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The amygdala is a structure involved in emotions, fear, learning and memory and is
highly interconnected with other brain regions, for example the motor cortex and the
basal ganglia that are often targets of treatments involving electrical stimulation. Deep
brain stimulation of the basal ganglia is successfully used to treat movement disorders,
but can carry along non-motor side effects. The origin of these non-motor side effects
is not fully understood yet, but might be altered oscillatory communication between
specific motor areas and the amygdala. Oscillations in various frequency bands have
been detected in the amygdala during cognitive and emotional tasks, which can couple
with oscillations in cortical regions or the hippocampus. However, data on oscillatory
coupling between the amygdala and motor areas are still lacking. This review provides
a summary of oscillation frequencies measured in the amygdala and their possible
functional relevance in different species, followed by evidence for connectivity between
the amygdala and motor areas, such as the basal ganglia and the motor cortex. We
hypothesize that the amygdala could communicate with motor areas through coherence
of low frequency bands in the theta-alpha range. Furthermore, we discuss a potential
role of the amygdala in therapeutic approaches based on electrical stimulation.
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INTRODUCTION

The amygdala is one of the core regions associated with emotions and has gained broad interest
for its role in emotional conditioning, especially fear conditioning (LeDoux et al., 1990). Besides
conditioned fear responses, the amygdala plays an essential role in context-based acquisition of
fear responses, PTSD, social anxiety and preparing the organism to react upon a threat (Phillips
and LeDoux, 1992; Killgore and Yurgelun-Todd, 2005; Alvarez et al., 2008; Morey et al., 2012;
O’Doherty et al., 2017; Engelen et al., 2018). Furthermore, the amygdala is receiving additional
attention for its modulating role in social behavior, learning processes, addiction and mood

Abbreviations: BLA, basolateral amygdala; DBS, deep brain stimulation; GP, globus pallidus; GPe, external globus pallidus;
GPi, internal globus pallidus; MCS, motor cortex stimulation; mPFC, medial prefrontal cortex; PD, Parkinson’s disease;
PTSD, posttraumatic stress disorder; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus; tDCS, transcranial
direct current stimulation; TMS, transcranial magnetic stimulation; VIM, ventral intermediate nucleus of the thalamus.
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disorders (Langevin, 2012; Bickart et al., 2014; Janak and Tye,
2015). Several human studies also imply an influence of the
amygdala on motor and autonomic responses. Bilateral amygdala
lesions led to impaired recognition of fearful faces due to an
inability of gaze fixation on the eyes (Adolphs et al., 2005;
Kennedy and Adolphs, 2010). Also the amygdala is responsible
for defensive behaviors in response to acute threats (Klumpers
et al., 2017) and increased connectivity between the amygdala
and cortical regions is predictive of heart rate variability in
patients suffering from generalized anxiety disorder (Makovac
et al., 2016). Abnormal functioning of the amygdala is observed in
various psychiatric disorders such as generalized anxiety disorder,
PTSD, specific phobias, depression, autism spectrum disorder
and antisocial personality disorder (Baron-Cohen et al., 2000;
Ferri et al., 2017; Fonzo and Etkin, 2017; Garcia, 2017; Kolla et al.,
2017; Henigsberg et al., 2019). However, the amygdala might also
play a role in psychiatric symptoms of movement disorders, as
smaller amygdala volumes are linked to anxiety symptoms in
early PD Vriend et al. (2016).

Parkinson’s disease is a movement disorder that can be
treated with DBS as stimulation of the STN, the internal
GPi, or the VIM can reduce core motor symptoms, such as
hypokinesia, rigor, tremor, and dyskinesias, in patients that
do not benefit from pharmacotherapy alone (Moldovan et al.,
2015). In PD beta oscillatory neural activity is observed in the
dorsolateral motor part of the STN, which is thought to be
a mediator for motor symptoms associated with the disease
(Accolla et al., 2016). DBS in PD is assumed to interfere with the
pathological oscillations in the basal ganglia by superimposing
another oscillatory stimulation pattern with a higher frequency,
which paradoxically stops the entrainment of neurons to the
pathological frequency and allows them to fire at a more irregular
pattern (Wilson, 2014). For PD patients that are not suited to
receive DBS, MCS, delivered via flat electrodes positioned epi-
or subdurally, might pose an alternative treatment option (De
Rose et al., 2012) although its effectiveness in PD is unclear
(Tsubokawa et al., 1991; Moro et al., 2011; De Rose et al., 2012).

