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The term osteoimmunology was coined many years ago to describe the research

field that deals with the cross-regulation between bone cells and the immune system.

As a matter of fact, many factors that are classically considered immune-related,

such as InterLeukins (i.e., IL-6, -11, -17, and -23), Tumor Necrosis Factor (TNF)-α,

Receptor-Activator of Nuclear factor Kappa B (RANK), and its Ligand (RANKL), Nuclear

Factor of Activated T-cell, cytoplasmatic-1 (NFATc1), and others have all been found

to be crucial in osteoclast and osteoblast biology. Conversely, bone cells, which we

used to think would only regulate each other and take care of remodeling bone,

actually regulate immune cells, by creating the so-called “endosteal niche.” Both

osteoblasts and osteoclasts participate to this niche, either by favoring engraftment, or

mobilization of Hematopoietic Stem Cells (HSCs). In this review, we will describe the main

milestones at the base of the osteoimmunology and present the key cellular players

of the bone-immune system cross-talk, including HSCs, osteoblasts, osteoclasts,

bone marrow macrophages, osteomacs, T- and B-lymphocytes, dendritic cells, and

neutrophils. We will also briefly describe some pathological conditions in which the

bone-immune system cross-talk plays a crucial role, with the final aim to portray the state

of the art in the mechanisms regulating the bone-immune system interplay, and some of

the latest molecular players in the field. This is important to encourage investigation in

this field, to identify new targets in the treatment of bone and immune diseases.

Keywords: osteoimmunology, RANKL, osteoclasts, osteoblasts, immune cells, inflammation, rheumatoid arthritis,

osteoporosis

INTRODUCTION

Evidence collected over the years draw bone researchers to the conclusion that bone accomplishes
several unexpected functions besides its classical role in locomotion, protection of vital organs and
in the regulation of calcium and phosphate homeostasis. As a matter of fact, it is now well-accepted
that bone has a role in the regulation of glucosemetabolism, energy expenditure (1–3), male fertility
and cognitive functions, through osteoblasts secretion of osteocalcin (4). Therefore, we can assume
that bone is a central organ, capable of regulating several other tissues and to be in turn influenced
by them.

An intriguing aspect testifying the versatility of bone and its cells, is its deep cross-talk
with the immune system. This led to the establishment of a new interdisciplinary field, named
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osteoimmunology, thanks to the great contribution of studies
by Takayanagi and many others. These pointed out the
pivotal role of some classical immunoregulatory factors in
osteoclast differentiation (5) as well as the cross-talk between
autoimmune diseases, such as Rheumatoid Arthritis (RA), and
bone destruction (6). Intriguingly, the cross-talk between the
immune system and bone is bidirectional, meaning that bone
cells also influence immune cells.

In this review, we will describe the main milestones in
the history of osteoimmunology, as well as the latest findings
enriching this discipline, with the final aim to have a state-of-
the-art reference of themechanisms regulating the bone-immune
system interplay. This is important to encourage investigation in
this field, in order to identify new targets in the treatment of bone
and immune diseases.

BONE BIOLOGY

In the past, bone was seen as a static tissue, a simple “scaffolding”
for all the other organs. Now we know bone is actually extremely
dynamic, undergoing continuous cycles of modeling during
growth and remodeling during adulthood, which guarantee
adequate mechanical properties and proper bone shape (7).
Bone modeling and remodeling are guaranteed by the action
of three types of bone cells: osteoclasts, which resorb bone,
osteoblasts, which depose bone, and osteocytes, which are former
osteoblasts buried in bone matrix, controlling bone mechano-
physiology, and able to resorb and depose bone. The cycle of bone
remodeling happens following these 4 phases: (1) latent phase:
bone-lining cells are activated by osteocytes following a stimulus,
starting osteoclast differentiation (Figure 1) and exposing the
bone surface; (2) activation phase: osteoclasts resorb the portion
of bone left exposed by the bone-lining cells. When they are
done resorbing, they detach from bone and undergo apoptosis;
(3) reverse phase: macrophage-like reverse cells migrate to the
resorbed lacuna and clean it of the debris left by osteoclasts.
Reverse cells also secrete factors that summon osteoblasts in
the resorption lacuna; (4) formation phase: this is the longest
phase in bone remodeling, lasting up to 6 months. Osteoblasts
occupy the resorption lacuna and fill it up with organic osteoid
matrix, which they then mineralize (7). In this last phase,
osteoblasts may undergo apoptosis, or embed themselves in the
bone matrix they produce, eventually becoming osteocytes (8).
Bone modeling and remodeling are very similar as far as the
mechanisms and the cellular players go. The key difference is
that modeling happens during growth and fracture repair, and
guarantees bone mass accrual, while remodeling happens in
adulthood, does not change bone mass, but keeps mechanical
properties at physiological levels, by continuously renewing the
bone matrix. Although this is quite an accurate depiction of
“normal” bone modeling/remodeling, it has become clear in
the last years, that the molecular and cellular players involved
in the maintenance and accrual of bone mass are many more
than originally expected. A key player in the maintenance
of bone mass in bone pathophysiology is undoubtedly the
immune system, giving rise to an extremely important field

of research: osteoimmunology. This will be discussed in the
following paragraphs and chapters.

