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Electroencephalography based brain-computer interfaces (BCIs) show promise of
providing an alternative communication channel between the brain and an external
device. It is well acknowledged that BCI control is a skill and could be improved
through practice and training. In this study, we explore the change of BCI behavioral
performance as well as the electrophysiological properties across three training sessions
in a pool of 42 human subjects. Our results show that the group average of BCI
accuracy and the information transfer rate improved significantly in the third session
compared to the first session; especially the significance reached in a smaller subset
of a low BCI performance group (average accuracy <70%) as well. There was a
significant difference of event-related desynchronization (ERD) lateralization for BCI
control between the left- and right-hand imagination task in the last two sessions, but
this significant difference was not revealed in the first training sessions. No significant
change of R2 value or event-related desynchronization and synchronization (ERD/ERS)
for either channel C3 or channel C4, which were used for online control, was found
across the training sessions. The change of ERD lateralization was also not significant
across the training sessions. The present results indicate that BCI training could induce
a change of behavioral performance and electrophysiological properties quickly, within
just a few hours of training, distributed into three sessions. Multiple training sessions
might especially be beneficial for the low BCI performers.

Keywords: brain-computer interface, BCI, electroencephalography, EEG, training effects, behavioral
performance, online control, motor imagery

INTRODUCTION

Brain-computer interface (BCI) is an emerging technique providing a unique opportunity to help
patients who lose the ability to control their body through the regular neuromuscular pathway
(Wolpaw and McFarland, 2004; Vallabhaneni et al., 2005; He et al., 2013, 2015). BCI has been
demonstrated to establish communication with the world (Kübler et al., 2001; Wolpaw and
Wolpaw, 2012; Chen et al., 2015), to assist stroke rehabilitation (Ramos-Murguialday et al., 2013;
Pichiorri et al., 2015; Chaudhary et al., 2016), and to probe the function of brain circuits (Min
et al., 2017). The non-invasive electroencephalography (EEG) based BCI has gained considerable
attention due to its relative ease of use, low cost, high time resolution, etc., compared to BCI systems

Frontiers in Human Neuroscience | www.frontiersin.org 1 April 2019 | Volume 13 | Article 128

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2019.00128
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2019.00128
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2019.00128&domain=pdf&date_stamp=2019-04-17
https://www.frontiersin.org/articles/10.3389/fnhum.2019.00128/full
http://loop.frontiersin.org/people/376074/overview
http://loop.frontiersin.org/people/626478/overview
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00128 April 17, 2019 Time: 11:44 # 2

Meng and He Training Effect of Non-invasive Online BCI

based on other modalities such as functional magnetic resonance
imaging (fMRI) (Weiskopf et al., 2004; Yoo et al., 2004) and
magnetoencephalography (MEG) (Mellinger et al., 2007; Ahn
et al., 2013). The source signals of EEG based BCI systems
consist of self-modulated spontaneous EEG and evoked potential
signals such as P300 (Kaper et al., 2004; Guger et al., 2009)
and steady-state evoked potential (Allison et al., 2010; Chen
et al., 2015). Sensorimotor rhythms (SMR) are self-modulated
spontaneous signals which are commonly used; the SMR are well
documented to be modulated during subjects’ self-imagination
of their body movement (Pfurtscheller and Da Silva, 1999;
Wolpaw and McFarland, 2004; Pfurtscheller and Neuper, 2006;
Yuan and He, 2014; He et al., 2015), i.e., motor imagery (MI).
MI-based BCI through SMR modulation is an important and
active research area.

Currently, the MI-based BCI shows promise for clinical
applications such as in daily life assistance (Millán et al., 2010)
and stroke rehabilitation (Chaudhary et al., 2016). However,
MI-based BCIs are still scarcely used outside laboratories
because this technique is currently limited by the substantial
performance variation across subjects as a result of various
reasons such as motivation (Nijber et al., 2010), the user
technology relationship (Ahn and Jun, 2015; Jeunet et al., 2016)
and variation within subjects due to possible hypothetical causes
such as the fluctuation of attentional networks (Grosse-Wentrup
and Schölkopf, 2013). Furthermore, there is a portion of the
subject population, who cannot gain satisfactory performance
using the current techniques (Guger et al., 2003; Blankertz et al.,
2010). To solve this problem, some researchers have proposed
various measures to detect these subjects who belong to the
category of “BCI illiterate” (Vidaurre and Blankertz, 2010). Thus,
in the beginning, they could be ruled out for a particular BCI
experimental design which might not fit best for them. It would
allow researchers to analyze why a specific BCI technology
fails in a particular population, and at the same time it would
save both the subjects’ and researchers’ time and cost for an
inappropriate BCI technology (Neumann and Birbaumer, 2003;
Blankertz et al., 2010; Hammer et al., 2014). In order to advance
the technology and overcome the bottleneck of traditional MI-
based BCI, studies were conducted to improve BCI performance
including developing advanced signal processing algorithms
(Blankertz et al., 2008; Ang et al., 2012; Meng et al., 2015; Edelman
et al., 2016), designing new experimental paradigms such as
providing physical stimuli while performing motor imagination
(Yao et al., 2014, 2017), improving the visual feedback (Lotte et al.,
2013; Jeunet et al., 2014; Mousavi and de Sa, 2017), incorporating
users’ response to feedback signals (Ferrez and Millán, 2008;
Chavarriaga et al., 2014; Mousavi et al., 2017), and leveraging
their past meditation experience (Cassady et al., 2014), practicing
meditation before attending motor imagination experiment (Tan
et al., 2014), and immersing interactions via physical devices
(LaFleur et al., 2013; Donati et al., 2016; Meng et al., 2016) or
virtual reality (Royer et al., 2010; Doud et al., 2011; Guger et al.,
2017; Johnson et al., 2017; Coogan and He, 2018).

As a complement to the multiple studies improving BCI
performance in various ways described above, the gradual
improvement of skill during multiple BCI training sessions

