Hummers Jr and Offeman,
1958). The prepared graphene oxide solution was purified by
5% HCl and deionized water for several times so that residual
salts and acids can be washed completed. Graphene Aerogel
was synthesized according to the literature (Xu et al., 2010). A

10mL portion of 1.5mg mL−1 homogeneous graphene oxide
aqueous dispersion was sealed in a 20mL Teflon-lined autoclave
and maintained at 180◦C for 12 h. The autoclave was naturally
cooled to room temperature, and the as-prepared graphene
aerogels were taken out and transferred to glass bottles. The
graphene aerogels were obtained by putting the glass bottles into
a freeze drying equipment for 24 h. The preparation of GA/CMPs
followed the preparation of CMPs but different ratio of graphene
aerogels, monomers and ZnCl2 were grinded evenly in an agate
mortar before adding to a Pyrex ampoule. The weight percentage
of GA was 15%. To prepare N-GA/CMP, GA/CMPs (200mg)
was placed in a ceramic boat, which was located in the center
of a tube furnace. The sample was exposed to a flow of N2 for
30min to remove the air from the tube, and then was treated by
ammonia at 800◦C for 2 h using nitrogen as the carrier gas. After
ammonia treatment, the sample was cooled to room temperature
and NH3-treated GA/CMP was obtained.

Material Characterization
The samples were measured by scanning electron microscopy
(SEM, Zeiss-Ultra 55), transmission electron microscopy (TEM,
Tecnai G2F20S-Twin), X-ray diffraction (XRD, Rigaku D/Max
2400, CuKα radiation, 40 kV, 100mA, λ = 1.5406 Å), and
X-ray photoelectron spectroscopy (XPS, Axis Ultra Dld, Al Kα

radiation, 15 kV, 30mA). Elemental analyses were carried out
using a vario EL cube analyzer. The pore structure was measured
by N2 sorption at 77K, Brunauer–Emmett–Teller (BET) surface
areas were calculated from the isotherm using the BET equation.

Fabrication of Electrodes
and Supercapacitor
The active material (80 wt.%), carbon black (10 wt.%), and
polytetrafluoroethylene (PTFE, 10 wt.% of a 60 wt.% dispersion
in water) were dispersed in ethanol, and then thoroughly mixed
in an agate mortar, adding ethanol several times. After that,
the mixtures were rolled into a uniform thin film and dried
at 80◦C for 12 h in a vacuum oven, and then film was cut
into 1 cm2 electrode slice and coated on a slice of nickel foam
current collector. Exerted 10MPa pressure by a table press, the
as-prepared electrodes were used as the working electrode. Pt foil
and an Hg/HgO electrode were used as the counter electrode and
reference electrode, respectively.

Electrochemical Measurement
Electrochemical measurement was performed by using an
electrochemical station (CHI660E, CH Instruments, Shanghai)
and a three-electrode system in 6M KOH alkaline electrolyte.
The specific capacitances of materials derived from galvanostatic
discharge curves were calculated by Equation (1):

Cm =

Id × 1t

m × 1V
(1)

where 1t was the discharge time (s), Id was the constant
discharge current (mA), 1V was the potential change (excluding
ohmic drop IR),mwas themass of activematerials in the working
electrode when using three-electrode system. In two-electrode
system,m was the mass of active material of whole device (mg).
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FIGURE 1 | (A) Illustration of synthesis of N-GA/CMPs. (B–G) FESEM and TEM images of the CMPs (B,E), GA (C,F), and N-GA/CMPs (D,G), respectively.

FIGURE 2 | (A) Nitrogen adsorption and desorption isotherms of CMPs (red) and N-GA/CMPs (blue). (B) Pore size distribution of CMPs and N-GA/CMPs. (C) XRD

pattern of N-GA/CMPs. (D) EA of N-GA/CMPs for carbon (black) and nitrogen (blue). (E) XPS N 1s spectra of CMPs, GA/CMPs and N-GA/CMPs (N1, oxide nitrogen;

N2, quaternary nitrogen; N3, pyrrolic nitrogen; N4, pyridinic nitrogen). (F) Ratios of different configurations of nitrogen in the materials.
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FIGURE 3 | (A) Illustration of the charge transfer in an N-GA/CMPs electrode. (B) CV curves and (C) GCD curves of the N-GA/CMPs. (D) Specific capacitances of

CMPs, N-CMPs, GA/CMPs, N-GA/CMPs, GA and physical mixture of 85% CMP and 15% GA as blank. (E) Nyquist plots of the CMPs, GA/CMPs and N-GA/CMPs.

The insert shows the plots in the high-frequency region. (F) Cycling performance of the N-GA/CMPs based supercapacitor. (G) Ragone plots of the N-GA/CMPs

based two-electrode supercapacitor. The values reported by literatures are shown in the figure.

The energy density (E, W h kg−1) and average power density
(P, W kg−1) of the whole two-electrode device were calculated
separately by Equations (2, 3):

E =

1

2
×

Cm × 1V2

m × 3.6
(2)

P = 3600 ×

E

1t
(3)

RESULTS AND DISCUSSION

After growth (Figure 1A), the morphologies of CMPs, GA,
and N-GA/CMPs were studied by field emission SEM (FESEM,
Figures 1B–D) and TEM (Figures 1E–G). The FESEM image
shows that the CMPs have similar porous structures with the
triazine-based CMPs reported in literature (Kuhn et al., 2008b).
The TEM image of the N-GA/CMPs shows that the GA skeleton
with layered structure is cross-linked and uniformly covered
by porous CMPs. Nitrogen adsorption-desorption measurement
(Figures 2A,B) has been performed to analyze the porous
structure of the N-GA/CMPs. The isotherm of the N-GA/CMPs

reveals a typical II type, which indicates the combination of
micro-pores and meso-pores in the material. The surface area
of N-GA/CMPs measured by BET is 1268.5 m2 g−1, and the
powder XRD pattern shows that the N-GA/CMPs don’t have any
crystallization peaks, proving the amorphous nature (Figure 2C).