OSTEOIMMUNOLOGY

The term osteoimmunology was likely adopted for the first
time by Arron and Choi (9), to describe the phenomenon of
T-cell-mediated regulation of osteoclasts. Most of the research
projects related to bone-immune system cross-talk are quite
recent and mainly focused on the influence of the immune
system on osteoclast physiology. As a matter of fact, these cells
share a common origin with immune cells, since they both arise
from bone marrow hematopoietic stem cells (10). Moreover, like
other hematopoietic cells, osteoclast precursors can be detected
as circulating cells in blood and their number increases under
inflammatory conditions, characterized by high levels of the
potent inflammatory cytokine Tumor Necrosis Factor (TNF)-
α (11, 12).

Bone Cells and the Immune System
In the following paragraphs, the many ways through which bone
cells are linked to the immune system, and how they regulate
immunity, will be discussed.

Osteoblasts
A pivotal work demonstrating a close connection between
bone and the hematopoietic compartment came in 2003,
when Calvi and colleagues demonstrated that mice genetically
engineered to express a constitutively active PTH/PTHrP
receptor in osteoblasts, had more Hematopoietic Stem Cells
(HSCs). This was due to an increase in osteoblastic Jagged1,
which in turn mediated said effect through activation of
Notch1 (Figure 2). Intriguingly, when Calvi and colleagues
myeloablated WT mice, and subsequently performed bone
marrow transplantation, treatment with intermitting doses of
PTH improved the engraftment rate to 100%. This could be
important for human conditions that require similar procedures
(13). Likewise, Zhang et al. found a direct correlation between
the number of a subset of osteoblasts, called Spindle-shaped-
N-cadherin+CD45− Osteoblasts (SNOs) and the number of
HSCs. Moreover, long-term HSCs were found bound to SNOs
by an N-cadherin/βcatenin-dependent mechanism (14). These
data clearly demonstrate that a subpopulation of osteoblasts plays
a crucial role in HSCs regulation, thus identifying in the bone
marrow the so called “endosteal niche” besides the well-known
vascular niche (15).

Later on, Zhu and colleagues definitely demonstrated that
osteoblasts contribute to the commitment and differentiation
of B lymphocytes from hematopoietic stem cells (16). In
particular, in mice subjected to osteoblast conditional ablation,
B-lymphocyte differentiation was compromised because of the
lack of transition from Rag2− to Rag2+ committed lymphoid
progenitors. This effect was likely due to osteoblast secretion
of InterLeukin (IL)-7 and C-X-C motif chemokine Ligand
(CXCL)12 alias Stromal cell-Derived Factor (SDF) 1, two
cytokines pivotal for B cells differentiation (17, 18). A collection
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FIGURE 1 | Immune factors in osteoclastogenesis. Osteoclasts differentiation from pre-osteoclasts involves several factors, most of which are derived from the

immune system. Signaling from TREM2, OSCAR, c-FMS, and RANK cause the nuclear translocation of several transcription factors activating pre-osteoclasst

proliferation and differentiation. These include the master osteoclastogenesis controllers NFATc1, which also self-amplifies, and NFkB, along with the early

commitment factor PU.1 and AP1. This is enacted both directly by RANK, and indirectly through TRAFs and PLCγ. Osteoclastogenesis can be hindered by several

factors, two key ones are the decoy receptor for RANKL, OPG, and the immune factor NUR77, which can inhibit NFATc1 stopping its self-amplifcation loop. The final

outcome of these molecular pathways is the transcription of key osteoclast genes, such as DC-STAMP, MMP9. CTSK, ACP5, and RANK, which eventually results in

the generation of a mature osteoclast.

FIGURE 2 | Regulation of immune cells by bone cells. Osteoclasts reduce hematopoietic stem cells (HSCs) homing by secreting cathepsin K (CTSK), which in turn

degrades stromal cell-derived factor (SDF)1, stem cell factor (SCF), and osteopontin (OPN) depriving the bone niche of HSC-binding sites, which causes their

mobilization. Osteoblasts, after stimulation with pro-osteoblastogenic factors such as intermittent parathyroid hormone (PTH), express Jagged1 (Jag1), which binds

NOTCH1 on HSCs, and allows them to engraft and survive into the endosteal niche. B cells and bone cells communicate in multiple ways. For example, osteoblasts

produce IL-7 and the chemokine CXCL12, that are fundamental for B-cells survival and activity.
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TABLE 1 | Factors produced by immune cells influencing osteoblast activity.

