brought to you by CORE

CODEN : ASMCCQ

Acta Scientifica Malaysia (ASM)

DOI: https://doi.org/10.26480/asm.02.2018.23.26

APPLICATION OF SOFT P-OPEN SET TO BINARY SOFT STRUCTURES

Arif Mehmood Khattak¹, Zia Ul-Haq², Zamir Barki³, Muhammad Ilyas⁴

¹Department of Mathematics and Statistics Riphah International University, Sector I-14, Islamabad ²Department of Mathematics, Bannu University of Science and Technology, Bannu, Pakistan. *Corresponding Author Email: mehdaniyal@gmail.com

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS	ABSTRACT
Article History:	The main aim of this paper is to introduce a single structure which carries the subsets of X as well as the subsets of X under the parameter F for studying the information about the ordered pair of soft subsets of X and Y. Such a
Received 26 June 2018 Accepted 2 July 2018 Available online 1 August 2018	structure is called a binary soft structure from X to Y. The purpose of this paper is to introduce certain binary soft weak axioms that are analogous to the axioms of topology.
	KEYWORDS
	Binary soft topology, binary soft weak open sets. binary soft weak closed sets, binary soft weak separation axioms and binary soft T_0 space with respect to coordinates.

1. INTRODUCTION

The concept of soft sets was first introduced by Molodtsov in 1999 as a general mathematical technique for dealing with uncertain substances [1]. In, Molodtsov magnificently applied the soft theory in numerous ways, such as smoothness of functions, game theory, operations research, Riemann integration, Perron integration, probability, theory of measurement, and so on [1,2]. Point soft set topology deals with a nonempty setX to gether with a collection τ of sub set X under some set of parameters satisfying certain conditions. Such a collection τ is called a soft topological structure onX.

In 2016 Ahu Acikgöz and Nihal Tas introduced the notion of binary soft set Theory on two master sets and studied some basic characteristics [3]. In prolongation, a group researcher planned the idea of binary soft topology and linked fundamental properties which are defined over two master sets with appropriate parameters [4]. Other researchers threw their detailed discussion on Binary Soft Topological [5]. Dr. A. Kalaichelvi and P.H. Malini beautifully discussed Application of Fuzzy Soft Sets to Investment Decision and also discussed some more results related to this particular field [6]. N. Y. Özgür and N. Taş, studied some more Application of Fuzzy Soft Sets to Investment Decision Making Problem [7]. N. Taş, N. Y. Özgür and P. Demir worked over An Application of Soft Set and Fuzzy Soft Set Theories to Stock Management J. C. R. Alcantud et al carefully discussed Valuation Fuzzy Soft Sets: A Flexible Fuzzy Soft Set Based Decision-Making Procedure for the Valuation of Assets N. Çağman, S [8-10].

Enginoğlu attractively explored Soft Matrix Theory and some very basic results related to it and Its Decision Making In continuation, in the present paper binary soft topological structures known as soft weak structures with respect to first coordinate as well as with respect to second coordinate are defined. Moreover, some basic results related to these structures are also planted in this paper. The same structures are defined over soft points of binary soft topological structure and related results are also reflected here with respect to ordinary and soft points.

2. PRELIMINARIES

Definition 1: [11]. Let X be an initial universe and let E be a set of parameters. Let P(X) denote the power set of X and let A be a non-empty subset of E. A pair (F, A) iscalled a soft set overX, where F is a mapping given by: $A \rightarrow P(X)$. In other words, a soft set over X is a parameterized family of subsets of the universe X. For $\varepsilon \in A$, F (ε) may be considered as the set of ε -approximate elements of the soft set (F, A). Clearly, a soft set

is not a set.

Let U₁, U₂ be two initial universe sets and E be a set of parameters.

Let $P(U_1), P(U_2)$ denote the power set of U_1, U_2 respectively. Also, let A, B, C $\subseteq\,$ E.

Definition 2: [3]. A pair (F, A) is said to be a binary soft set over U_1, U_2 where F is defined as below:

 $F\colon A\to P(U_1)\times P(U_2),\,F(e)\,=\,(X,Y)$ for each $e\in A$ such that $X\subseteq U_1,\,Y\subseteq U_2$

Definition 3: [3]. A binary soft set (F, A) over U_1, U_2 is called a binary absolute soft set, denoted by \tilde{A} if F (e) = (U_1, U_2) for eache $\in A$.

