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Semiconducting metal oxides with abundant active sites are regarded as promising

candidates for environmental monitoring and breath analysis because of their excellent

gas sensing performance and stability. Herein, mesoporous WO3 nanofibers with a

crystalline framework and uniform pore size is successfully synthesized in an aqueous

phase using an electrospinning method, with ammonium metatungstate as the tungsten

sources, and SiO2 nanoparticles and polyvinylpyrrolidone as the sacrificial templates. The

obtained mesoporous WO3 nanofibers exhibit a controllable pore size of 26.3–42.2 nm,

specific surface area of 24.1–34.4 m2g−1, and a pore volume of 0.15–0.24 cm3g−1.

This unique hierarchical structure, with uniformmesopores and interconnected channels,

could facilitate the diffusion and transportation of gas molecules in the framework. Gas

sensors, based on mesoporous WO3 nanofibers, exhibit an excellent performance in

acetone sensing with a low limit of detection (<1 ppm), short response-recovery time

(24 s/27 s), a linear relationship in a broad range, and good selectivity.

Keywords: mesoporous materials, WO3, nanofibers, electrospun, acetone, sensor

INTRODUCTION

Over the past few decades, the precise monitoring of toxic polluting gases has attracted
great attention in modern society in environmental protection, industrial production, health
care, and so forth (Kawano et al., 2007; Wang et al., 2007; Salehi et al., 2014). Acetone
is a common type of reagent which is frequently used in manufacturing industries and
laboratories (Zhang et al., 2017). As a highly toxic gas, acetone is harmful to human health,
and long-term exposure to acetone may cause irritation and damage to the eyes, nose, and
central nervous system (Jia et al., 2014). In addition, acetone concentrations in respiration
can be characterized as a biomarker in the rapid diagnosis of diabetes, because acetone
concentrations exhaled from diabetes patients (1.8 ppm) are much higher than in a healthy
individual (0.3–0.9 ppm) (Singkammo et al., 2015; Zhou et al., 2018). Therefore, it is of great
interest and importance to develop acetone sensors with a low detection limit, fast response
recovery dynamics, high sensitivity and selectivity. Among a variety of sensing-active materials
used for the detection of acetone, metal oxide semiconductors (WO3, TiO2, SnO2, ZnO,
Fe2O3, etc.) have been considered as appealing candidates due to their remarkable sensitivity,
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low cost, and excellent stability (Wang et al., 2010; Luo et al.,
2013; Kim and Lee, 2014; Zhu et al., 2017a; Zhou et al.,
2018). The sensing mechanism of semiconducting metal oxides
(SMOs)-based sensors is widely accepted to be the change in
conductivity when exposed in specific gas. The adsorbed gaseous
analytes may cause an increase or decrease in the resistance
of semiconducting metal oxides (Barsan and Weimar, 2001;
Yamazoe et al., 2003; Qiu et al., 2018; ZhangQ. et al., 2018). Given
that the gas-sensing process involves the adsorption–desorption
and catalytic reactions on the surface of the metal oxides,
a rational design and controllable synthesis of nanomaterials
with high surface areas, abundant active sites, tailor-designed
nanostructures and outstanding catalytic performance, are
considered as promising approaches to enhance the sensing
performance of the semiconducting metal oxides.