Besides severe motor disabilities, psychiatric symptoms such
as depression, psychosis and anxiety often co-occur and severely
impact the quality of life of PD patients (Aarsland et al., 1999).
The effect of DBS treatment on non-motor symptoms of PD is
not fully explored yet and there are indications that STN-DBS
might lead to a significant reduction in anxiety (Witt et al., 2008;
Fabbri et al., 2017). However, DBS treatment in itself can cause
non-motor side effects, such as transient depressive episodes,
pathological crying, laughter or mania (Bejjani et al., 1999; Krack
et al., 2001; Herzog et al., 2003; Wojtecki et al., 2007). These
side effects are assumed to occur either by stimulating the limbic
connections of the STN (Wojtecki et al., 2007) or by current
spread from the STN to neighboring areas. One of these areas
might be the amygdala; however, current spread to other regions,
such as the cingulate cortex might contribute to non-motor side
effects as well.

Although there is evidence for structural and functional
connections between the amygdala and motor areas, such
as the basal ganglia or the motor cortex, premotor cortex
and supplementary motor cortex (Peron et al., 2016;

Markovic et al., 2017; Loonen and Ivanova, 2018), studies
on oscillatory communication between motor areas and the
amygdala are lacking. The aim of this review is first, to collect
evidence that might hint toward oscillatory coupling of the
amygdala with the basal ganglia and the motor cortex. In
addition, potential frequency bands are proposed through which
communication between regions could occur. Second, it will
be discussed whether modulation of amygdala activity has any
therapeutic relevance to treat movement disorders. Modulation
of the amygdala could most likely occur through indirect
stimulation via connected brain regions or even through DBS of
the amygdala itself.

OSCILLATIONS IN THE AMYGDALA

Neural activity can fluctuate at a periodic interval, which
leads to oscillations with a specific frequency and amplitude
(Buzsaki, 2006). Oscillations can occur locally within a single
brain region, but also synchronized between two or more
brain regions. This “coupling” of oscillations is assumed to
reflect information processing (Schnitzler and Gross, 2005)
and arises through synchronizing oscillations in several ways.
Neuronal populations can couple within a distinct frequency by
oscillating in-phase, which can be quantified using coherence
as a measure. Furthermore, coupling can also be calculated
between two different frequencies (cross-frequency coupling).
Classically, five categories of oscillation frequencies are defined:
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–
30 Hz), and gamma (above 30 Hz; Buzsaki, 2006). The frequency
specific functions of brain oscillators are complex. As Buzsaki
and Draguhn (2004) explain with reference to multiple literature
sources: “However, different oscillatory classes might carry
different dimensions of brain integration [. . . ]. Slow rhythms
synchronize large spatial domains and can bind together specific
assemblies by the appropriate timing of higher frequency
localized oscillations [. . . ].” In other words: “Higher frequency
oscillations are confined to a small neuronal space, whereas
very large networks are recruited during slow oscillations [. . . ].
This relationship between anatomical architecture and oscillatory
pattern allows brain operations to be carried out simultaneously
at multiple temporal and spatial scales [. . . ].” Besides that, a
region specific or function specific interpretation of frequency
bands is empirically described in various publications. In this
review we list some of these findings of oscillations related
to the amygdala.

A small number of human studies have been conducted
where oscillations in the amygdala were measured. PTSD patients
received fMRI-based neurofeedback and a successful lowering
of alpha frequencies co-occurred with a shift in connectivity
of the BLA from fear and memory-related structures, such as
the hippocampus and the periaqueductal gray, toward prefrontal
areas involved in emotion regulation (Nicholson et al., 2016).
Oscillations in the alpha range have been associated with
selective attention and information processing (for review see
Klimesch, 2012). Furthermore, alpha desynchronization during a
therapeutic session enabled connectivity changes between brain
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regions (Ros et al., 2013), which might lead to decreases in
oscillatory power in specific regions such as the amygdala.
Epilepsy patients with electrodes implanted in the BLA and the
hippocampus exhibited high gamma oscillations (70–180 Hz)
in both regions upon viewing fearful faces. Moreover, gamma
oscillations in the BLA preceded those in the hippocampus
(Zheng et al., 2017). An entrainment of hippocampal gamma
oscillations by the BLA might suggest a modulatory role of
the BLA in the processing of fearful stimuli and retrieval of
fearful memories.