To further study the chemical structure and elemental
composition, N-GA/CMPs were characterized by elemental
analysis and XPS. The elemental analysis shows that the pristine
GA/CMPs have a 6.3% nitrogen content (Figure 2D) (Hao
et al., 2014). After carbonization at 800◦C in ammonia, the
nitrogen content of N-GA/CMPs increases to 9.8%. In order
to analyze the nitrogen species in the material, we measured
XPS spectra of CMPs, GA/CMPs and N-GA/CMP (Figure 2E).
The XPS N 1s has four sub-peaks at 398.5, 399.8, 400.9, and
403.1 eV, which represent pyridinic nitrogen, pyrrolic nitrogen,
quaternary nitrogen and oxidized nitrogen, respectively. Except
quaternary nitrogen, other three types of nitrogen are located
at the edges or defects of the CMPs or GA layers. All examples
have low percentage of oxidized nitrogen, since the reactions
were token place under an inert atmosphere. Notably, after
treating at high temperature in ammonia atmosphere, no obvious
changes happen on pyrrolic and oxidized nitrogen, while the
ratio of quaternary nitrogen decreases and the ratio of pyridinic
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nitrogen remarkably increases up to 25.5% (Figure 2F), which is
of importance for achieving high supercapacitive performance.

To evaluate the supercapacitive performance, cyclic
voltammetry (CV), galvanostatic charge–discharge (GCD) tests
and electrochemical impedance spectroscopy (EIS) were carried
out in a 6M KOH aqueous electrolyte in a conventional three-
electrode system (Figure 3A). The CV curves for N-GA/CMPs
at different scanning rates are shown in Figure 3B. All CV
curves have quasi-rectangular shape without obvious reduction
and oxidation peaks, indicating the N-GA/CMPs have good
electroconductivity and stores energy mainly by double-layer
energy storage mechanism despise higher content of pyridinic
nitrogen. The GCD tests are performed at different current
densities from 0.5 to 5A g−1. The GCD curves (Figure 3C) have
a triangular shape, consistent with theoretical electrochemical
double layer capacitors, and don’t have obvious voltage drop,
showing the good conductivity of materials. The N-GA/CMPs
exhibit the highest specific capacitance of 325 F g−1 at the current
density of 0.5 A g−1. The calculated specific capacitance values of
CMP, GA/CMP and N-GA/CMP (Figure 3D) show that the GA
cannot greatly increase the specific capacitance, while the high-
temperature annealing in ammonia atmosphere leads to a great
enhancement. To understand the synergy effect of the GA and
the CMPs in the hybrids, we physically mixed same content GA
with CMPs and annealed at the same temperature in ammonia
atmosphere (named as blank group). The specific capacitance of
the physical mixture is nearly same with the CMPs (Figure 3D),
implying that the increase of specific capacitance mainly results
from the chemical combination of porous structure of CMPs
and in-plane conductive structure of GA (Figure 3A). The CMPs
cover on both sides of GA. The interconnected micro-pores
and meso-pores of CMPs shorten the diffusion length between
external electrolyte and the surface of electrode materials. At the
same time, the GA acts as a conductive framework to increase
the conductivity of the electrodes.

The Nuquist plot (Figure 3E) measured by EIS reveals the
device resistance including the electrolyte resistance, the ionic
resistance of ions moving through the separator, the intrinsic
resistance of the active electrode, and the contact resistance
at the interface between the active materials with the current
collector. In the high-frequency region, the equivalent series
resistance (ESR) of the N-GA/CMPs (0.58�) is smaller than
that of CMPs (0.65�) after N-doping, which indicates lower
charge transfer resistance at the electrode/electrolyte interface.
The smaller radius of semicircular and the more vertical line
in the low-frequency region indicate faster ion diffusion in the

electrode of the N-GA/CMPs. This phenomenon is attributed to
higher ratio of nitrogen in the N-GA/CMPs (Xiang et al., 2015),
in agreement with the EA.

In order to test the stability in the application, the
N-GA/CMPs were used in a conventional two-electrode system
for cycling experiments. The capacitance (Figure 3F) remains
above 95% after 10,000 charge-discharge cycles at a current
density of 5A g−1. Therefore, the N-GA/CMPs produced by
ionothermal synthesis possess not only high supercapacitive
performance but also excellent cycling life. The energy density
of the N-GA/CMPs supercapacitors (Figure 3G) is up to 12.95
Wh kg−1, which is among the highest reported value of the
CMP-based supercapacitors (Xu et al., 2017; Yuan et al., 2017;
Zhao et al., 2017).

CONCLUSIONS

In summary, GA templated triazine-based CMPs are synthesized
by ionothermal method followed by high temperature treatment
in ammonia atmosphere. By using GA as the template, the
inherent conductivity of triazine-based CMPs is improved. High
temperature process in ammonia atmosphere results in higher
pyridinic nitrogen content in the GA/CMPs, which introduces
more edge sites and defects in the material. As a result, the
specific capacitance of N-GA/CMPs electrode increases by 55%
up to 325 F g−1, and the energy density reaches 12.95 Wh
kg−1. Moreover, there is no significant degradation after 10,000
cycles at a current density of 5A g−1. Considering the easy
preparation and outstanding energy storage performance, the
N-GA/CMPs show great potential for practical application in
high-performance aqueous supercapacitors.
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