Factor Source Action References

IL-11 Bone marrow stromal cells Increase osteoblast activity (19)

IL-6 Bone marrow stromal cells, osteoblasts,

macrophages, muscle tissue, fibroblasts

Reduce osteoblast differentiation and

activity

(20, 21)

IFN-γ T-cells, NK-cells Increase osteoblast activity (22, 23)

IL-17F Th17 cells Increase osteoblast activity (24, 25)

IL-15 PG-stimulated stromal cells, NK-cells Reduce viability, increase apoptosis (26)

OSM B-cells Increase osteoblast activity (27)

of the main immune-derived factors promoting or hindering
osteoblast differentiation and activity is present in Table 1.

Osteocytes
Osteocytes are the main producers of Receptor Activator of
Nuclear factor Kappa B ligand (RANKL) in the bone, therefore
since this cytokine is crucial not only for osteoclasts but also for
lymphocyte development (see next paragraph) it is conceivable
that this cell type could influence the immune system. Indeed,
it has been demonstrated that RANKL arising from osteocytes
contributes to the increased osteoclastogenesis and bone loss
observed in estrogen deficient conditions. Moreover, specific
deletion of the Rankl gene in osteocytes also prevented the
increase in B cell formation caused by estrogen deficiency
(28). In support of the relationship between osteocytes and
the immune system, Sato and colleagues found that in vivo
ablation of osteocytes leads to severe lymphopenia, caused by the
loss of lymphoid- supporting stroma in the thymus and in the
bone marrow, which is reverted by re-establishing the osteocyte
population (29).

Osteoclasts
Osteoclasts have been shown to regulate the HSC niche both
directly and indirectly through osteoblasts (Figure 2). Firstly,
osteoclasts can increase HSC mobilization by secreting cathepsin
K, a crucial protein for osteoclast function, which cleaves SDF1,
OsteoPontiN (OPN), and Stem Cell Factor (SCF), depriving
the bone niche of HSC-binding sites. Consequently, HSCs
mobilize to the circulation and are no longer kept quiescent
(30). Furthermore, it has been shown that oc/oc mice, which
have an inactivating mutation in the T Cell, Immune ReGulator
1, ATPase, H+ transporting, lysosomal V0 protein A3 (Tcirg1)
gene and therefore almost entirely lack osteoclasts activity (31),
have an overrepresentedMesenchymal StemCell (MSC) fraction.
However, despite the higher number of precursors, MSCs
differentiate less into osteoblasts, which impairs osteoblast-
mediated HSCs homing to bone (32). Therefore, osteoclasts
number and activity need to be tightly regulated, because
any alteration could lead to excessive HSCs mobilization.
Furthermore, oc/ocmice present with improper B lymphopoiesis,
which is blocked at the pro-B stage, leading to fewer mature
B-cells. T-cell activation is also affected, leading to a form of
B-T-cells immunodeficiency (33).

As it is well-known, osteoclast differentiation strictly relies
on the RANKL/RANK pathway (34, 35). RANKL interacts
with its receptor RANK expressed by osteoclast precursors,
thus recruiting TNFR-Associated Factors (TRAFs), which in
turn trigger osteoclast differentiation by stimulating nuclear
translocation of Nuclear Factor k-light-chain-enhancer of
activated B cells (NFkB), Activator Protein 1 (AP1) complex
andNuclear Factor of Activated T-cells, cytoplasmic, calcineurin-
dependent 1 (NFATc1) (36). All these factors stimulate
transcription of several osteoclast-specific genes, such as Tartrate
Resistant Acid Phosphatase (TRAcP), calcitonin receptor,
cathepsin K, OSteoClast Associated Receptor (OSCAR), alpha V
β3 integrin, Matrix Metalloproteinase (MMP) 9, and Dendritic
Cell-Specific Transmembrane Protein (DC-STAMP) the latter
involved in osteoclast fusion [Figure 1, (7)].

Of note, RANKL is also produced by activated T-lymphocytes
as soluble form and is expressed in lymph nodes and
thymus. Its importance in the immunological context was
demonstrated by the fact that mice lacking RANKL showed
not only a bone phenotype, resulting in osteopetrosis due to
the lack of osteoclasts, but also presented with immunological
defects, with impaired lymphocytes development and lack of
lymph node organogenesis (37). Consistently, Dougall et al.
demonstrated that RANK is essential for osteoclast and lymph
node development, since RANK knockout mice showed an
osteopetrotic phenotype along with a lack of peripheral lymph
nodes and a marked deficiency in B and T lymphocytes (38).
In contrast, OsteoProteGerin (OPG) is a decoy receptor for
RANKL, belonging to the TNF Receptor (TNFR) superfamily,
which prevents RANKL interaction with its receptor RANK,
eventually leading to inhibition of osteoclast formation (35).
Not only osteoblasts but also B lymphocytes produce OPG, thus
concurring to regulate osteoclastogenesis (39).