In contrast to the sparse number of human studies, several
animal experiments have been performed that led to mechanistic
insights about oscillations in the amygdala. Consolidation
and retrieval of fearful memories in mice led to theta
oscillatory coherence between the BLA and the hippocampus
(Seidenbecher et al., 2003; Narayanan et al., 2007). In the
hippocampus theta oscillations are associated with memory
consolidation and retrieval (Hasselmo, 2005) and again, its
increased communication with the BLA might point at enhanced
processing of emotional memories as opposed to more neutral
ones. In the case of fear extinction learning in mice, interneurons
in the BLA play a pivotal role, since they enable oscillations
in the alpha range (here 6–12 Hz), which interfere with fear-
associated oscillations in the low theta range (here 3–6 Hz;
Davis et al., 2017). Increases in theta power in the BLA
have also been measured while mice entered a non-social
compartment instead of a social compartment in a spatial
decision task. Interestingly, injections of the NMDA receptor
antagonist Ketamine abolished differences in theta power when
entering the compartments (Mihara et al., 2017). In another
experiment, DBS in the infralimbic cortex in anesthetized rats
caused increases in slow wave (<1.5 Hz), theta and fast gamma
power in the BLA, coupling between slow waves with faster theta
and beta frequencies within the BLA and coherence of slow waves
and theta frequencies between the BLA and the hippocampus
(Cervera-Ferri et al., 2016). The increase in oscillatory activity
in the BLA and the enhanced coherence between the BLA
and the hippocampus upon infralimbic cortex DBS might be
relevant for the therapeutic effect of cingulate gyrus DBS. The
cingulate gyrus in humans corresponds to the infralimbic cortex
in rodents and DBS of the cingulate gyrus has been shown to
reduce depressive symptoms (Uylings et al., 2003; Mayberg et al.,
2005). During reward learning in cats, increased coherence of
gamma oscillations between the BLA and rhinal cortices was
observed, which was initiated by enhanced synchrony of BLA
neurons (Bauer et al., 2007). In the mouse BLA, fast gamma
oscillations were coupled to theta waves during states of fear,
whereas coupling decreased during states of safety (Stujenske
et al., 2014). Simultaneously to this decrease in local theta-gamma
coupling during safety, gamma power increased in the BLA
and a stronger coherence between the BLA and the mPFC was
detected, which might reflect a suppression of learned feelings
of fear (Stujenske et al., 2014). Avoidance of shock delivery
to a fellow rat was linked to low gamma coherence between
the insula, OFC and BLA, whereas choices, which resulted in
another rat receiving a shock, were linked to increased gamma
coherence between the same regions. Interestingly, high gamma

oscillations in the BLA preceded those in the insula (Schaich
Borg et al., 2017). In addition, stronger alpha power was observed
in several brain regions, including the amygdala, and correlated
positively with avoidance of shock delivery. Within the network
of interest, the amygdala seemed to be the source of alpha
oscillations as its activity preceded alpha oscillations measured
in other brain areas (Schaich Borg et al., 2017). Theta oscillations
that have been observed in rats in a social fearful context (Tendler
and Wagner, 2015) were measured in the BLA and correlated
negatively with the shock avoidance behavior described above
(Schaich Borg et al., 2017).

CONNECTIONS OF THE AMYGDALA
WITH MOTOR AREAS AND
IMPLICATIONS FOR
ELECTRICAL NEUROMODULATION

Several studies using tracing or imaging techniques have
discovered structural connections between the amygdala and
different motor areas in humans and animals. In this section
“motor areas” encompass the STN, GP and the motor cortex, as
these are the main clinically relevant targets to treat movement
disorders such as PD or Huntington’s disease; however, the
amygdala also projects to other motor areas that are beyond the
scope of this review.

In humans, diffusion tensor imaging provided evidence for
structural connectivity between the dorsal part of the amygdala
and the motor cortex through the external capsule, which
grants the amygdala a significant influence on motor behavior
(Grezes et al., 2014). More recently, the existence of a functional
circuit between the amygdala and the sensorimotor cortex at
rest was demonstrated in an fMRI study using a large number
of participants, further supporting the assumption that the
amygdala is a critical modulator of motor behavior (Toschi et al.,
2017). Other imaging studies revealed functional connectivity
between the STN and the amygdala (Peron et al., 2016) and the
GP and the amygdala (Yang et al., 2017).