(Kübler et al., 2004; Ono et al., 2013; Wander et al., 2013)
might be an alternative natural way to increase the number of
people operating MI-based BCI systems. Furthermore, some of
the users who were thought to be “BCI illiterate” might not
actually be “BCI illiterate.” Their failure to succeed in the control
of BCI might be due to the inefficiency of the experimental
design, decoding algorithm, or an insufficient amount of training
(Allison and Neuper, 2010). Although MI-based BCI usually
requires a long training period (Blankertz et al., 2007), training
might be inevitable in some clinical applications, such as
stroke rehabilitation, since end users must use the BCI system
intensively for a long period to promote brain plasticity. Thus,
it is important to quantify the learning effect as well as the
change of electrophysiological properties during multiple BCI
training sessions. Until now, there are only a few studies that
analyze the change of electrophysiological characteristics during
the multiple learning sessions when participants learn/gain a skill.
Weber et al. (2011) explored the learning of SMR neurofeedback
in two groups of healthy subjects (N = 13 in group one; N = 14
in group two). They instructed the subjects to modulate their
SMR without explicitly indicating the motor imagination task.
Throughout a number of training sessions up to 30, they stated
that the successful prediction of good SMR modulators vs.
poor SMR modulators could be made after session 10 (Weber
et al., 2011). Zich et al. (2015b) reported a long-term training
of 14 sessions in a single subject by a mobile EEG at home;
they found a trend of increasing contralateral event-related
desynchronization (ERD) of brain rhythms from 8 to 30 Hz
across the training sessions. Later, Zich et al. (2015a) did a
follow-up study in a group of 16 naïve BCI subjects. Each of
the participants performed four sessions of BCI experiments on
four consecutive days, including a first session using high-density
EEG and the remaining three sessions using individualized
bipolar channel pairs. They acquired wireless EEG signals
using the modified Emotiv device (Zich et al., 2015a). Their
results showed a significant improvement in online classification
accuracy from 69.1% in session 2, to 73.3% in session 4. They
also found a significant change in the difference of contra-
and ipsi-lateral ERD; the difference was significantly higher in
session 4 than in session 2. Due to the use of individualized
sparse electrode configuration for each participant, it was not
possible to quantify the electrophysiological change in global
topography. Cincotti et al. (2012) studied the long-term BCI
training of 12 sessions in a group of eight stroke patients and
found a significant spectral power change of EEG rhythms in
both alpha (8–13 Hz) and beta (14–29 Hz) bands, between
task and rest conditions, when comparing the pre-training and
post-training condition. Kaiser et al. (2014) studied 12 BCI
naïve subjects, each of whom participated in ten BCI sessions,
including one screening session, six BCI training sessions, and
three fNIRs sessions. They found a significant enhancement
of [oxy-Hb] in fNIRS and a stronger ERD in the upper
beta-frequency (24–30 Hz) band in the EEG; however, these
changes were only visible in participants with a BCI classification
accuracy lower than 70%. Although the subjects in the high
BCI performance group (mean accuracy >70%) did show an
increasing trend of online classification accuracy (see Figure 12
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in Kaiser et al., 2014), no significance was reported, perhaps
due to a small sample size (N = 5) in this group. Due to
the limited number of subjects or electrode coverage in the
previous studies (Cincotti et al., 2012; Kaiser et al., 2014; Zich
et al., 2015a) or the non-specified motor imagery training
protocols (Weber et al., 2011), it remains unclear whether and
how quickly the BCI behavioral performance would change
across the training. It is still inconclusive if there would be any
significant changes of electrophysiological properties locally or
globally, and how the change of electrophysiological properties
progress accompanied by the change of behavioral performance
during the training. With the above questions in mind, we
performed, in this study, a detailed analysis of the change
of BCI behavioral performance in a healthy subject pool of
42 people, three training sessions each, as well as the change
of BCI electrophysiological characteristics across sessions such
as R2 value and ERD/ERS. We hypothesize that BCI users’
behavioral performance could improve in a few training sessions,
and that their electrophysiological signatures become more
distinguishable at the same time.

MATERIALS AND METHODS

Each of the 42 healthy, BCI naïve subjects (18 females;
5 left-handed and all others right-handed; average age
23.3 ± 5.5 years; range, 18–50) participated in three sessions of
a BCI online cursor control experiment on separate days, which
resulted in a total of 126 sessions. Each session took place on a
different day, with an interval from 1 day to 1 week, except for
four subjects in five cases which had longer intervals than 1 week
due to schedule conflicts. None of them had an interval of less
than 1 day. The sessions for each subject were scheduled as early
as their next available day to minimize the session intervals. All
procedures and protocols were approved by the Institutional
Review Board of the University of Minnesota and Carnegie
Mellon University. Written informed consent was obtained from
all subjects before their participation in the experiment.

Experimental Setup
Electroencephalography signals were recorded in three
experiments (See Figure 1C) including the first dataset in a
published study (Meng et al., 2018) and the other two in another
published study (Meng et al., 2017). In the first two experiments,
EEG signals were recorded at a sampling rate of 1000 Hz using
a 62 channels of Neuroscan SynAmps RT system (Neuroscan
Inc., Charlotte, NC, United States). A bandpass filter between 0.5
and 200 Hz and a notch filter of 60 Hz was applied to the raw
EEG signals. The reference was selected at the vertex, and the
ground was chosen on the forehead. The impedances for all the
electrodes were maintained below 5 k�. In the third experiment,
the EEG signal was acquired at a sampling frequency of 1024 Hz
using a 64 channel Biosemi Active Two EEG system and a cap
with active electrodes. Similarly, a bandpass filter between 0.16
and 100 Hz and a notch filter of 60 Hz was applied to the raw
EEG signal. Two electrodes near channel POZ, named CMS and
DRL, were used as the reference and ground. Conductive gel

(SignaGel, Cortech Solutions) was used to reduce the electrode
offsets, a measure indicating signal quality, to below 20 mV for
each electrode as recommended by the manufacturer.

Experimental Design and Protocol
In the first experiment, 16 subjects participated in the study
and their EEG signals were acquired using a Neuroscan
system following the above-described procedures. Each subject
participated in three sessions of online BCI control – left and
right (L/R) cursor movement – on separate days. There were
ten runs of BCI control in each of the three sessions, and
each run took about 5–6 min with an interval of 1–2 min
according to the subject’s willingness. There were 25 trials in
each run and 250 trials in each session. The left or right
targets were balanced in a block randomized way. In the second
experiment, 12 subjects participated in the study following the
above-described procedures, and their EEG signals were acquired
using a Neuroscan system. Similarly, subjects took three sessions
of BCI L/R cursor control on different days. There were four runs
of BCI control in each session, and each run took about 6–8 min
with an interval of 1–2 min between two runs at the subject’s
willingness. There were 30 trials in each run and 120 trials in total
for each session. In the third experiment, 14 subjects participated
in the study following the above-described procedures and EEG
signals were acquired using a Biosemi Active Two system. There
were eight runs of BCI online L/R cursor control in each of the
three sessions, and each run consisted of 20 BCI trials resulting in
160 trials in total for each session.

The trial structures for all the three experiments were the same
(See Figure 1A). Each trial started with a blank screen, and the
blank screen lasted for 3 s, which was referred to as the inter-
trial interval. A yellow square served as a target cue and appeared
on either the left or right side of the screen after 3 s. This target
cue was displayed for 2 s to help the subject prepare for the
following cursor feedback; subjects were instructed to perform
motor imagination of their left- or right hand to move the cursor
toward the left or right correspondingly (See Figure 1B). A round
pink cursor appeared in the center of the screen after second 5.
The cursor was given a mean velocity which allowed users to
hit the target within 3 s if the control signal was stationary and
correctly decoded at each update window (40 ms) during the
whole trial; the cursor stopped if the subjects could neither hit the
target nor miss the target in the duration of 6 s, i.e., an abort trial.
After the feedback period, the cursor was frozen for 1 s, and this
period was named the post-feedback period. Then the next trial
repeated until the end of the run. All the subjects were instructed
to perform the kinesthetic motor imagination from a first person
perspective (Neuper et al., 2005).