Mesoporous semiconducting metal oxides (MSMOs), as an
important category of nanostructured materials, have drawn
much attention because of their high surface area, uniform
pore size, highly crystalline framework, numerous active sites,
interconnected pore structure and large pore size. The high
surface area and abundant active sites greatly facilitates the
interaction between metal oxide frameworks and gaseous
molecules, as well as surface catalytic reactions. In addition, the
large porosity and well-connected mesostructure favors rapid
and effective diffusion of gas molecules (Li et al., 2014; Luo
et al., 2016b; Ma et al., 2018). Therefore, MSMOs are regarded as
promising candidates for gas sensing. To date, various MSMOs
have been synthesized through different approaches, such as
sol–gel processes, spray pyrolysis, chemical vapor deposition
and precipitation reactions (Du et al., 2011; Luo et al., 2016a;
Zhao et al., 2016; Channei et al., 2018; Jha G. et al., 2018;
Zhang Y. et al., 2018). However, these methods usually give
rise to an uncontrolled morphology and low porosity, which
is not favorable for sensing performance. Additionally, a lot
of work has been focused on the design and construction of
various nanostructures of SMOs to improve the their sensing
performance, including zero-dimensional nanoparticles (NPs)
(Yang Z. et al., 2018; Zhang H. et al., 2018; Zhao et al., 2019),
one-dimensional nanofibers (NFs) (Saha and De, 2013; Kim
et al., 2016a; Ren et al., 2016; Nada et al., 2017; He et al., 2018;
Jeong et al., 2018) and nanowires (NWs) (Wang et al., 2004;
Rakhi et al., 2012; Dam and Lee, 2013; Chen et al., 2015; Li X.
et al., 2017), two-dimensional nanosheets (Wang et al., 2016,
2017; Li F. et al., 2017; Kaneti et al., 2018) and membranes
(Dasog et al., 2012; Barr et al., 2017; Jha G. et al., 2018; Wang
W. Q. et al., 2018). Nanofibers have drawn particular attention
due to their exceptionally high surface area-to-volume ratio,
high porosity, superior surface permeability and accessibility,
making them an attractive candidate for gas sensing (Guo et al.,
2014; Jha R. K. et al., 2018; Yan et al., 2018). Electrospinning
technology has been demonstrated as an effective approach
to prepare micro-sized and nano-sized fibers. The structure,
morphology and dispersion of functional components of the
fibers synthesized by electrospinning can be well-tailored
through well-controlled conditions and compositions (Wang and
Hashimoto, 2018; Yoon et al., 2018; Zhang D. et al., 2018). Kim
et al. fabricated semiconducting metal oxide nanofibers through

a protein nanocage templating route, to detect trace amounts
of target biomarkers in exhaled breath (Kim et al., 2016a).
Nevertheless, up to now, it remains a great challenge to construct
mesoporous structures in nanofibers with controllable pore size
and morphologies, which is highly desirable for improved gas
sensing performance.

Among various SMOs, tungsten oxide (WO3), an n-type
semiconductor with a band-gap of 2.5 eV, is a promising sensing
material for the detection of gas due to its variable oxidation
states and suitable band structure (Wang C. Y. et al., 2018).
Herein, we adopt a facile approach based on electrospinning
to synthesize mesoporous WO3 nanofibers (NFs) with uniform
and controllable pore sizes using SiO2 nanoparticles and
polyvinylpyrrolidone (PVP) as sacrificial templates, ammonium
paratungstate as a tungsten precursor and water as a solvent. Due
to the support of the rigid PVP species during electrospinning
process, the interconnected porous structure and unique fiber-
like morphology can be well-maintained after calcination in
nitrogen and air, followed by treatment with hydrofluoric acid
selectively etched silica particles, creating uniform mesopores
in the nanofibers. The obtained mesoporous WO3 NFs have
crystalline frameworks, large uniform pore sizes of 26.3 nm and
42.2 nm, and their specific surface area and pore volume can be
as high as 34.4 m2/g and 24.1 cm3/g, respectively. Moreover,
the mesoporous WO3 NFs based sensors exhibit superior gas
sensing performance with a fast response (24 s) and recovery
(27 s), high sensitivity of 23 (Ra/Rg) at 50 ppm when operating
at 300◦C, an ultralow limit of detection of 1 ppm, and good
selectivity, which contributes to their goodmerits of suitable pore
size, high surface area and abundant active sites located on the
surface, and continuous and crystalline framework with open
pore channels. Such an excellent sensing performance opens up
the possibility for the mesoporous WO3 NFs based sensor to be
used in many fields such as environmental monitoring and in the
rapid diagnosis of disease.

EXPERIMENTAL SECTION

Chemicals and Materials
Tetraethyl orthosilicate (TEOS), ethanol, NH4OH solution and
hydrofluoric acid of AR grade were purchased from Sino-
Pharm Chemical Reagent Co. Ltd. Polyvinylpyrrolidone (PVP,
Mw ≈ 40,000 g/mol) was purchased from Aldrich. Ammonium
metatungstate hydrate [(NH4)6H2W12O40·xH2O, 99.5% metals
basis] was purchased from Aladdin.