The awareness of a close interconnection between bone
and immune system was increased by Takayanagi et al.
(40), who demonstrated that mice lacking Immunoreceptor
Tyrosine-based Activation Motif (ITAM)-harboring adaptors,
Fc Receptor common Gamma subunit (FcRγ) and DNAX-
Activating Protein (DAP)12, presented with an osteopetrotic
phenotype caused by a reduction of osteoclast differentiation.
Indeed, they showed that RANKL/RANK pathway requires the
ITAM-dependent costimulatory signals to activate osteoclast
differentiation (5). Later, they found that FcRgamma and DAP12
associated to OSCAR and receptor expressed on myeloid cells
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2 (TREM2), respectively, eventually leading to PhosphoLipase
C (PLC)γ activation, which in turn activates calcium signaling,
necessary for NFATc1 auto-amplification (41, 42). Osteoclasts
also express Bruton’s Tyrosine Kinase (Btk) and Tec, which have
a physiological role in B cells (43), and mice double knock out for
both these kinases manifest osteoclast-poor osteopetrosis, likely
due to a suppression of the RANKL induced phosphorylation of
PLCγ (44).

Regulation of osteoclast formation is a complex mechanism,
calling into questions more and more pathways. One of the
last is NR4A1 (alias Nur77), which belongs to the orphan
nuclear receptor family, already known to be a key regulator
of myeloid and lymphoid differentiation and function (45, 46).
Recent findings demonstrated a role for this nuclear orphan
receptor in the suppression of osteoclast differentiation (47).
Moreover, Scholtysek and colleagues clarified a role for NR4A1
in controlling pre-osteoclast recruitment and migration, with an
effect linked to the myeloid lineage. In fact, myeloid-specific but
not osteoblast-specific deletion of NR4A1 resulted in osteopenia
due to an increase of osteoclast number (48). The immune-
related factors influencing osteoclast formation and biology are
many more; a list of the most important ones is presented in
Table 2.

Immune Cells in Bone Physiology
As described, bone cells can influence the immune system, and
employ several immune factors for their physiologic function.
The opposite is also true: immune cells can influence bone health
in many ways, as will be described in the following paragraphs.

T-Cells
T-cells are a key component of adaptive immunity. These small
and relatively rare cells have a key role not only in immunity,
but also in osteoimmunology. T-cells are not all created equal,
and in this group, we can find cytotoxic CD8+ T-cells, CD4+

T-helpers, further subcategorized in Th1, Th2, Th17, and T-reg
cells, the latter having an important role in preventing excessive
or improper (e.g. self-directed) immune response (61). The links
between T-cells and bone biology are numerous: essentially all
the subtypes of T-cells are able to influence bone cells (mostly
osteoclasts). However, a particularly important role for Th17 and
T-reg cells is emerging. Th17 cells have been proposed to be the
most osteoclastogenesis-inducing T-cells. They are characterized
by the expression of a cytokine signature: IL-17A, IL-17F (hence
the name), IL-22, IL-26, and IFN-γ (62). These cells can induce
Macrophage Colony-Stimulating Factor (M-CSF) and RANKL
expression in osteoblasts and stromal cells (6), produce RANKL
and TNF-α, while parallelly increasing RANK expression in
osteoclast precursors (63). These features make them potent
osteoclastogenesis inducers, which have been already described
as players in human bone diseases, such as RA (64) and multiple
myeloma (65). With regards to T-reg cells, their role is clearly
anti-osteoclastogenic, and it is enacted through a soluble factors-
mediated mechanism, as well as a contact-mediated mechanism
(24). In fact, co-culture experiments of whole Peripheral Blood
Mononuclear Cells (PBMCs) or T-reg-depleted PBMCs resulted
in higher osteoclast formation in the former (66), which seems to

TABLE 2 | Secreted and membrane-bound immune factors promoting

osteoclastogenesis.

Factor Source References

RANKL Osteoblasts, osteocytes, neutrophils,

sinoviocytes, T-cells

(28, 37, 49)

OPG Osteoblasts, B-cells (35, 50)

M-CSF Osteoblasts, activated T-cells (6, 51, 52)

TNFα Activated leucocytes (11, 12)

IL-1α,−1β Activated leucocytes, osteoblasts,

synoviocytes, endothelial cells

(53)

IL-7 Osteoblasts, bone marrow stromal cells,

leucocytes

(53)

IL-8 Activated leucocytes (53)

IL-11 Bone marrow stromal cells (19)

IL-23 Dendritic cells, Th17 T-cells (24, 54)

IL-34 Dendritic cells, Th17 T-cells, synoviocytes,

osteoblasts

(24, 53)

Prostaglandins Bone marrow and bone cells (55)

SOFAT T-cells (56)

IL-6 Bone marrow stromal cells, osteoblasts,

macrophages, muscle tissue, fibroblasts

(19–21, 57, 58)

IFN-γ T-cells, NK-cells (22, 23)

IL-17A Th17 cells (24, 59, 60)

IL-15 PG-stimulated stromal cells, NK-cells (26)

be dependent on TGF-β and IL-4, while the latter was found to
be Cytotoxic T-Lymphocyte Antigen (CTLA)4-dependent (67).
In the aforementioned reports, in vitro bone resorption was
reduced up to 80% by the action of T-reg cells, which makes
them potentially very important in autoimmune osteolysis-
inducing disease such as RA. In fact, this has been proposed
and demonstrated in mice (68), although human studies are still
lacking to date.