Online Signal Processing
The modulation of the power difference between channel C3
and C4 was used to control the cursor movement. The raw
EEG signals of channel C3 and C4 were first spatially filtered
by subtracting the average signals of its surrounding electrodes,
i.e., the small Laplacian spatial filter (See Figure 1B), to remove
the common noise and to obtain relatively focal activity (Hjorth,
1975; McFarland et al., 1997). The power spectra of the two
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channels were estimated using an autoregressive (AR) method
(McFarland and Wolpaw, 2008). An autoregressive (AR) model,
as shown in Eq. (1), was used to estimate the amplitudes of
sensorimotor rhythm:

yt =

i=p∑
i=1

wt−iyt−i + ε (1)

where yt is the estimated signal at time t, wi is the weight
coefficient and ε is the error of estimation. An 16th order AR
model with a window length of 400 ms was used to calculate the
online amplitude of mu rhythmic activity. The weight coefficients
of the AR model were estimated by the least-squares criteria. The
power spectra were updated every 40 ms. The power difference
of the mu rhythm (10–14 Hz) between the two channels was
stored in a buffer of the previous 30 s data and was output to a
normalizer, as shown in Eq. (2):

Output = (Input − Offset) ∗ Gain (2)

where the Input contains the data (the above-mentioned power
difference of mu rhythm) in a buffer of the past 30 s data. The
normalizer applied a linear transformation to its input signal and
transformed the output of power difference into a zero mean and
unit variance value according to Eq. (2). Thus, the offset and the
gain in Eq. (2) are the mean and multiplicative inverse of the
standard deviation of the input data, respectively. The Output
signal was then projected into the velocity of cursor movement.
The application of BCI cursor control was realized by BCI2000
software (Schalk et al., 2004). Note that, a certain period was used
to train the normalizer since Input data must be accumulated into
the buffer. Thus, the cursor did not move for the first trial of each
BCI session. The subject was still instructed to start their motor
imagination when the cursor was shown on the screen although
there was no feedback of cursor movement during the first trial.
The first trial of each session was not considered in the analysis
since it was always an abort trial.

Evaluation of Behavioral Performance
The behavioral performance of online BCI was evaluated in terms
of Percent Valid Correct (PVC) (Doud et al., 2011; Meng et al.,
2016), which means that the number of hits during each run
was divided by the total number of hits and misses. The number
of abort trials was not considered for this metric. Since the
number of abort trials was not considered in PVC, we wanted
to see the trend of the number of abort trials across the training
sessions. Thus, the percentage of abort trials during each run was
calculated and averaged over the runs for each session. A group
average over the percentage of abort trials across sessions was
used to evaluate the trend for the percentage of abort trials. The
skills of BCI performance could not only be evaluated by accuracy
but also by efficiency such as information transfer rate (ITR)
(Wolpaw et al., 2000). The ITR was calculated by accounting
for the abort trials, break time and the target presentation time.
The group average of ITR across sessions was used to evaluate
the efficiency of BCI control. Since the cursor movement was
controlled in a velocity-based mode, the average duration of hit

trials is another index pertinent to the efficiency of the control.
The mean duration of hit trials in each run was averaged over the
runs for each session; a grand average of duration for hit trials
over subjects across sessions was investigated additionally, as an
extra measurement of BCI cursor control.

Riemannian class distance proposed by Lotte and Jeunet
(2018) was also used to assess the performance of BCI control.
The distinctiveness of the EEG patterns (represented by class Dis)
in the frequency band of 10–14 Hz, from two motor imagery
classes were calculated for each individual and each session. Their
group average results were used to evaluate the distinctiveness
of the EEG covariance matrix during BCI control. All the BCI
trials during the feedback period and channels were used for the
calculation of Riemannian class distance in this study.

Calculation of R2 Value and ERD/ERS
Besides the evaluation of behavioral performance, the
examination of neural electrophysiology across the learning
sessions is also interesting and important. R-square (r2) value
could be used to quantify how strongly the means of the
two distributions (the band power of the left and right-hand
imagination in this case) differ relative to the band power
variance. The R2 value could be calculated at each electrode
according to its definition and gave rise to a R2 topography to
show how strongly the electrodes correlate with the task. In
the offline analysis, the R2 values were calculated based on all
the trials and only the trials in which correct targets were hit,
respectively, in the frequency band of mu rhythm which was
used for the online modulation. When the calculation was based
on all the trials, the trials of miss and abort were included in the
calculation. The R2 values were calculated for each subject and
each session. Grand average R2 values and their topographies
across sessions were used to evaluate the change of R2 values
across sessions.

Event-related de-synchronization/synchronization (ERD/
ERS) is a frequently used metric to characterize the dynamic
change of band power activities relative to the baseline period
in a certain location/electrode and in a specific frequency band
(Graimann et al., 2002; Pfurtscheller et al., 2006; Wolpaw and
Wolpaw, 2012). There are several methods to calculate the
ERD/ERS time courses. In this paper, we used a bootstrap-based
method (Graimann et al., 2002) to show a time-frequency map
with significant changes of ERD or ERS for specific electrodes.
In general, the calculation of ERD/ERS is performed by spatially
filtering the EEG signals via a small Laplacian, bandpass filtering
the EEG signals, segmenting individual trials, detrending the
trials, squaring the samples, and subsequently averaging over
trials and sample points. The procedures can be expressed using
the following steps:

yij=
(
xij − xj

)2 (3)

Aj=
1

N− 1

N∑
i=1

yij (4)

R =
1
K

r0+K∑
r0

Aj (5)
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ERDj=
Aj − R

R
× 100% (6)

where N is the total number of trials, xijis the jth sample of the ith
trial of the bandpass filtered EEG signals and xj is the mean of the
jth sample averaged over all trials. R is the average power in the
reference period [r0, r0 + K], r0 is the starting time point of the
reference period (r0 is 1.5 s in Figure 1A) and K is the number of
samples in the baseline reference period (K = 1.5 × Fs, Fs is the
sampling rate, 1000 or 1024 Hz). Their functional role has been
hypothesized in this way: ERD in alpha and beta band represents

an event relevant and information facilitating brain state, and
ERS represents an event relevant but inactive or inhibited brain
state (Pfurtscheller and Neuper, 2006). Thus, they are metrics
correlated to the activeness of the cortical network to a certain
degree. For each subject, the last 1.5 s of the inter-trial interval
was selected as the baseline period. Channel C3 and C4 were
used to calculate the ERD/ERS since these two channels were
used for the online control. The time course of ERD/ERS was
calculated from the beginning of the inter-trial interval to 2.5 s
after the feedback was shown using all the trials and only hit
trials, respectively, in a session. A grand average for subjects was

FIGURE 1 | (A) Brain-computer interface (BCI) single trial structure. Each trial started from a blank screen of 3 s during which subjects should relax and have a short
break. Then a yellow rectangle appeared either on the left side or right side of the screen at the end of second 3 and lasted for 2 s. A round pink cursor appeared at
the center of screen at the end of second 5 and provided the online real time feedback. The cursor was supposed to move toward the left side or right side of the
screen if subjects performed left hand or right hand motor imagination. The subjects were allowed hitting the correct target or the incorrect target within a period of
6 s, and then the cursor froze for 1 s during the post-feedback period. (B) The electrodes which were marked in yellow denoted the ones used for online control.
The subject was supposed to imagine the left hand movement when the yellow bar appeared on the left side of the screen and imagine the right hand movement
when the yellow bar appeared on the right side of the screen. (C) Experimental scheme of the study. Each of 42 naïve subjects participated in three sessions of
online BCI control.
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obtained across sessions for each control task, i.e., right-hand
task, and left-hand task. Besides the commonly used ERD/ERS,
ERD lateralization (Zich et al., 2017; Shu et al., 2018) calculating
the difference between contra- and ipsi-lateral ERD was shown
to be a useful metric to identify the neurophysiological change in
both the healthy population and patients. Thus, this metric was
investigated as well.