Preparation of SiO2 NPs
The SiO2 NPs with different diameters was prepared using a base
catalyzed sol-gel method previously reported (Dasog et al., 2012).
Typically, TEOS (10mL) was dissolved in a solvent mixture of
ethanol (10mL), deionized water (20mL) and NH4OH solution
(42 %, 5mL). The obtained solution was further stirred for 1 or
2 h to yield different size SiO2 NPs. The white precipitate was
collected by vacuum filtration and washed with deionized water
four times. The solid was transferred to an oven and was kept
there for 24 h at 100◦C to remove any residual water and ethanol.
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FIGURE 1 | (A) Sketch of the structure of the side-heated mesoporous WO3 NFs based gas sensor. (B) Electric circuit of gas sensing measurements.

Synthesis of Mesoporous WO3 NFs
Typically, mesoporous WO3 NFs were synthesized through
an electrospinning method as follows: (NH4)6H2W12O40·xH2O
(2.7 g) and PVP (3.0 g) was dissolved in deionized water (4mL).
This was followed by the addition of SiO2 NPs (0.035 g) with
a diameter of 25 nm. Then, the solution was stirred for 20 h
for further electrospinning. The as-prepared gel was loaded
into a plastic syringe and connected to a high voltage power
supply for electrospinning. Twenty kilovolts high voltage was
applied between the spinneret and the collector in a gap of
15 cm. In this way, hybrid precursor nanofibrous membranes
were obtained. Then, the as-made products were heated with a
ramp of 1◦C min−1 to 350◦C for 3 h in nitrogen, resulting in
the carbon-supported amorphous tungsten oxide powders. The
carbon species was removed and crystallization of the amorphous
tungsten oxide frameworks was carried by subsequent heat
treatment with a ramp of 1◦C min−1 to 500◦C in air for another
1 h. SiO2 NPs was completely removed from the composites
by treatment with a HF solution (5 wt% aqueous solution,
8mL) for 2 h and subsequently washed with deionized water and
ethanol. Finally, the obtained sample was denoted as mesoporous
WO3-25 NFs. Through the same approach, silica NPs with
larger diameters (∼40 nm) were also used as a hard template
to synthesize mesoporous WO3 NFs, and the obtained samples
were denoted as mesoporousWO3-40 NFs. Control experiments,
without addition of SiO2 NPs, were performed according to
the same method and procedure, and the obtained sample was
denoted as a non-mesoporous WO3 NFs.

Measurement and Characterization
Field-emission scanning electron microscopy (FE-SEM) was
operated on a Hitachi S4800 (Japan) field-emission scanning
electron microscope. Transmission electron microscopy (TEM)
was conducted on a JEM-2100 F at an accelerating voltage of 200
kV. Wide-angle X-ray diffraction (XRD) patterns were collected
on a Rigaku D/Max-2550 PC diffractometer (Tokyo, Japan) in
the 2θ range of 10–90◦. Nitrogen sorption isotherms were
measured at 77K with a Micromeritics Tristar 3020 analyzer
(USA). Before measurements, the samples were degassed under

vacuum at 180◦C for at least 6 h. The Brunauer-Emmett-Teller
(BET) method was utilized to calculate the specific surface areas
using the adsorption data at P/P0 = 0.02–0.20. The pore size
distribution (PSD) was calculated from the adsorption branch
using the Barrett-Joyne-Halenda (BJH) model. The total pore
volume (Vtotal) was estimated from the adsorbed amount at P/P0
= 0.995. The XPS were collected on an RBD 147 upgraded
PHI 5000C ESCA system with a dual X-ray source. The Mg Kα

(1253.6 eV) anode and a hemispherical energy analyzer were used
in the measurements. All of the binding energies were referenced
to the C 1s peak at 284.8 eV of the surface adventitious carbon.