Dendritic Cells
Dendritic Cells (DCs) are antigen-presenting cells entrusted
with the important role of directing cell-mediated immunity
toward the right targets, as quickly as possible and avoiding
self-immunity (69). Their role in bone biology has in fact been
historically thought as mostly indirect, through T-cells (70).
Dendritic cells are in fact not only able to present antigens to
T-cells, but also to regulate their activity and subtype balance
through cytokine signaling (69, 71). However, another interesting
concept that could be important for RA is that DCs can
transdifferentiate into osteoclasts through M-CSF and RANKL
stimulation, as if they were osteoclast precursors. Since DCs
are numerous in and around the inflamed synovium in RA,
they could well-contribute to the osteolytic disease in RA (72).
However, DCs have not been further investigated in the last years
in osteoimmunology in human studies.

Neutrophils
Neutrophils also play a role in bone biology, and particularly
in inflammation-induced bone loss (73). In fact, neutrophils
are usually the first cell type migrating to damage sites,
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including bone (74), and they can secrete many chemokines,
cytokines and small molecules, which are able to act as
immunomodulatory factors. For example, by CCL2 and CCL20
secretion, neutrophils are able to summon Th17 cells (73) which
in turn cause bone loss, as discussed in the above paragraphs.
However, absence of neutrophils can be even more damaging
to bone tissue, as it eventually results in local IL-17-driven
inflammatory bone loss (75). Remarkably, activated neutrophils
express RANKL in the inflammatory site, and if that site is
the synovium, they can actively participate in osteoclastogenesis,
which increases RA-related osteolysis (76). In summary, although
the role of neutrophils in osteoimmunology is not cut-and-
dried, the general consensus is that activated neutrophils are
osteoclastogenesis inducers, both directly and indirectly.

B-Cells
B-cell development relies on the production of several factors,
including RANKL, OPG, IL-7, and CXCL12, which are produced
by bone marrow stromal cells and osteoblasts [Figure 2, (50)].
As already mentioned, RANK knockout mice presented with a
reduction in the number of mature B220+IgM+ and B220+IgG+

B-cells in lymph nodes (38, 77). Further studies demonstrated
that not only RANKL arising from the bone marrow/bone
compartment is crucial for B-cell development, but also B-
cells themselves produce RANKL, which then acts as an
autocrine factor (78). However, when RANK was conditionally
deleted in the pro-B cells, B cell development was not affected
(79) thus suggesting that RANKL could interact with an
alternative receptor.

The evidence that B cells produce RANKL suggests that
they could influence osteoclasts, and this is the case. In fact,
Onal and colleagues demonstrated that mice lacking RANKL
in B lymphocytes were partially protected from ovariectomy-
mediated bone loss, through a mechanism counteracting the
increase in osteoclasts number that is a hallmark of this mouse
model. Conditional knock out of RANKL in T-lymphocytes had
no effect on ovariectomy-induced bone loss (78). Interestingly,
IL-7 transgenicmice showed focal osteolysis, besides the expected
increase of pro-B and pre-B cells, while mice lacking the IL-
7 receptor showed suppression in B-lymphocyte development
associated to an increased bone mass (80).

In vitro studies have shown that purified B cells can be driven
to differentiate into osteoclasts when treated with RANKL, thus
acting as a source of osteoclast progenitors in vitro (81, 82). In
contrast, in vivo lineage-tracing studies to investigate whether
cells committed to the B cell lineage can act as osteoclast
progenitors found that this was not the case, therefore the authors
conclude that the role of B cells is not to act as osteoclast
progenitors but as cells supporting osteoclasts formation (28).

Natural Killer (NK) Cells
Natural Killer (NK) cells, as all other lymphocytes, play a
role in the regulation of bone homeostasis. In fact, several
reports emerged stating that they are particularly important
in bone destruction induced by RA, and they are also able
to induce osteoblast cell death (26, 83, 84). This makes NK
cells a potential therapeutic target to reduce RA-induced bone

destruction. However, NK cells have also been described as
helpful and necessary to slow down RA by recent reports (85),
casting doubts over the efficacy of a hypothetical anti-NK-cells
treatment in RA.