Statistical Analysis
Statistical analysis was performed in R (R Development Core
Team, 2006). Unless otherwise stated, the following statistical
tests were used to report results. For the statistical analyses
of behavioral performance, a linear mixed effect model (lme)
was employed to evaluate the statistical significance of group
performance across sessions with the post hoc Tukey’s tests
used to correct for multiple comparisons (between sessions).
These instances are noted throughout the results section. For the
statistical analyses on the change of the R2 values (comprising the
factors sessions: session 1 (S1), session 2 (S2), session 3 (S3), and
channels: C3 and C4), ERD/ERS values on channel C3 and C4
across the three training sessions (comprising factors sessions: S1,
S2, S3 and channels: C3 and C4) and ERD lateralization values
across the three training session (comprising factors sessions: S1,
S2, S3 and imagination task: right hand and left hand), the mixed
repeated measures ANOVA was used to determine whether
the change of values on the two channels or two imagination
task were significant across the three training sessions. A linear
mixed effect model (lme) was employed to evaluate the statistical
significance of the post hoc test. When appropriate, a Tukey’s HSD
post hoc test was used to correct for multiple comparisons. For all
ANOVAs, Mauchly’s test was used to check the sphericity, and
Greenhouse-Geisser epsilon values were used to account for the
violations of sphericity.

RESULTS

BCI Behavioral Performance
Across Sessions
The group average BCI performance of 42 subjects across the
three training sessions are shown in Figure 2A. The average
PVC of 42 subjects on the first session was 72.0 ± 3.2% and
ended with 78.3 ± 3.0% on the third session. The linear mixed
effect models (lme) were performed between each session pair,
and Tukey’s HSD post hoc test was used to correct for multiple
comparisons. The statistical analysis revealed that there was
a significant difference between the average PVC of session 1
and session 3 (PVC: S3–S1 = 6.35%, SEM = 1.99, Zvalue = 3.19,
p = 0.004); there was no significant difference among other pairs
(PVC: S2–S1 = 4.19%, SEM = 1.99, Zvalue = 2.10, p = 0.089;
PVC: S3–S2 = 2.17%, SEM = 1.99, Zvalue = 1.09, p = 0.52). The
result for the second measure of the group average abort rate
is displayed in Figure 2B. The average group abort rate on
the first session was 47.4 ± 4.1% and ended with 44.5 ± 3.8%
on the third session. This analysis also showed that there was
no significant difference among any session pairs (Abort rate:
S2–S1 = −1.31%, SEM = 1.54, Zvalue = −0.85, p = 0.67; Abort

rate: S3–S1 =−2.93%, SEM = 1.54, Zvalue =−1.90, p = 0.14; Abort
rate: S3–S2 = −1.62%, SEM = 1.54, Zvalue = −1.05, p = 0.54).
The result for the third measure of group average feedback
duration is illustrated in Figure 2C. The group average feedback
duration was 5.28 ± 0.18 s on the first session and the result
was 5.10 ± 0.21 s on the third session. Similarly, no significant
difference among any session pairs was revealed by the statistical
analysis (Feedback duration: S2–S1 = −0.12 s, SEM = 0.096,
Zvalue = −1.25, p = 0.422; Feedback duration: S3–S1 = −0.17 s,
SEM = 0.096, Zvalue = −1.85, p = 0.15; Feedback duration:
S3–S2 = −0.05 s, SEM = 0.096, Zvalue = −0.60, p = 0.82). We
further divided each individual’s results according to their average
performance in the three sessions. If their average performances
were higher than 70%, they were labeled as high BCI performers.
Otherwise, the remaining subjects were categorized into the low
BCI performance group. Their group average results of PVC,
abort rates and average feedback duration are shown separately
in Figures 2D–F, respectively. There was a statistically significant
difference of PVC between session 1 and session 3 in the low
BCI performance group (PVClow BCI performance: S3–S1 = 9.89%,
SEM = 3.61, Zvalue = 2.74, p = 0.02), but not in the high BCI
performance group (PVCHigh BCI performance: S3–S1 = 3.70%,
SEM = 2.10, Zvalue = 1.76, p = 0.18) even though an increasing
trend can be observed in Figure 2D. The group average of ITR
results are displayed in Figure 2G and the Riemannian class
distances are shown in Figure 2H. Their subgroup results for
the high and low BCI performers are shown in Figures 2I,J,
respectively. A marginally significant improvement of ITR (ITR:
S2–S1 = 0.25, SEM = 0.18, Zvalue = 1.4, p = 0.34; ITR: S3–S1 = 0.40,
SEM = 0.18, Zvalue = 2.19, p = 0.07; ITR: S3–S2 = 0.14, SEM = 0.18,
Zvalue = 0.79, p = 0.71) was shown from session 1 to session
3 in the group average results of all 42 subjects; a close to
significant level of ITR improvement was only found in the low
BCI performance group (ITRlow BCI performance: S3–S1 = 0.22,
SEM = 0.10, Zvalue = 2.23, p = 0.066), which is marked as a dot
in Figure 2I. No significant difference of Riemannian class
distance was found between any session pairs
(class Dis: S2–S1 = 0.02, SEM = 0.016, Zvalue = 1.59, p = 0.25;
class Dis: S3–S1 = 0.27, SEM = 0.016, Zvalue = 1.71, p = 0.2; class
Dis: S3–S2 = 0.002, SEM = 0.016, Zvalue = 0.13, p = 0.99).

BCI R2 Value Across Sessions
Results for the group average of R-square (r2) value across the
three sessions based on all the trials and only the hit trials are
displayed in Figures 3, 4, respectively. The topographies of the
R2 value, based on the signals acquired from the Neuroscan
system (N = 28), are shown on the first row, Figures 3A, 4A.
The topographies of the R2 value, based on the signals acquired
from the Biosemi system (N = 14), are shown in the second row,
Figures 3B, 4B. Because there are some minor differences on the
electrode’s layout between the Neuroscan caps and the Biosemi
caps, the topographies were plotted separately. The topographies
calculated from all trials and only the hit trials, in general,
displayed similar results. Yet, the R2 values calculated from only
the hit trials were stronger than those calculated from all the
trials. Both topographies in Figures 3, 4 indicate that channel
C4 and channel C3 showed larger R2 values compared to other
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FIGURE 2 | Brain-computer interface behavioral performance. (A) Group average PVC ± standard error of the mean (SEM) of 42 subjects across the three training
sessions. The statistical analysis showed there was a significant difference of PVC between sessions 1 and 3 (∗∗p = 0.004, Tukey’s HSD post hoc test). (B) Group
average percent of abort rate ± SEM across the three training sessions. (C) Group average feedback duration ± SEM across the three training sessions. (D–F)
Group average PVC, abort rate, and feedback duration in high BCI performance group (average PVC across three session >=70%, N = 24) and low BCI
performance group (<70%, N = 18). (G) Group average information transfer rate (ITR) ± SEM across three sessions. (H) Group average class Riemannian
distance ± SEM across three sessions. (I,J) Group average ITR and class Riemannian distance in high and low BCI performance groups. ∗p < 0.05.