Gas Sensing Performance
Side-heated gas sensors were prepared using a similar method
reported previously (Zhang et al., 2009). The mesoporous (or
non-mesoporous) WO3 NFs was mixed with deionized (DI)
water and ground in an agate mortar to form a paste. The mass
ratio of mesoporous (or non-mesoporous) WO3 NFs to DI water
in the paste is 7:3. The paste was coated on an alumina ceramic
tube printed with a pair of Au electrodes, and the thickness
of the paste membrane was about 300µm. Subsequently, the
coated alumina ceramic tube was dried at room temperature
for 24 h and then annealed at 300◦C for 2 h with a ramping
rate of 5◦C/min in air. Then, a Ni–Cr alloy wire was inserted
into the tube as a heater, and the working temperature could
be adjusted by changing the heating voltage. Furthermore, the
obtained sensor was kept at the optimal working temperature
for a week before measurement to further improve the long-term
stability. The assembled sensing device is depicted in Figure 1A.
The stationary state gas distribution method was applied for
testing the gas response. In the electric circuit for measuring
the gas response (Figure 1B), a load resistor (RL) was connected
in series with a gas sensor. The circuit voltage (VC) was set at
5V and the output voltage (VOUT) was the terminal voltage of
the load resistor. Test gases (such as acetone, methanol, ethanol,
toluene, formaldehyde) were injected into a test chamber and
diluted with air. The gas response of the sensor is defined as S
= Ra/Rg (for reducing gases) or S = Rg /Ra (for oxidizing gases),
where Ra is the sensor resistance in air and Rg is that in the
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SCHEME 1 | The fabrication process of the mesoporous WO3 NFs by electrospinning approach.

gas tested. The response time is defined as the time taken for
the variation in conductance to reach 90% of the equilibrium
value after a test gas was injected, and the recovery time is the
time taken for the sensor to return to 10% above the original
conductance in air after releasing the test gas, respectively.

RESULTS AND DISCUSSION

The diameters of the as-synthesized SiO2 NPs are estimated
to be 25 and 40 nm from the TEM images (Figures S1A,B).
An electrospinning technique was employed to construct
mesoporous WO3 NFs from precursor solutions containing
(NH4)6H2W12O40·xH2O, PVP, SiO2 NPs, and deionized water,
as shown in Scheme 1. The as-spun tungsten species/PVP/SiO2

NFs was subjected to calcination at 350◦C in nitrogen, giving
rise to WO3/carbon/SiO2 NFs owing to the partial carbonization
of the PVP species. The carbonized PVP can provide carbon
support inside the frameworks, which can prevent the collapse
of the fiber morphology during the crystallization process of
WO3. Finally, after further pyrolysis at 500

◦C in air, and selective
etching with hydrofluoric acid to remove the supporting carbon
species and SiO2 sacrificing templates, mesoporous WO3 NFs is
formed as a result. By using SiO2 NPs with different diameters,

twoWO3 NFs can be obtained and denoted asmesoporousWO3-
x NFs, wherein x represents the particle size of SiO2 NPs. For
comparison, non-mesoporousWO3 NFs was also synthesized via
the same approach but without SiO2 NPs loading.

Field-emission scanning electron microscopy (FE-SEM)
observation reveals that all of the as-spun composites have a
uniform fiber-like morphology with a dimeter of about 450–
500 nm (Figure 2A; Figures S2A, S3A) and smooth surfaces
(insets in Figure 2A; Figures S2A, S3A). After pyrolysis in N2

at 350◦C, black WO3/carbon /SiO2 (25 nm), WO3/carbon/SiO2

(40 nm), and WO3/carbon NFs can be obtained, owing to
the partially carbonization of the PVP species. Compared to
the as-spun NFs, the composites retained their uniform fiber
morphology, and much rougher surfaces are clearly visible in the
surface (Figure 2B; Figures S2B, S3B). After complete removal
of carbon and silica species by further calcination in air at
500◦C and etching with hydrofluoric acid, all the WO3 NFs
also retained the fiber morphology, indicating a good thermal
stability, and their diameters were decreased to 250–300 nm due
to the framework shrinkage at high temperature (Figure 2C;
Figures S2C, S3C). It is worth noting that the WO3 NFs
consisted of large numbers of nanograins, and boundaries can be
clearly observed. An FESEM image taken along the cross-section
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FIGURE 2 | FESEM images of (A) as-spun tungsten species/PVP/SiO2 (25 nm) NFs, (B) WO3/carbon/SiO2 (25 nm) NFs, (C) mesoporous WO3-25 NFs. TEM images

of (D) WO3/carbon/SiO2 (25 nm) NFs, (E) mesoporous WO3-25 NFs. HRTEM image of (E) mesoporous WO3-25 NFs. (F) Scanning TEM image and the

corresponding EDS mapping images (G) of elemental W, Si, C, and O for WO3/carbon/SiO2 (25 nm) NFs.

of the mesoporous WO3-25 NFs clearly indicates the existence
of mesopores around 25–30 nm (inset in Figure 2C), which is in
good agreement with the diameter of SiO2 nanoparticles. Due
to a larger diameter of the sacrificial SiO2 template, uniform
mesopores of about 40–50 nm can be clearly visible in the
SEM image of mesoporous WO3-40 NFs (Figure S2C). And no
obvious mesopores were observed on non-mesoporous WO3

NFs (Figure S3C), attributing to the absence of the sacrificial
SiO2 template.