Osteomacs and Bone Marrow Macrophages
As other organs in the body, bone and bone marrow present
with resident macrophages, which include bone marrow
macrophages and osteal macrophages (86). The latter,
also known as osteomacs, are F4/80 positive and TRAcP
negative, and are located close to the bone surface. It
has been recently demonstrated that in 2-day-old mouse
calvarial osteoblasts a small population of CD45+F4/80+

osteomacs can be detected (87). This subpopulation
cooperates with osteoblasts and megakaryocytes to promote
hematopoietic progenitor and HSC function (87, 88).
The same authors also demonstrated that highly purified
CD45+F4/80+ osteomacs from neonatal calvarial osteoblasts
can differentiate into TRAcP positive osteoclasts able to resorb
bone (88).

Notably, in vitro and in vivo studies demonstrated a role
for these bone macrophages in osteoblast differentiation by
producing Bone Morphogenetic Proteins (BMPs) (89) and
Oncostatin M (27). Moreover, Chang and colleagues found that
depletion of osteal macrophages in primary osteoblasts inhibited
their differentiation (90). In vivo approaches able to selectively
ablate osteal macrophages but not osteoclasts showed that their
lack determined a decrease in bone formation, a reduction in
bone growth in young mice and osteoporosis (90–92). Therefore,
osteomacs are versatile cells, able to regulate bone mass, become
osteoclasts, and actively participate in the homeostasis of the
immune system.

Inflammation and Inflammatory Factors
Several cells of the immune system (T and B cells, NK cells,
monocyte/macrophage and dendritic cells) produce InterFeroN
(IFN)-γ, which has a pivotal role in innate and adaptive immune
responses as well as in the regulation of inflammation (22,
23). In bone, IFN-γ affects both osteoblasts and osteoclasts.
The former, which produce low levels of this cytokine, are
indeed positively affected, since IFN-γ increases osteoblast
differentiating genes, like Runt related transcription factor 2
(Runx2), Osterix, ALkaline Phosphatase (ALP) and Osteocalcin
(93, 94) and mice knock out for the IFN-γ receptor showed
reduced osteoblast differentiation (95). Conversely, IFN-γ has an
inhibitory effect on adipogenesis (96).

Much data has been collected about the inhibitory effect
of IFN-γ on osteoclast differentiation [for a review see (23)].
This protein is known to counteract the effect of M-CSF on
osteoclast precursors by reducing the expression of its receptor
c-fms, eventually leading to a reduced pool of Rank-positive
preosteoclasts (97). Furthermore, IFN-γ promotes TRAF6
degradation (53, 98), thus inhibiting the downstream signaling
which involves JNK and NFkB, while it induces osteoclast
apoptosis by activating Fas-FasL-mediated death signaling (99).
However, other studies show a pro-osteoclastogenic effect of
IFN-γ in the late state of differentiation. This depends on the
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upregulation of NFATc1 and c-fos, which in turn stimulate
DC-STAMP expression, thus promoting osteoclast fusion (100).
Another indirect pro-osteoclastogenic effect of IFN-γ is due to
its ability to increase the secretion of CXCL10, also known as
Interferon gamma induced Protein 10 (IP-10), by macrophages
and this cytokine in turn stimulates the production of RANKL
and TNF-α by T cells (101).

Inflammatory diseases, such as RA, periodontal disease (see
later), systemic lupus erythematous, inflammatory bowel diseases
and cystic fibrosis are all characterized by bone loss (6, 102–106),
which is not only secondary to the employ of anti-inflammatory
corticosteroid therapies (107), but is also due to a direct effect
of inflammatory cytokines on osteoclasts, thus creating a sort of
“vicious cycle”.

So far, a plethora of inflammatory cytokines have been
identified as positive modulators of osteoclasts [for a review
see (53)]. Above all the proinflammatory cytokine TNF-α,
which directly stimulates osteoclastogenesis by a mechanism
independent of RANKL (108) as well as indirectly, by promoting
RANK expression on preosteoclasts (109) and increasing
RANKL and M-CSF production by osteoblasts and activated T
cells (50, 51).

The IL-6 family includes at least three pro-osteoclastogenic
cytokines: IL-6, -11 and -23. The first stimulates
osteoclastogenesis by a mechanism independent of RANKL,
since the presence of OPG does not blunt this effect (57). This
is accompanied by a positive stimulation of RANKL production
by stromal cells and osteoblasts (19, 58). As for osteoblasts, IL-6
reduces their differentiation in vivo (20) and in vitro by affecting
the MEK2 and Akt2 pathways (21).

Also, IL-11 has a pro-osteoclastogenic effect (19), while on the
osteoblast side it seems to be pro-osteogenic (110, 111).

IL-23 is mainly produced by dendritic cells and macrophages,
and it indirectly stimulates osteoclastogenesis by increasing
RANK and RANKL expression by osteoclast precursors and
osteoblasts, respectively (54). Other factors strongly promoting
osteoclastogenesis are prostaglandins (55), IL-1α, -1β, -7, -8, and
-34 (53).