electrodes, and so did channel CP4 and CP3. This was expected
since we used C4 and C3 as control signals, and it also fits
well with the neurophysiological prior where the somatosensory
cortex was beneath those electrodes. Figures 3C, 4C display
the R2 value of channel C3 and C4 across the three sessions,
respectively. They were distinguished by whether there was a
hatch filled pattern inside the bar. A 2 (Channel: C3/C4) × 3
(sessions) ANOVA was performed to evaluate the change of

R2 values with respect to factors of training and channels.
This ANOVA test was conducted for the R2 values of all trials
and only hit trials, respectively. While the R2 value of channel
C3 seemed to show an increasing trend for visual inspection,
the analysis did not show any significant difference among
any session pairs (main effect channel: F1,82 = 0.49, p = 0.49,
η2 = 0.005; main effect sessions: F2,164 = 1.17, p = 0.31, η2 = 0.002;
channel× session interaction: F2,164 = 1.19, p = 0.31, η2 = 0.002)
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FIGURE 3 | R2 value topography maps and its statistics. All of the trials are used for the calculation of R2 values. (A) Topography of group average R2 value across
the three training sessions for subjects using Neuroscan SynAmps RT acquisition system (N = 28). (B) Topography of group average R2 value across the three
training sessions for subjects using Biosemi Active Two acquisition system (N = 14). (C) R2 value of channel C3 and C4 across the three training sessions. The
statistical analysis revealed no significant difference of R2 value between channel C3 and C4 on the three training sessions.

when analyzing the R2 values from all of the trials. However,
when only hit trials were used to calculate the R2 values, a
significant channel × session interaction was observed (main
effect channel: F1,82 = 0.97, p = 0.33, η2 = 0.009; main effect
sessions: F2,164 = 0.95, p = 0.39, η2 = 0.003; channel × session
interaction: F2,164 = 3.46, p = 0.034, η2 = 0.009). Post hoc
linear mixed effect models (lme) were performed between
channel C3 and C4 in each session (S1: C4–C3 = 0.08,
SEM = 0.037, Zvalue = 2.02, p = 0.04; S2: C4–C3 = 0.001,
SEM = 0.033, Zvalue = 0.046, p = 0.96; S3: C4–C3 = 0.015,
SEM = 0.036, Zvalue = 0.42, p = 0.67), the statistics showed that
there was a significant difference of the R2 value between channel
C3 and C4 on the first training session in Figure 4C if only
hit trials were considered, but this difference disappeared after
the first training session. There was no statistical significance in
Figure 3C when all the trials were included for the calculation and

statistics. The individual and group average R2 values of channel
C3 and C4 were divided into subgroups according to subjects’
handedness and are shown in Figure 5. The results (calculated
from all the trials) for the N = 37 right-handed subjects and N = 5
left-handed subjects across three training sessions are displayed
in the first and second row of Figure 5, respectively. There was
no statistically significant difference between the group average
R2 values of channel C3 and C4 in neither the right-handed nor
the left-handed subject group. In the right-handed group, the
number of subjects with a higher R2 value in channel C4 were
23/37 in Session 1, 18/37 in Session 2, 21/37 in Session 3. Yet in
the left-handed group, the number of subjects with a higher R2

value in channel C4 were 2/5 in Session 1, and 1/5 in Session 2, 1/5
in Session 3. Note that there were only five left handed subjects in
this study, and thus there might be little chance for the limited
number of subjects to pass the significance test.
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FIGURE 4 | R2 value topography maps and its statistics. Only the hit trials are used for the calculation of R2 values. (A) Topography of group average R2 value
across the three training sessions for subjects using Neuroscan SynAmps RT acquisition system (N = 28). (B) Topography of group average R2 value across the
three training sessions for subjects using Biosemi Active Two acquisition system (N = 14). (C) R2 value of channel C3 and C4 across the three training sessions. The
statistical analysis revealed that there is significant difference of R2 value between channel C3 and C4 on the first training session (p = 0.04). ∗p < 0.05.

Change of ERD/ERS Across Sessions
The change of ERD/ERS values across the three sessions were
analyzed and are illustrated in Figure 6A (calculated from all
the trials) and Figure 7A (calculated from only the hit trials),
respectively. The first row shows the ERD/ERS value of channel
C3 and C4 during the right-hand motor imagery task and the
second row displays the ERD/ERS value of channel C3 and C4
during the left-hand motor imagery task. The ERD/ERS results
from all the trials were very similar to the results from only the hit
trials. Apparently, from the group level, there was a strong ERS
for channel C4 compared to channel C3 during the right-hand
motor imagery task after the display of the target cue – the
ERS increased in general after the display of the target cue and
continued to increase after the display of the cursor. On the

other hand, the ERS was stronger for channel C3 compared
to channel C4 during the left-hand motor imagery task. The
black thick bar and the blue thick bar on the x-axis depicted
the starting cue of target display and the starting time point of
the cursor movement feedback, respectively. The gray shaded
rectangular area marked the period when the ERD/ERS value
of channel C3 and C4 were selected and averaged to compare
the ERD/ERS values among session pairs. These results are
plotted in Figure 6B for all trials and Figure 7B for only the
hit trials. A mixed repeated measures ANOVA [2 (Channel:
C3/C4) × 3 (sessions)] was used to determine whether the
ERD/ERS values changed over time for channel C3 and C4
calculating from all the trials in Figure 6B and only the hit trials
in Figure 7B. The statistical analysis (Right hand task, main effect
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FIGURE 5 | Individual and group average R2 values of channel C3 and C4 which are calculated from all of the trials across the three training sessions are shown in
the first row for N = 37 right handed subjects and in the second row for N = 5 left handed subjects. The R2 values for each individual and each channel were plotted
as a dot in each subplot. A solid line between the value of channel C3 and channel C4 of each individual was depicted if the value of channel C3 was smaller than
the value of channel C4, otherwise, a dashed line was connected. The group average R2 values ± SEM for channel C3 and C4 were shown alongside of the
individual R2 values. The results for three sessions were plotted in three columns, respectively.

channel: F1,82 = 8.67, p = 0.004, η2 = 0.07; main effect sessions:
F2,164 = 1.57, p = 0.21, η2 = 0.005; channel × session interaction:
F2,164 = 1.90, p = 0.153, η2 = 0.006; Left hand task, main
effect channel: F1,82 = 10.39, p = 0.002, η2 = 0.097; main effect
sessions: F2,164 = 0.50, p = 0.61, η2 = 0.0009; channel × session
interaction: F2,164 = 0.293, p = 0.746, η2 = 0.0005) in Figure 6B
showed that there was no significant main effect over time, but
there was a significant main effect for channels. The post hoc
linear mixed effect models (lme) test (ERD/ERS for Right hand
task, S1: C4–C3 = 0.45, SEM = 0.295, Zvalue = 1.54, p = 0.13;
S2: C4–C3 = 0.70, SEM = 0.20, Zvalue = 3.58, p = 0.0003;
S3: C4–C3 = 0.90, SEM = 0.29, Zvalue = 3.11, p = 0.002;
ERD/ERS for Left hand task, S1: C4–C3 = −0.72, SEM = 0.292,
Zvalue = −2.46, p = 0.014; S2: C4–C3 = −0.70, SEM = 0.220,
Zvalue = −3.19, p = 0.0014; S3: C4–C3 = −0.82, SEM = 0.227,
Zvalue = −3.62, p = 0.0003) revealed that there was a significant
difference of ERD/ERS values between channel C3 and channel
C4 for both session 2 and session 3 during the right hand
motor imagery task. There was a significant difference for all the
three sessions during the left-hand motor imagery task. Similarly,
the statistical analysis results (Right hand task, main effect
channel: F1,82 = 17.97, p = 0.00006, η2 = 0.14; main effect sessions:
F2,164 = 2.12, p = 0.12, η2 = 0.007; channel × session interaction:
F2,164 = 0.89, p = 0.413, η2 = 0.003; Left hand task, main effect
channel: F1,82 = 22.39, p = 0.000009, η2 = 0.17; main effect
sessions: F2,164 = 0.084, p = 0.92, η2 = 0.0002; channel × session