Transmission electron microscopy (TEM) observations
further confirmed that the NFs obtained after pyrolysis at
350◦C are fibrous in shape with a diameter of 400–450 nm
(Figure 2D; Figures S2D, S3D). The scanning TEM (STEM)
image and energy dispersive X-ray elemental mapping recorded
on WO3/carbon/SiO2 (25 nm) NFs clearly reveals that the W,
Si, C, and O elements are homogeneously distributed in entire
NFs (Figure 2G). It suggests that the carbonized PVP molecules
can provide rigid support inside the frameworks, forming a

“reinforced-concrete” framework structure with WO3 species.
which can prevent the collapse of the NFs. TEM images of
mesoporous WO3-25 and mesoporous WO3-40 NFs clearly
indicate that the fiber-like morphology are well-retained, and
the material consists of interconnected WO3 nanoparticles,
as well as the existence of numerous mesopores (Figure 2E;
Figure S2E), which can offer abundant active sites to interact
with guest molecules, greatly facilitating the diffusion of
gas molecules. Additional EDS analyses of the mesoporous
WO3-25 NFs and WO3-40 NFs were carried out as depicted
in Figures S4A,B, respectively. The absence of peaks from
Si in the EDS spectrum indicates the complete removal of
SiO2 by HF etching. Similarly, no obvious mesopores, but
only WO3 nanoparticles, were shown in the TEM image of
non-mesoporous WO3 NFs (Figure S3E). High resolution TEM
(HR-TEM) images of mesoporous and non-mesoporous WO3

NFs clearly show the lattice fringes of tungsten oxide with a d-
spacing of 0.36 nm (Figure 2F; Figures S2F, S3F), corresponding
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FIGURE 3 | (A) XRD patterns of (1) mesoporous WO3-25 NFs, (2) mesoporous WO3-40 NFs, (3) non-mesoporous WO3 NFs, (4) WO3/carbon/SiO2 (25 nm) NFs, (5)

WO3/carbon/SiO2 (40 nm) NFs, (6) WO3/carbon NFs. (B) Nitrogen-sorption isotherms and (C) pore size distribution curves of mesoporous WO3-25 NFs and

mesoporous WO3-40 NFs.

to the (200) planes, suggesting that the framework consists
of well-crystallized and interconnected WO3 nanoparticles.
Selected-area electron diffraction (SAED), recorded on different
WO3 NFs showed well-resolved diffraction rings corresponding
with the (200), (112), and (022) crystal planes of monoclinic
phase WO3 (insets in Figure 2F, Figures S2F, S3F), further
confirming the crystalline feature of the scaffold.

Wide-angle X-ray diffraction (WA-XRD) patterns indicate
that the WO3/carbon/SiO2 (25 nm), WO3/carbon/SiO2 (40 nm),
and WO3/carbon NFs exbibits the amorphous feature
contributing to the poor crystallization (Figure 3A). After
crystallization at 500◦C, and removal of the silica nanoparticles
by selective etching with hydrofluoric acid, mesoporous WO3-
25, mesoporous WO3-40 and non-mesoporous WO3 NFs
shows well-resolved diffraction peaks in the range of 10–70◦C,
matching well with the crystalline monoclinic phase of WO3

with lattice parameters of a= 0.7297, b= 0.7539, c= 0.7688 nm,
and β = 90.91 (JCPDS No. 43–1,035). No diffraction peaks from
other crystalline impurities are observed in the XRD patterns,
indicating pure crystalline phase, which agreeing well with the
HR-TEM results. The broadening of the diffraction peaks can
be attributed to the small particle size of WO3 nanocrystals
(Li et al., 2014).