OSTEOIMMUNOLOGY IN BONE AND
IMMUNE DISEASES

As it is easy to imagine, the link between bone and the
immune system in physiology is also maintained in pathological
conditions: many diseases affecting bone have an immunologic
origin, while some immunological disorders, such as acute
myeloid leukemia, can originate from bone-derived signals, as
will be described in the following paragraphs.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a T helper (Th) type 1, degenerative
disease with strong genetic predisposition factors (up to 50%),
characterized by synovitis, persistent inflammation and the
generation of antibodies against endogenous proteins, especially
rheumatoid factor (112). Takayanagi’s group demonstrated a
close connection between RA and osteoclast deregulation (6).

Indeed, despite the high levels of IFN-γ, which is known to
inhibit osteoclastogenesis, the T-cells’ activation observed in this
pathology results in an exacerbated osteoclast activation. This
is due to the action of a subset of activated T-cells, called Th-
17 because they produce IL-17. Of note, in a mouse model
of RA, IL-17 ablation reduced bone destruction (59). This
cytokine is of interest, because it stimulates the expression of
more pro-osteoclastogenic cytokines, including IL-6, IL-8, and
TNF-α also in absence of RANKL (113, 114). Moreover, in the
synovium of RA patients, IL-17 induces the production of IL-
32, which in turn stimulates IL-17 expression (60) creating a
feed-forward loop. Therefore, this cytokine plays a crucial role
not only in the onset of RA but also in the bone destruction
that this disease presents with (6). Furthermore, IL-6 production
increases RANKL expression in synoviocytes, leading to further
exacerbated osteoclastic bone destruction (49).

Osteoporosis
Estrogen deficiency is the leading cause of osteoporosis in
post-menopausal women. Pacifici and colleagues found that
this condition results in increased production of inflammatory
cytokines. This was a cornerstone discovery, that elucidated
a new facet of post-menopausal osteoporosis, describing it
as an inflammatory disease (115). The protective effect of
estrogen in bone has been well characterized and is mainly
due to a direct action on both osteoclasts and osteoblasts.
In the former, estrogens significantly increase apoptosis
(116, 117) and reduce RANKL-dependent osteoclast formation
(118), while in osteoblasts they exert an anabolic effect
by at least increasing osteoblast survival and collagen I
production (119). Consistently, it has been demonstrated
that estrogens suppress RANKL production not only in
osteoblasts but also in T and B cells (120), while the lack
of estrogens increases the release of pro-osteoclastogenic
cytokines (i.e., TNF-α and RANKL) by activated T cells
(121–123) thus indirectly identifying immune cells as
additional players in the onset of osteoporosis. Estrogens
withdrawal also leads to a significant increase of B-cells’
number (124).

Regarding the role of immune cells-derived-IFN-γ in
osteoporosis, results are conflicting (23). In particular, while
Breuil and colleagues found reduced secreted levels of IFN-γ by
CD4+ T-cells in osteoporotic patients (121) previous studies did
not find any differences (125, 126).

Periodontal Disease
Another pathological phenomenon in which immune cells
deregulation causes bone loss is periodontal disease, where
activated B and T cells concur to stimulate osteoclast resorption
by producing RANKL (127, 128). Consistently, Weitzmann
and colleagues identified a T cell-secreted cytokine, named
Secreted Osteoclastogenic Factor of Activated T-cells (SOFAT)
that promotes osteoclastogenesis independently of RANKL (129,
130). Moreover, increased mRNA expression of SOFAT has been
found in human periodontal samples, while SOFAT injection
induced osteoclast formation in a mouse model of periodontal
disease (56).
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Bone Fracture Repair
This physiological process is orchestrated not only by bone
cells, but also by immune cells, whose deregulation can delay
fracture repair (131, 132). In fact, in conditions of B and T
cells depletion, an impairment of bone regeneration, due to a
reduction of osteoblast differentiation and bone mineralization,
has been observed (25, 133). Consistently, immunocompromised
HIV patients present with a delay of fracture healing repair (131).

One of the earliest phases of bone healing is characterized
by an inflammatory state, with the release of IL-1, IL-6,
and TNF-α, which recruit B and T lymphocytes, the latter
having a pro-osteogenic role by releasing IL-17F (25). In fact,
at variance with IL-17A, known for its pro-osteoclastogenic
role, the pro-inflammatory cytokine IL-17F is expressed during
bone healing, where it increases Col1a1, osteocalcin, and bone
sialoproteins in treated osteoblasts (25). Neutrophil granulocytes
are also present during the early phase of bone repair,
and they clean debris and damaged cells in the site of
injury (134). Another crucial step for bone fracture repair
is the recruitment of MSCs which again involves immune
cells (i.e., NK cells and macrophages) since they produce
chemoattractant molecules such as CXCL7 (alias NAP2) and
Monocyte Inflammatory Protein (MIP)-1α (135, 136). Once
recruited,MSCs are fostered to differentiate toward the osteoblast
lineage, throughmacrophage-derived BMPs (137) while activated
monocytes stimulate the expression of Runx2 (138). At the same
time, once the bone-repair process activates, the inflammatory
reaction should be switched off in order to avoid any
inflammation-derived damage. To this aim, MSCs exert an
immunosuppressive role, by stimulating the differentiation of T-
reg lymphocytes, inducing the apoptosis of the pro-inflammatory
Th1 and Th17 lymphocytes and inhibiting migration of B-
lymphocytes (139–142).