interaction: F2,164 = 0.342, p = 0.71, η2 = 0.0009) in Figure 7B
showed that there was no significant main effect over time,
but there was a significant main effect for channels. The
post hoc linear mixed effect models (lme) test (ERD/ERS for
Right hand task, S1: C4–C3 = 0.91, SEM = 0.300, Zvalue = 3.03,
p = 0.0024; S2: C4–C3 = 1.04, SEM = 0.23, Zvalue = 4.61,
p = 0.000004; S3: C4–C3 = 1.25, SEM = 0.33, Zvalue = 3.78,
p = 0.0002; ERD/ERS for Left hand task, S1: C4–C3 = −1.07,
SEM = 0.296, Zvalue = −3.60, p = 0.0003; S2: C4–C3 = −0.91,
SEM = 0.197, Zvalue = −4.60, p = 0.000004; S3: C4–C3 = −0.98,
SEM = 0.194, Zvalue = −5.08, p = 0.0000004) revealed that
there was a significant difference of ERD/ERS values between
channel C3 and channel C4 for each session and motor imagery
task for each hand. Besides the ERD/ERS values of channel
C3 and channel C4, the group average ERD% lateralization
calculated from all the trials with respect to the hand task,
across the three training sessions are shown in Figure 8A.
From the visual inspection, there was an increasing trend of
lateralization for the right-hand task but an opposite decreasing
trend of lateralization for the left-hand task. The statistical
analysis for the grand average ERD lateralization values during
the period of [5–7.5] s is shown in Figure 8B. A 2 (imagination
task: right hand vs. left hand) × 3 (sessions) ANOVA was
performed to evaluate the effect of training and imagination
type. We observed a significant main effect of imagination
type (F1,82 = 7.85, p = 0.006, η2 = 0.06). No significant main
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FIGURE 6 | ERD/ERS value and its statistics. All of the trials were used for the calculation of ERD/ERS values. (A) The time varying group average of ERD/ERS value
for the right hand task (the upper row) and left hand task (the bottom row) across the three training sessions. The target cue appeared at the end of second 3 and
the cursor feedback began at the end of second 5. (B) The grand average ERD/ERS values during the period of [5–7.5]s, which was marked in gray bar area in
subplot (A), were compared for right hand tasks and left hand tasks, separately. The statistical analysis showed a significant difference between channel C3 and C4
during each session for the left hand task, on sessions 2 and 3 for the right hand task; no significance was found among the session pairs across the training.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

effect of sessions (F2,164 = 0.22, p = 0.80, η2 = 0.0008) and
imagination type × sessions interaction (F2,164 = 3.13, p = 0.047,
η2 = 0.01, Greenhouse-Geisser correction for violations of
sphericity, p = 0.054). The post hoc linear mixed effect models
(lme) were performed between imagination types in each session.
In sessions 2 and 3, significant ERD lateralization was found
between the right-hand task and left-hand task (S2: Zvalue = 2.84,
p = 0.004; S3: Zvalue = 3.15, p = 0.002). Additionally, the log power
spectra difference between channel C3 and channel C4 of five
frequency bands (1–7, 7–10, 10–14, 14–28, and 29–40 Hz) across
three training sessions are illustrated in Figure 9. A 5 (frequency
bands) × 3 (sessions) ANOVA was performed to evaluate the
effect of training and frequency band. The statistical analysis
showed a significant main effect of frequency band (F4,205 = 4.52,

p = 0.002, η2 = 0.07), a significant main effect of sessions
(F2,410 = 3.56, p = 0.03, η2 = 0.002) and no significant imagination
type × sessions interaction (F8,410 = 0.32, p = 0.96, η2 = 0.0008).
Thus, we performed the post hoc linear mixed effect models
(lme) test for both frequency bands and the training sessions.
A significant difference was found in session one between the log
power difference in 10–14 and 1–7 Hz (Log power difference,
S1: P10−14 Hz – P1−7 Hz = 0.12, SEM = 0.037, Zvalue = 3.29,
p = 0.009), in session 2 between the log power difference in
10–4 and 1–7 Hz, in 14–28 and 1–7 Hz, in 29–40 and 1–
7 Hz (Log power difference, S1: P10−14 Hz – P1−7 Hz = 0.13,
SEM = 0.031, Zvalue = 4.02, p< 0.001; P14−28 Hz – P1−7 Hz = 0.10,
SEM = 0.031, Zvalue = 3.34, p = 0.007; P29−40 Hz – P1−7 Hz = 0.11,
SEM = 0.031, Zvalue = 3.59, p = 0.003), in session 3 between the
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FIGURE 7 | ERD/ERS value and its statistics. Only the hit trials are used for the calculation of ERD/ERS values. (A) The time varying group average of ERD/ERS
value for the right hand task (the upper row) and left hand task (the bottom row) across the three training sessions. The target cue appeared at the end of second 3
and the cursor feedback began at the end of second 5. (B) The grand average ERD/ERS values during the period of [5–7.5]s, which was marked in gray bar area in
subplot (A), were compared for right hand tasks and left hand tasks, separately. The statistical analysis showed a significant difference between channel C3 and C4
during each session; no significance was found among the session pairs across the training. ∗∗p < 0.01, ∗∗∗p < 0.001.

log power difference in 10–14 and 1–7 Hz, in 14–28 and 1–7 Hz,
in 29–40 and 1–7 Hz (Log power difference, S1: P10−14 Hz – P1−7

Hz = 0.13, SEM = 0.034, Zvalue = 3.73, p = 0.002; P14−28 Hz –
P1−7 Hz = 0.11, SEM = 0.034, Zvalue = 3.10, p = 0.017; P29−40 Hz –
P1−7 Hz = 0.11, SEM = 0.034, Zvalue = 3.10, p = 0.016). No
significant difference was found across the three training sessions
in any of the five frequency bands after the post hoc lme test.
Since the group average results of ERD/ERS might mask some
individual changes, four individual examples of the time varying
average ERD/ERS values across the three training sessions were
shown for the right-hand task and left-hand task, separately,
in Figure 10 and Supplementary Figures S1–S3. In Figure 10,
subject 3 showed a strong ERD on the contralateral hemisphere
and a moderate ERS on the ipsilateral hemisphere especially
in the latter two sessions for both the right-hand task and the
left-hand task. In Supplementary Figure S1, subject 18 showed

a moderate ERD on the contralateral hemisphere but a very
strong ERS on the ipsilateral hemisphere. In Supplementary
Figure S2, subject 34 displayed strong but separable ERSs on both
contralateral and the ipsilateral hemisphere. In Supplementary
Figure S3, a very weak ERD on the contralateral hemisphere and
a very strong ERS on the ipsilateral hemisphere was observed in
all three sessions for subject 25.