Tracing studies in animals have provided more detailed
insights about anatomical links between the amygdala and
motor regions by revealing monosynaptic connections between
both. Primate and rodent studies have detected structural
connections between the amygdala and the motor cortex (Kita
and Kitai, 1990; McDonald, 1998). Anterograde tracing in rhesus
monkeys showed projections from the BLA onto the motor
cortex, the majority of which terminated in the face and arm
representation (Morecraft et al., 2007). The latter finding is
interesting, considering the role of the amygdala in processing
and expressing emotions. Recently, projections from neurons
positive for corticotropin-releasing factor in the central amygdala
to the GPe were discovered, indicating a novel circuit for stress-
relevant information (Hunt et al., 2018). In rats, high frequency
stimulation of the STN caused an increase in neural activity
in the BLA (Hachem-Delaunay et al., 2015); however, proof
of direct structural connections between the amygdala and the
STN remains absent.
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The connections between the basal ganglia and the motor
cortex including their alterations in a typical movement disorder
such as Huntington’s disease have been described in detail
(Wojtecki et al., 2016). Upon receiving cortical input, the
striatum projects either directly to the GPi and the SNr (direct
pathway) or indirectly via the GPe and the STN (indirect
pathway). The GPi and SNr in turn send inhibitory projections to
the thalamus that provides excitatory input to the motor cortex
(Calabresi et al., 2014). Moreover, projections from cortical layer
V are assumed to target the STN via the hyperdirect pathway.
These projections might originate in the primary motor cortex
or neighboring cortical regions like the supplementary motor
area and the dorsal and ventral divisions of the premotor cortex
(Nambu et al., 2002). Interestingly, stimulation of cortical layer
V neurons reduced Parkinsonian symptoms in mice (Gradinaru
et al., 2009), indicating that the motor cortex might play a causal
role in the pathogenesis of PD and that DBS of the STN might be
effective through antidromic activation of the motor cortex via
the hyperdirect pathway (Arbuthnott and Garcia-Munoz, 2017).
The amygdala has the potential to influence all three pathways
within the basal ganglia due to its connections to the STN, the
GP and the motor cortex. In fact, it was recently shown that PD
patients who suffer from freezing of gait have higher resting state
connectivity between the amygdala and the striatum compared
to PD patients that do not suffer from freezing of gait (Gilat
et al., 2018), indicating that abnormal amygdala activity worsen
the clinical picture of movement disorders.

Potential Oscillatory Interactions
Between the Amygdala and
Motor Regions
Abnormal amygdala activity has been associated with anxiety
disorders for decades and recently became acknowledged for its
role in pathological motor symptoms (Gilat et al., 2018). Due
to connections with motor areas that are frequent targets of
DBS, modulation of the amygdala might occur indirectly as a
result of network changes induced by the stimulation and could
account for emotional side effects that arise from DBS. Side
effects linked to DBS of the STN include worsening of verbal
fluency, cognitive deterioration, hypomania and impairment in
affect regulation (Krack et al., 2003; Wojtecki et al., 2007; Witt
et al., 2008; Kim et al., 2012). The STN and presumably also the
GPe have direct functional connections to the amygdala and a
therapeutic alteration of oscillations within these nuclei could
change the input to the amygdala, inducing potentially unwanted
effects on learning, memory and emotions. Pathological beta
oscillations in the STN are a major hallmark of PD and can be
suppressed by DBS (Quinn et al., 2015). A decrease in these beta
oscillations and an increase in theta-alpha power in the STN
are associated with superior motor performance of PD patients
(Anzak et al., 2012; Tan et al., 2013). Also an increase in theta-
alpha frequencies in the STN during a verbal generation task was
found with increased coherence between the STN and frontal
cortical association areas (Wojtecki et al., 2017). However, theta
oscillations in the amygdala have frequently been reported to co-
occur with states of fear and anxiety (Narayanan et al., 2007; Davis

et al., 2017). If theta oscillations by the STN would induce theta
oscillations in the amygdala following DBS, improved motor
performance might come with the cost of increased anxiety.

In the basal ganglia of PD patients, alpha frequencies are
observed and while some researchers report an influence of
dopaminergic medication (Gironell et al., 1997), others did
not show any medication-induced change in alpha frequencies
(Brittain and Brown, 2014). Furthermore decreases in alpha
frequencies have been linked to PD-associated dementia (Cozac
et al., 2016). In a rat study, the BLA has been the source of
alpha oscillations during social decisions, entraining connected
regions (Schaich Borg et al., 2017). Alpha frequency entrainment
of motor regions by the amygdala would be an interesting
mechanism to improve cognitive functions in PD patients
suffering from dementia. However, inductions of oscillations at a
specific frequency in the amygdala might require direct electrical
stimulation, which has many drawbacks as discussed in the
following section.