Nitrogen adsorption-desorption isotherms of the obtained
mesoporous WO3-25 NFs exhibit type-IV curves with H1
hysteresis loop (Figure 3B). The steep increase in the adsorption
band at P/P0 = 0.75–0.96 indicates mesopores with a large
and uniform pore size. The pore diameter is about 26.3 nm
as indicated in the pore size distributions derived from the
adsorption branch of the isotherms by using Barrett-Joyner-
Halenda (BJH) model (Figure 3C). The specific surface area and
total pore volume of mesoporous WO3-25 NFs are calculated
to be as high as 34.4 m2g−1 and 0.15 cm3g−1, respectively.
Similarly, mesoporous WO3-40 NFs also display type-IV curves
with sharp capillary condensation steps in the relative pressure
range of 0.78–0.97 (Figure 3B). The pore size distribution profile
reveals a mesopore size of 42.2 nm (Figure 3C), indicating that
the hard template silica nanoparticles with larger diameters
result in larger mesopores. The surface area and total pore

volume of mesoporous WO3-40 NFs are approximately 24.1
m2g−1 and 0.24 cm3g−1, respectively. Such a porous structure
provides an amplified target-receptor interface and is beneficial
for the diffusion and adsorption of large guest molecules,
making it an ideal candidate for many applications involving
host-guest interactions, such as catalysis and gas sensing. In
addition, nitrogen adsorption–desorption isotherms of non-
mesoporous WO3-NFs show type-IV curves with H3 hysteresis
loop (Figure S5A). The surface area and total pore volume of
non-mesoporous WO3NFs is 19.5 m2g−1 and 0.17 cm3g−1,
respectively. The average pore size calculated from the adsorption
branch using the BJH method is about 5.3 nm (Figure S5B),
much smaller than that of the etched samples (26.3 nm for
mesoporous WO3-25 NFs and 42.2 nm for mesoporous WO3-
40 NFs), which can be attributed to the stacked pores of small
WO3 grains.

X-ray photoelectron spectroscopy (XPS) is further used to
investigate the surface composition and elemental states of
the NFs before and after etching. For the WO3/SiO2 (25 nm)
composite NFs (denoted as WO3-25/SiO2 NFs) before etching,
four peaks corresponding to W 4f, Si 2p, W 4d and O 1s are
shown in the survey spectrum (Figure S6A). However, after
etching, the Si 2p peak at 103.3 eV disappears, indicating the
complete removal of SiO2 species by HF (Xu et al., 2015; Shi et al.,
2016). The high-resolution XPS W 4d spectrum (Figure S6B)
of the samples after etching show similar spectra and can be
fitted with two peaks centering at 35.8 and 37.9 eV, which can
be assigned to W6+ 4f7/2 and W6+ 4f5/2, respectively (Wang
et al., 2012). These results indicate that completely oxidized W is
not changed during the etching process in mesoporous WO3-25
NFs, mesoporous WO3-40 NFs and non-mesoporous WO3 NFs
samples. The state of O 1s indicates two types of oxygen in the
surface (Figure S6C), lattice oxygen (O2−) and adsorbed oxygen
(O− and O2−). Usually, the adsorbed oxygen was more active to
react with reducing gases compared with lattice oxygen, changing
the concentration of main carriers (Zhu et al., 2017a).

Inspired by the unique structure of obtained mesoporous
WO3 fibers with ultra-large and controllable pore size, we tested
the performance of mesoporous WO3-25, mesoporous WO3-40
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FIGURE 4 | (A) sensing mechanism of WO3 NFs toward acetone. (B) responses of the mesoporous and non-mesoporous WO3 NFs sensor to 50 ppm acetone at

different operating temperatures (150–400◦C). (C) repeating response and recovery curve of the mesoporous and non-mesoporous WO3 NFs to 50 ppm acetone.

and non-mesoporous WO3 NFs as sensing materials for the
detection of acetone to investigate their potential application in
the detection of acetone leakage and diagnosis for diabetes. The
schematic diagram of sensing mechanism is shown in Figure 4A.
In the gas sensing test, probe gases such as acetone were injected
into a test chamber and mixed with air. The gas response of the
sensor in this study is defined as S = Ra/Rg, where Ra and Rg
is the resistance of the sensor in air and test gas, respectively.
The response time is defined as the time required from Ra
to Ra-90% × (Ra-Rg) after a test gas was injected, and the
recovery time is defined as the time required from Rg to Rg +