DISCUSSION

From the results of BCI behavioral performance, we were able
to see a significant increase of group average PVC in the third
session (78.3%) compared to the first session (72.0%), but the
increase was not significant on the second session. Zich et al.
(2015a) conducted an experiment consisting of four sessions on
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FIGURE 8 | (A) Group average ERD% lateralization (difference between contra- and ipsilateral ERD%, calculated from all the trials) with respect to the hand task,
across the three training sessions. The shaded red areas represented the standard error of the mean. The target cue appeared at the end of second 3 and the
cursor feedback began at the end of second 5. (B) The grand average ERD% lateralization values during the period of [5–7.5]s, which was marked in gray area in
subplot (A). Error bars represented the standard error of the mean. ∗∗p < 0.001.

four consecutive days. They reported an improvement of online
classification accuracy in a group of subjects (N = 16) from day 2
(69.1%) to day 4 (73.3%) but did not find any significant change
from day 2 to day 3 either. Our results were in accordance with
theirs in general, except that their subjects were exposed to an
additional training session with a high-density EEG system on
the first day. Due to the change of electrodes used for each
individual from day 1 to the remaining sessions, in their results
(Zich et al., 2015a), the classification accuracy of day 1 was not
compared to the remaining three sessions. By contrast, our results
clearly showed that training induced significant improvement
of classification accuracy from the first session to the third
session in a larger population size (N = 42). Additionally,
a marginally significant improvement of ITR from the first
session to the third session was also shown in this study. Note

that the significance was only reached in the low performance
group when dividing the population into the high and low
BCI performers according to their PVC accuracy, even though
the high BCI performers showed a similar trend of increasing
group average performance. Kaiser et al. (2014) found that a
significant increase of [oxy-Hb] in fNIRS and a stronger ERD
in the upper beta-frequency (24–30) band of the EEG were only
shown in the low BCI performers (five subjects) after ten sessions
of BCI training. Perdikis et al. (2018) showed an extensive
training course of more than ten BCI sessions in two spinal
cord injuries (SCI) pilots. They found a gradual improvement
of both behavioral performance and SMR modulation when
contrasting the results of the first training session and last
training session under real-world and even adverse conditions. In
our study, a significant improvement of behavioral performance
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FIGURE 9 | Log power spectra difference between channel C3 and channel
C4 of five frequency bands across three training sessions. The log power
difference between ipsilateral and contralateral hemisphere, with respect to
the direction of movement imagination, was shown. There was no significant
difference across the three training sessions in any of the five frequency
bands. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

(PVC and ITR) was only visible in the low BCI performance
group (18 subjects) as well, but no significant neurophysiological
change, such as R2 values and ERD/ERS, was observed. This
behavioral improvement is due to the larger population size, but
the insignificant neurophysiological change is perhaps a result of
fewer training sessions in this study. Nevertheless, the present
results indicate that an adequate amount of training is necessary
for the success of BCI control, especially for some subjects. For
example, in 8 out of 42 subjects (around 20% of subjects), their
PVC was below 70% on the first session but improved above 70%
in the third session. They would be identified as BCI illiterate
(Guger et al., 2003; Blankertz et al., 2010) simply due to an
insufficient amount of BCI training and this improvement could
happen in just 3–4 h’ training across a few days.

The abort rate reflected how easily subjects could finish the
task confidently and effectively. In the abort trials where subjects
could neither hit the correct target nor the incorrect one, the
subjects could not effectively modulate their brain rhythms to
reach the target. For some subjects, the decrease of abort rate
could be dramatic. For example, subject 19 had an abort rate of
14.2% in the first session but decreased the abort rate to 3.3%
by the third session; subject 33 had an abort rate of 88% in
the first session but decreased the abort rate to 56%. However,
the group average did not show any significant difference. The
abort rate was not decreased significantly from session 1 to
session 3 because most subjects did not show a consistent change
of abort rates across the sessions when individual results were
investigated. This might be due to the abort rate not being an
explicit measure/goal which subjects intentionally had to reduce.
It might be worth investigating the potential effect on the change

of these measures by displaying the PVC and abort rates to
the subjects at the end of each run. For high BCI performers,
there were only 6/24 subjects whose abort rates were higher
than 50% in the third session, but all were below 60% with a
single exception of 68%. For the poor performers, there were
only 2/18 subjects whose abort rates were lower than 50%; all
the other poor performers had abort rates within the range of
(50–80%) in the third session. Thus, the high BCI performers
could generally complete the task relatively well and confidently.
However, the low BCI performers struggled to complete the task.
This separation of high BCI performers and poor BCI performers
is in accordance with previous BCI research literature.

Similarly, the feedback duration could effectively show
another important metric measuring subjects’ modulation of
brain rhythm to finish the tasks to a certain degree. The shorter
the feedback duration toward the ideal 3 s, the better the
subject’s modulation is. Although there are a few cases where
the subjects’ average feedback duration reduced more than 1 s
in session 3 compared to their session 1, the group average
did not show any significant difference. Not surprising, most
subjects did not show a consistent change of feedback duration
across the sessions when individual results were checked. We
hypothesize that this might be because the feedback duration
was also not an explicit goal for subjects to intentionally reduce.
There was no explicit reward on this measure. Thus, a significant
change in feedback duration could not happen in the current
training setup (a few hours). Because we did not find a consistent
change of neurophysiological signatures across sessions, another
possibility for this insignificant change was insufficient training
sessions for most subjects. A more delicate experiment needs
to be conducted to address this question of the insignificance
of metrics (abort rate, feedback duration) for BCI learning. The
analysis of Riemannian class distance provides distinctiveness
information. This metric measures the difference of EEG patterns
by calculating the Riemannian distance of class covariance
from all the channels between the two imagination tasks. No
statistically significant difference was observed from any session
pair although a slightly increasing trend was visible. This metric
might not be sensitive enough to capture the change if there
was any. This insensitivity was perhaps because all the channels
were included in this analysis. The ITR is another frequently
used metric to measure the efficiency of an online BCI system.
In the current study, we found a marginal improvement of ITR
in a group of 42 subjects. Again, only the low BCI performers
approached a significant improvement of ITR when the subjects
were divided into high and low BCI performance groups as
previously done for the PVC analysis. This ITR result was in
accordance with the PVC result, and it further showed that
not only did subjects’ performance accuracy improve during the
training, but their efficiency did as well. Grouping subjects into
high and low BCI performers further revealed that the training
was particularly crucial to the low BCI performers.