Beta frequencies represent the majority of oscillations in the
motor cortex and were coupled to delta frequencies in a motor
task that specifically requires attention and planning (Saleh et al.,
2010). As the amygdala provides direct input to the motor cortex,
it is also closely involved in the generation of motor behavior.
Thereby, amygdala modulation might cause disturbances in
psychomotor functioning, which have been observed in the form
of pathological crying that occurred in the absence of adequate
emotions (Wojtecki et al., 2007). Still, the exact role of the
amygdala in the occurrence of non-motor side effects during DBS
needs further investigation.

To reduce non-motor side effects of DBS, theta and alpha
frequencies would be interesting candidate frequencies to
modulate within an amygdala–basal ganglia network. Theta
and alpha frequencies in the STN have been associated with
improved motor functions in PD patients (Anzak et al., 2012;
Tan et al., 2013) and have been observed during focused
attention, potentially having a gating function in decision-
making (Cavanagh et al., 2011; Wojtecki et al., 2017). Although
theta oscillations in the BLA have been associated with fear
responses (Davis et al., 2017), increases in theta power were
measured also during social decision tasks, specifically when
animals chose against the social option (Mihara et al., 2017;
Schaich Borg et al., 2017). The latter might reflect a rather
general, emotionless role of theta oscillations in choice behavior
since increases in theta power have been linked to novel stimuli
(Tendler and Wagner, 2015). Alpha oscillations are found in
both the basal ganglia and the amygdala and are thought to act
as an inhibitory filter in attention processes (Klimesch, 2012)
and might have the potential to improve cognition. Lastly,
slow theta-alpha frequencies might reflect information transfer
over long distances across the brain (von Stein and Sarnthein,
2000), which makes them suitable of facilitating communication
between the amygdala with the basal ganglia and the cortex.
A simplified summary of connections between the amygdala and
motor areas, the most common oscillatory frequencies found in
each region and hypothetical shared oscillations are provided
in Figure 1. In that scheme slower rhythms such as theta or
alpha might synchronize the activity of distal neuronal networks
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FIGURE 1 | Overview of oscillatory frequencies and connections between
amygdala and motor areas. The amygdala is structurally (dashed lines) and
functionally (solid lines) connected to motor areas, such as the motor cortex,
the limbic part of the subthalamic nucleus (STN) and the globus pallidus (GP).
For all shown regions, a broad spectrum of oscillation frequencies has been
previously described, but the frequency bands that are used for information
transfer between the amygdala and the basal ganglia are not known yet. In
this review, we propose coherence of theta-alpha oscillations as a possible
way of inter-regional communication with potential therapeutic value. Upon
stimulation of the amygdala-motor circuit, for example by STN-DBS or
amygdala-DBS (indicated by lightning bolts), theta and alpha frequencies
might be increased within the circuit, where each frequency has different
functional properties depending on the source region.

(e.g., between the amygdala and the basal ganglia) and couple to
local higher frequencies (for ex., gamma within the amygdala).

Amygdala DBS: Worth the Risk?
Electrical stimulation of the amygdala possesses several potential
obstacles, which make it a risky, if not unsuitable target for
DBS in humans. First, segregating the specific nuclei within the
amygdala is not possible with standard MRI-based localization
approaches and amygdala anatomy varies substantially across
subjects (Oya et al., 2009). Second, the amygdala is a known
kindling site in animal studies, where electrical stimulation can
lead to recurring after-discharges and seizures (Cleeren et al.,
2016; Li et al., 2016; Wicker and Forcelli, 2016). In addition,
structural changes occur in patients suffering from temporal lobe
epilepsy (Reyes et al., 2017), which further complicates target
localization at least in these patients.

Due to the associated risks, DBS of the amygdala has only been
performed in a few cases. Seizure frequency could be reduced by
amygdala DBS in patients suffering from refractory temporal lobe
epilepsy, without causing behavioral alterations or stimulation-
induced seizures (Vonck et al., 2002; Boon et al., 2007).
Furthermore, brief electrical stimulation during a cognitive
task improved declarative memory, potentially by increasing
oscillations in the theta and gamma band between the amygdala,
the hippocampus and the perirhinal cortex (Inman et al., 2018).
DBS of the BLA in a child suffering from autism caused a decrease