90% × (Ra-Rg) in air after releasing the test gas, respectively.
Since the sensing performances of semiconductors for a specific
gas are usually dependent on the working temperature, parallel
tests of mesoporous WO3-25, mesoporous WO3-40 and non-
mesoporous WO3 NFs based sensors were carried out toward
a 50 ppm acetone gas in a range of 150–400◦C to optimize the
working temperature region (Figure 4B). It can be seen that the
response of all sensors increased continuously until reaching a
maximum value at 300◦C and then decreased upon increase of
the operating temperature. Such response behavior is due to the
balance of the competition between the increase of the surface
reaction rates and the decrease in the number of active sites
for the adsorption of acetone at high temperatures. As a result,
300◦C was adopted as the optimum working temperature for
subsequent acetone detections.

In contrast, it was found that both of the mesoporous sensing
materials, mesoporous WO3-25 and WO3-40 NFs, have shown
higher responses to acetone than the non-mesoporousWO3 NFs.

Such phenomenon may contribute to the uniform mesopores
and interconnected transportation channels of mesoporousWO3

NFs resulting from the sacrificial templates including silica
nanoparticles and PVP species, which provides a huge interface
for the creation of active sites for acetone gas interaction, and
greatly facilitates the diffusion of gas molecules in the framework.
In addition, the response value increases dramatically from 13.7
for mesoporous WO3-40 NFs to 22.1 for mesoporous WO3-25
NFs at the same temperature, indicating that the sensitivity of the
materials is closely related to its specific surface area. Mesoporous
WO3-25 NFs with a higher surface area (34.4 m2g−1) could
provide more active surface sites for numerous surface reactions
between guest molecules and adsorbed oxygen species on the
solid-gas interface. Therefore, the response value of mesoporous
WO3-25 NFs is higher than the non-mesoporous WO3 NFs
during the operating temperature range from 150 to 400◦C
(Figure 4B), and the sensitivity of mesoporous WO3-25 NFs is
66% higher than that of non-mesoporous WO3 for 50 ppm at
the optimal operation temperature (Figure 4C). Moreover, the
mesoporous WO3-25 NFs shows a response time of 24 s, much
shorter than that of non-mesoporous WO3 (67 s), as shown
in the Figure S7. The faster response is mainly attributed to
its porous structure, which could facilitate the diffusion and
transport of target gas via enormous pore channels to interact
with WO3 NFs, quickly reaching the maximum sensitivity.
The reversible cycles of the response curves illustrate a stable
and reliable operation of acetone sensing of all the WO3 NFs,
and further confirm the consistency of mesoporous WO3-
25 NFs based sensors (Figure 4C). The continuous dynamic

Frontiers in Chemistry | www.frontiersin.org 7 April 2019 | Volume 7 | Article 266

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Xu et al. Mesoporous WO3 Nanofibers Based Sensor

FIGURE 5 | (A) response–recovery curve and (B) relationships between acetone concentration and response of the mesoporous WO3-25 NFs sensor to acetone

vapors of different concentrations. (C) dynamic response–recovery curve of mesoporous WO3-25 NFs sensor to 50 ppm acetone. (D) responses of the mesoporous

WO3-25 NFs sensor to various gases at 50 ppm.

electrical response of mesoporous WO3-25 NFs toward different
concentration of acetone (5–125 ppm) at 300◦C is shown in
Figure 5A. With the increase in acetone concentration, the
response values of mesoporous WO3-25 NFs based gas sensors
rapidly increased from 3.1 at 5 ppm to 89 at 125 ppm. After
aeration, the acetone molecules desorbed immediately from the
surface of tungsten oxides. The response can be recovered to
its initial value for all the testing concentrations, reflecting a
good reversibility of the gas sensor. Surprisingly, the minimum
detectable concentration can reach as low as 1 ppm (Figure S8).
As shown in Figure 5B, a linear relationship between the sensing
response and acetone concentrations is observed, indicating the
feasibility of quantitative acetone detection by the mesoporous
WO3 NFs based sensors. As important parameters for a gas
sensor, the response and recovery behaviors are also crucial
for evaluating the sensing performance. The mesoporous WO3-
25 NFs based sensor exhibits a fast response of 24 s upon
exposure to 50 ppm acetone and quick recovery of 27 s when
acetone gas was removed (Figure 5C). In addition, compared
with earlier reported acetone sensors, our mesoporous WO3 NFs
exhibits much better comprehensive sensing performance such
as high sensitivity, low limits of detection and fast response-
recovery (Table 1), thus becoming a promising candidate for
acetone sensing in environmental monitoring and rapid medical
diagnosis. Based on the aforementioned results, the predominant
enhancement could mainly be explained as follows: (1) The
unique hierarchical structure where uniform and controllable