From the results of the R2 values for channel C3 and C4, we did
not observe a significant change of R2 value for channel C3 across
the three training sessions. No clear trend was shown for channel
C4 either. This observation held, regardless of whether all trials,
or only the hit trials were used. However, the statistics did show
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FIGURE 10 | An individual example (Subject 3) of the time varying average ERD/ERS value for the right hand task (the first row) and the left hand task (the second
row) across the training sessions. Shown is the similar convention to the group average results. A strong ERD on the contralateral hemisphere and a moderate ERS
on the ipsilateral hemisphere was observed especially in the latter two sessions.

a significant difference of the R2 value between channel C3 and
channel C4 at the beginning of the training session, i.e., session 1,
if only the hit trials were used. This difference between the left
hemisphere and right hemisphere disappeared at the second and
third training session. This might allow us to hypothesize that
the contribution of BCI control from channel C3 could become
stronger compared to channel C4 across the training progress.
However, we did not find any significant change of R2 values
across the sessions for both channel C3 and channel C4. Thus,
the hypothesis was not supported by the current data. Since five
out of 42 subjects were left-handed, we display the individual
R2 values for both the right-handed subjects and the left-handed
subjects separately across the three training sessions in Figure 5.
A previous study suggested that handedness (dominant hand
vs. non-dominant hand) might reveal the imbalanced ability
to modulate brain rhythms of the left hemisphere and right
hemisphere (Bai et al., 2005). We did find that most of the
right-handed subjects showed a higher R2 value on the right
hemisphere of channel C4 while the opposite phenomenon was
observed for most left-handed subjects across the three training
sessions. This observation was masked by the group analysis of
merging the right-handed and the left-handed subjects. However,
whether the right-handed subjects have a dominant modulation,
i.e., larger R2 values, on the right hemisphere of channel C4, or the
left-handed subjects have a dominant left side modulation over
channel C3, did not pass the significance test. It is worth noting
that there were only five left-handed subjects in this study; it is
hard to make any conclusion on the left-handed subjects.

From the result of the ERD/ERS value for left- and right-hand
tasks, we could see clear and strong ipsilateral ERS compared
to the EEG activity of the baseline. In this study, most of
the subjects who showed the ability of effective BCI control
demonstrated the strong modulation of ERS on the ipsilateral
hemisphere with respect to the imagination task. The group
average results supports this observation. Several individual
examples such as subject 18 in Supplementary Figure S1,
subject 34 in Supplementary Figure S2, and subject 25 in
Supplementary Figure S3 showed strong ERS modulation. In
previous studies (Pfurtscheller et al., 2006; Zich et al., 2015a),
Pfurtscheller et al. showed strong bilateral ERDs in their group
analysis which were different from ours. This might be due to
the difference of the cursor control applications and decoding
algorithms since our previous study showed a consistent ERS
modulation as well (Meng et al., 2016). The average ERD/ERS
values during the period of the first 2.5 s after the cursor’s
movement showed a significant difference in the electrode C3
and C4 for both left-hand and right-hand tasks. This indicated
that the strong ipsilateral ERS drove the cursor in the same
direction as the imagination of the corresponding hand. But the
statistical analysis showed that there was no significant change
of ERD/ERS values across the three training sessions for either
channel C3 or channel C4, for either the right-hand or left-hand
tasks. Bai et al. (2005) previously concluded that the activation on
the left hemisphere during left-hand movements is greater than
that on the right hemisphere during right-hand movements, in
a group of nine right-handed subjects; they also reported that
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a contralateral preponderant ERD distribution for right-hand
movements, i.e., lateralized power was only observed during
preparation of right-hand movement, while no lateralized power
was seen during the preparation of left-hand movement. Our
ERD lateralization analysis in Figure 8 is in line with their
findings although our task was motor imagination. An obvious
ERD lateralization and a trend of increasing ERD lateralization
was only found in the right-hand imagination task; a negligible
ERD lateralization was displayed in the left-hand imagination
task. Moreover, a significant difference of ERD lateralization was
found between the right- and left-hand imagination task during
both sessions 2 and 3. Zich et al. (2015a) showed a dominant role
of alpha (8–12 Hz) modulation and a significant increase of log
power difference in both the alpha and beta (13–30 Hz) bands in
their study. We did a similar group analysis in Figure 9. A similar
dominant role of alpha power (10–14 Hz in our case) was found,
but we did not find any significant improvement of a log power
difference in our data.

Limitations and Future Works
The combined analysis of two studies gives us a pool of
42 subjects and a unique opportunity to study the learning
effect across training sessions. However, there were only three
training sessions for each subject. We did see some significant
change of behavioral performance such as the improvement of
PVC and ITR, and other trends of neurophysiological results
including the increase of ERD lateralization for right-hand task
although they were not statistically significant yet. It is not
clear yet when the change of behavioral performance might
saturate and when significant changes of neurophysiological
characteristics such as the R2 value, ERD lateralization might
emerge and saturate in this study. Also, the session interval
for each participant varied between 1 day to 1 week due to
scheduling conflicts for a large number of subjects. This might
introduce an extra variance to the result. In the future, it is
worth conducting a study that consists of more BCI sessions
in a large number of subjects with more controllable session
intervals. Furthermore, other metrics like Kullback-Leibler (KL)
divergence might help to explore the change of data distribution
within and across the sessions (Vidaurre et al., 2011) and it might
extract some additional information which might help optimize
the experiment in the future.

CONCLUSION

In this study, we analyzed a pooled dataset consisting of 42
subjects’ three BCI training sessions. The behavioral performance
results showed that there was a significant increase of BCI PVC
accuracy (p = 0.004) and a marginal significant improvement
of ITR (p = 0.05) in the third training session compared to
the first session. No other significant difference of behavioral
measures such as group average abort rate or feedback duration
was found across the training sessions. Further analysis on the
group average R2 value indicated that there was a significant
difference of the R2 value on the first training session, but this
difference diminished for the remaining sessions if only hit trials

were considered; there was no significant difference if all of
the trials were used. A significant difference of ERD/ERS values
between the channel C3 and C4 was shown across the three
training sessions for both left-hand and right-hand tasks, and this
stronger ipsilateral ERS phenomenon explains the experimental
observation of the successful control of the cursor toward the
same side of hand imagination. A significant ERD lateralization
was only shown in the right-hand imagination task but not in
the left-hand imagination task in the group level. Neither R2

values nor ERD/ERS values showed significant change across
the three training sessions for neither channel C3 nor channel
C4. Altogether, the results of this study revealed the importance
of training for successful BCI control and that a significant
improvement in BCI skills could happen with just a few hours
of training, distributed over a few days. Therefore, experimental
design leveraging an engaging training protocol might be critical
in making a successful BCI application in the future.
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FIGURE S1 | An individual example (Subject 18) of the time varying average
ERD/ERS value for the right hand task (the first row) and the left hand task (the
second row) across the training sessions. Shown is the similar convention to the
group average results. A moderate ERD on the contralateral hemisphere and a
very strong ERS on the ipsilateral hemisphere was observed in all
of three sessions.

FIGURE S2 | An individual example (Subject 34) of the time varying average
ERD/ERS value for the right hand task (the first row) and the left hand task (the
second row) across the training sessions. Shown is the similar convention to the

group average results. Strong but separable ERSs on both of the contralateral and
the ipsilateral hemisphere were observed especially in the
latter two sessions.

FIGURE S3 | An individual example (Subject 25) of the time varying average
ERD/ERS value for the right hand task (the first row) and the left hand task (the
second row) across the training sessions. Shown is the similar convention to the
group average results. A very weak ERD on the contralateral hemisphere and a
very strong ERS on the ipsilateral hemisphere was observed in all
of three sessions.
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