Myelodysplasia and Acute
Myeloid Leukemia
Another strong link between bone and the immune system is
the fact that osteoblasts can influence the progression of pre-
neoplastic and neoplastic transformations in the myeloid lineage.
In fact, osteoblasts are able to slow down leukemia progression in
mouse, creating an unfavorable microenvironment for leukemic
blast growth (143). Consistently, osteoblast number is reduced by
more than half in leukemic patients. Simulating this situation by
mouse genetics, causes leukemic blasts to grow faster and engraft
better (143). The same authors demonstrated that osteoblasts
have another tight link to human leukemia: osteoblasts that have
been genetically engineered to express a constitutively active
form of β-catenin, are able to induce leukemic transformation
in myeloid cells, causing MyeloDysplaSia (MDS) and then Acute
Myeloid Leukemia (AML) (144).

The concept of bone cells inducing malignant
transformation, however, was not new, since already
a few years earlier, Raaijmakers and colleagues found
that ablating the miRNA processing protein dicer from
osteoblast progenitors induces dysfunctional haematopoiesis,
eventually leading to MDS and AML development (145).

The field of “niche-induced leukemia” has received much
attention, and still many groups are working on this topic
to date.

LATEST DEVELOPMENTS
IN OSTEOIMMUNOLOGY

In the last few years, despite much of the field has already
emerged, several groups are still actively discovering new
molecules that can be considered part of the osteoimmunology
world. This has been the case for a secreted protein named
homologous to Lymphotoxin, exhibits Inducible expression and
competes with HSV Glycoprotein D for binding to Herpesvirus
entry mediator, a receptor expressed on T lymphocytes
(LIGHT, a.k.a. Tumor Necrosis Factor SuperFamily member 14,
TNFSF14), which has been linked to increased bone resorption
in osteoarthritis more than 10 years ago (146, 147), and has
known a renaissance in the last few years as target for bone
loss (148) and biomarker for bone disease in multiple myeloma
(149). This molecule seems to have a dual effect in bone:
high levels are linked to bone loss, and so is its absence.
The mechanisms involving it are therefore quite complex,
although agonists and antagonists of the LIGHT pathway are
in development and testing. This behavior is also common
to another regulator of bone mass that has recently emerged
in the last few years: LipoCaliN-2 (Lcn2). This protein is
also called Neutrophil Gelatinase-Associated Lipocalin (NGAL),
since it can bind and stabilize MMP9, a crucial factor for
neutrophil extravasation. Furthermore, Lcn2 is also readily
overexpressed during inflammation, and following treatment
with TNFα, IL-17, and IL-1β, and its role in inflammatory
diseases is only starting to emerge; what is sure is that this
molecule can be considered a player in innate immunity.
In 2009, we discovered that Lcn2 is strongly overexpressed
in osteoblasts following in vitro mechanical unloading (150).
Furthermore, we confirmed these findings in vivo, which led
to the concept that Lcn2 is a mechanoresponsive gene that
regulates bone homeostasis (151). Surprisingly though, removing
this protein genetically, reduces bone mass instead of increasing
it (152). This is likely due to the fact that Lcn2 impairs
osteoblasts when overexpressed, and impairs energy metabolism
when removed, which causes an indirect osteoblast dysfunction
(152). The role of Lcn2 in bone is still under investigation by
ours and other groups where it has been found to influence
hematopoiesis (153), and even appetite through the melatonin
receptor MC4R (154).

CONCLUSIONS

The concept of osteoimmunology is aging well, almost 20 years
since the term was coined. This way of interpreting bone and
the immune system has been steadily providing new insights
about how the two of them operate and cooperate. As an
example, the role of pro-inflammatory cytokines in promoting
osteoclastogenesis, and the many parallelisms between immune
cells and osteoclasts have proved crucial to understand the
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biology of these giant bone-eating cells. Intriguingly, the
control mechanisms between bone and the immune system
are complex, tightly interconnected, and involve many players.
The underlying complexity of this field has made it difficult
for researchers to find clear-cut results, the kind that leads to
the direct clinical application. Nevertheless, thanks to the effort
of many scientists, nowadays clinics can use drugs, classically
employed to treat osteoporosis, for immunological diseases
[e.g., Denosumab for RA; (155)]. In conclusion, although the
study of osteoimmunology has provided many answers, it also
raised more questions, which we need to answer in order to

improve standards of care for patients of both immune and
bone disorders, by exploiting the cross-talk between these two
remarkable systems, which are actually starting to look like a
single one.
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