mesopores are well-connected with enormous transportation
channels derived from PVP species, which facilitate the rapid
diffusion of gas molecules. (2) The high specific surface area with
abundant active sites enables the adsorption of a large amount
of acetone molecules. (3) The continuous crystalline framework
is also favorable for the fast transportation of charge carriers
from the surface into bulk. It can therefore be concluded that the
unique feature of our materials can maximize the performance
of gas sensing. The selectivity of gas sensors is also an important
parameter in practical applications. In this work, four kinds of
typical vaporous molecules with identical concentration of 50
ppm, such as methanol, ethanol, toluene, and formaldehyde were
selected as interfering gases. As illustrated in Figure 5D, the
response value of a mesoporous WO3-25 NFs based sensor to
acetone was at least four times higher than that of interfering
gases, which implies an excellent selectivity.

In summary, mesoporous WO3 NFs with controllable pore
diameters were synthesized via a facile electrospinning of an
aqueous solution containing ammonium paratungstate, PVP
and SiO2 NPs sacrificing templates, followed by controlled
pyrolysis at a high temperature and selective etching with
hydrofluoric acid. The PVP species can provide rigid support
inside frameworks, which can prevent the collapse of the unique
fiber morphology and the well-connected porous structure.
The decomposition of the PVP species during calcination and
the etching of SiO2 NPs was also found to contribute to
the formation of interconnected transportation channels and
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TABLE 1 | Comparison of acetone sensing properties of WO3 or WO3 based sensors with various nanostructures.

Structures Working temperature Acetone concentration

(ppm)

Response

(Ra/Rg)

Response/recovery

time

References

Porous WO3 300◦C 50 12.1 4/11.7 s Dong et al., 2016

WO3 plate 307◦C 100 ∼15 10/26 s Liu et al., 2012

WO3 nanoflowers 300◦C 100 ∼7 Not mentioned Wang et al., 2013

Co3O4-WO3 nanocomposite 280◦C 100 5.3 Not mentioned Zhao et al., 2015

Ag-WO3 nanosheets 340◦C 50 ∼8 28/38 s Yin et al., 2017

MoO3-WO3 nanostructures 320◦C 100 18.2 8/7 s Sun et al., 2017

WO3@CuO nanostructures Not mentioned 50 3.4 72.2/29.4 s Yang F. et al., 2018

cactus-like WO3-SnO2 360◦C 100 12.1 Not mentioned Zhu et al., 2018

Gd doped WO3-RGO

nanostructures

350◦C 50 27.0 Not mentioned Kaur et al., 2018

La2O3-WO3 nanofibers 350◦C 100 12.7 6/210 s Feng et al., 2015

Mesoporous WO3 NFs 350◦C 50 22.1 24/27 s This wok

uniform mesopores in the framework of the fibers. The obtained
mesoporous WO3 NFs possess a tunable pore size (26.3 and
42.2 nm), high surface area and pore volume (up to 34.4m2/g and
0.24 cm3g−1), and a well-developed hierarchical porous structure
and crystalline pore walls. Sensors based on these materials were
found to have an excellent acetone sensing performance with
a fast response (24 s) and recovery (27 s), a low detection limit
of 1 ppm, excellent selectivity and good stability, due to their
high mesoporosity, abundant active sites and the continuous
crystalline framework. Based on the above-mentioned results,
the obtained mesoporous WO3 NFs holds great promise for
applications in various fields such as portable miniaturized
devices used for environmental monitoring, and breath analysis
used for disease pre-diagnosis and home security. Moreover,
it is expected that the facile and effective electrospinning
approach may open up new opportunities for the design of
various mesoporous metal oxide NFs with high surface areas,
crystalline frameworks and greatly improved mass diffusion and
transportation for application in sensors, catalysis, energy storage
and conversion.
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