in self-directed aggression and improvements in cognitive, social
and emotional functioning (Sturm et al., 2012). The BLA might
be seen as a communication hub between different centers, for
example the frontal cortex, sensory cortices and the basal ganglia,
that are all involved in the generation of autistic symptoms and
the improvement in symptoms could have been achieved by a
reset of oscillatory activity in the BLA (Sinha et al., 2015). In a
PTSD patient intraoperative microelectrode recordings showed
an increased firing of the right BLA in the beta range, whereas
predominant frequencies in the left BLA were in the theta-
alpha range. DBS of the BLA led to a reduction of anxiety and
improvements in sleeping pattern (Langevin et al., 2016). In
PTSD patients, the amygdala is overactive in response to trauma-
related stimuli, but also during unrelated emotional tasks and
at rest (Reznikov and Hamani, 2017) and DBS might normalize
its activity. Given the potential of amygdala DBS to treat PTSD,
a larger clinical trial has been proposed, but results are not
published yet (Koek et al., 2014).

A few studies have been conducted to specifically assess
potential emotional alterations following amygdala stimulation,
with a diverse outcome. Unilateral amygdala stimulation caused
an increase in feelings of fear, regardless which hemisphere
was stimulated (Meletti et al., 2006). Conversely, stimulation
of the right BLA in a single case created a positive affective
bias during the evaluation of emotional stimuli (Bijanki et al.,
2014). In another study, stimulation of the right amygdala was
associated with increased feelings of fear and sadness, whereas
stimulation of the left amygdala could evoke both pleasant
(happiness) and unpleasant (fear, sadness, and anxiety) states
(Lanteaume et al., 2007).

Taken together, the body of evidence for DBS to treat
psychiatric symptoms is growing, but given the risk associated
with amygdala DBS and its potential to evoke a variety of negative
emotions, this target needs further thorough investigation.

DISCUSSION

The amygdala is connected to brain regions such as the
hippocampus, the ventral striatum and the cortex; therefore,
it is embedded in a network involved in generating emotions
and learning (Langevin, 2012; Gibson et al., 2017). Structural
connections between the amygdala and motor areas, such
as the STN, GP and motor cortex have been discovered in
different animal species (Morecraft et al., 2007) and resting state
connectivity between the amygdala and the basal ganglia has been
shown recently in a subpopulation of PD patients (Gilat et al.,
2018). In addition, stimulation of different subregions belonging
to the cingulate cortex, which are connected to the amygdala,
induced emotional motor responses (Caruana et al., 2015, 2018).
In a recent study it was demonstrated that emotional stimuli
induced an effect on motor behavior, potentially mediated by
connections from the amygdala to motor areas. Interestingly, that
behavioral effect was only evident when the emotional content of
the stimuli was task-relevant (Mirabella, 2018).

Up to date, no simultaneous electrophysiological
measurements have been performed in the amygdala and
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motor areas. Based on structural connections between the
amygdala and motor areas, we raised the question whether
amygdala modulation could potentially alleviate psychiatric
symptoms of PD or conversely could induce non-motor side
effects that occur during DBS of the basal ganglia. Modulation
of the amygdala might cause or exacerbate some non-motor
side effects that occur during DBS of the basal ganglia, for
example by alterations in theta and alpha frequencies. On the
contrary, DBS of the BLA has been shown to decrease anxiety
(Langevin et al., 2016), potentially by decreases in theta power,
therefore direct or indirect modulation of the amygdala could
support the management of anxiety associated with PD. As
there is scarce feasibility of amygdala DBS without negative
side effects it is worthwhile to consider non-invasive stimulation
techniques, such as tDCS or TMS for indirect neuromodulation
of the amygdala through a cortical network entry point. These
techniques can induce short term or even chronic alterations
in neuronal activity without the risk associated with implanted
stimulation electrodes. However, these techniques only allow
precise stimulation of superficial cortical regions. To gain
insight into possible mechanisms of such an indirect amygdala
modulation it is relevant to study amygdala oscillatory coupling
with motor cortical regions.

Taken together, there is evidence for structural connections
between the amygdala and motor areas, such as the basal ganglia
and the motor cortex, that are functionally altered in movement
disorders. We hypothesized that information transfer between
the amygdala and motor areas occurs through oscillations in the

alpha and theta frequencies, potentially having either beneficial or
adverse effects. In the future, simultaneous electrophysiological
measurements in the amygdala and motor regions are needed
to specify oscillatory connections during cognitive and motor
tasks. To obtain reliable behavioral effects, task-relevance of
stimuli seems to be important, which should be investigated
in relation to the amygdala and motor areas. Based on these
findings, oscillation frequencies that show coherence between
the amygdala and motor areas could be specified to prevent
psychiatric side effects of DBS or even use secondary amygdala
activation as an add-on for current DBS or MCS therapy.
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