Definition 4: [3]. The intersection of two binary soft sets of (F, A) and (G, B) over the common U_1, U_2 is the binary soft set (H, C), where $C = A \cap B$ and for all $e \in C$

$$H(e) = \begin{cases} (X_1, Y_1) \text{ if } e \in A - B\\ (X_2, Y_2) \text{ if } e \in B - A\\ (X_1 \cup X_2, Y_1 \cup Y_2) \text{ if } e \in A \cap B \end{cases}$$

Such that $F(e) = (X_1, Y_1)$ for each $e \in A$ and $G(e) = (X_2, Y_2)$ for each $e \in B$. We denote it $(F, A) \widetilde{\mathbb{O}} (G, A) = (H, C)$

Definition 5: [3]. The intersection of two binary soft sets (F, A) and (G, B) over a common U_1, U_2 is the binary soft set (H, C), where $C = A \cap B$, and $H(e) = (X_1 \cap X_2, Y_1 \cap Y_2)$) for each $e \in C$ such that $F(e) = (X_1, Y_1)$ for each $e \in A$ and $G(e) = (X_2, Y_2)$ for each $e \in B$. We denote it as (F, A) $\tilde{\cap}$ (G, B) = (H, C)

Definition 6: [3]. Let (F, A) and (G, B) be two binary soft sets over a common U_1, U_2 . (F, A) is called a binary soft subset of (G, B) if (i) $A \subseteq B$,

(ii) $X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$ Such that $F(e) = (X_1, Y_1)$, $G(e) = (X_2, Y_2)$ for eache $\in A$. We denote it as $(F, A) \stackrel{\sim}{\cong} (G, B)$.

Definition 7: [3]. A binary soft set (F, A) over U_1, U_2 is called a binary null soft set, denoted by if $F(e) = (\varphi, \varphi)$ for each $\in A$.

Definition 8: [3]. The difference of two binary soft sets (F, A) and (G, A)

Cite The Article: Arif Mehmood Khattak, Zia Ul-Haq, Zamir Barki, Muhammad Ilyas (2018). Application Of Soft P-Open Set To Binary Soft Structures. Acta Scientifica Malaysia, 2(2) : 23-26. over the Common U_1, U_2 is the binary soft set (H, A), where H(e) $(X_1 - X_2, Y_1 - Y_2)$ for each $e \in A$ such that $(F, A) = (X_1, Y_1)$ and $(G, A) = (X_2, Y_2)$.

Definition 9: [4]. Let τ_{Δ} be the collection of binary soft sets over U_1, U_2 then τ_{Δ} is said to be a binary soft topology on U_1, U_2 if

(i) $\widetilde{\widetilde{\varphi}}, \widetilde{\widetilde{X}} \in \tau_{\wedge}$

(ii) The union of any member of binary soft sets in τ_{Δ} belongs to τ_{Δ} . (iii) The intersection of any two binary soft sets in τ_{Δ} belongs to τ_{Δ} . Then $(U_1, U_2, \tau_{\Delta}, E)$ is called a binary soft topological space over U_1, U_2 .

Definition 10: Let (F, A) be any binary soft sub set of a binary soft topological space (X, Y, τ, E) then (F, A) is called

1) Binary soft pre-open set of (X, Y, τ, E) if $(F, A) \subseteq in(cl((F, A)))$ and 2) Binary soft pre-closed set of (X, Y, τ, E) if $(F, A) \supseteq cl(int(F, A)))$. The set of all binary P-open soft sets is denoted by BSPO (U) and the set of all binary P-closed sets is denoted by BSCO (U).

3.BINARY SOFT WEAK SEPARATION AXIOMS

In this section binary soft weak separation axioms in Binary Soft Topological Spaces are reflected.

 $\begin{array}{ll} \hline \textbf{Definition 11:} \ A \ binary \ soft \ topological \ space & (\widetilde{X}, \widetilde{Y}, \mathcal{M}, A) \ is \ called \ a \\ binary \ soft \ P_0 \ space \ if \ for \ any \ two \ binary \ soft \ points \ (x_1, y_1), (x_2, y_2) \widetilde{\mathcal{E}}(\widetilde{X}, \widetilde{Y}) \\ such \ that \ x_1 > x_2 \ , y_1 > y_2 \ there \ exists \ binary \ soft \ popen \ sets \ (F_1, A) \ and \\ (F_2, A) \qquad which \quad behaves \quad as(x_1, y_1) \ \widetilde{\widetilde{\in}} \ (F_1, A) \ , (x_2, y_2) \ \widetilde{\widetilde{\notin}} \ (F_1, A) \ or \\ (x_2, y_2) \ \widetilde{\widetilde{\in}} \ (F_2, A) \ and \ (x_1, y_1) \ \widetilde{\widetilde{\notin}} \ (F_2, A). \end{array}$

Definition 12: A binary soft topological space $(\widetilde{X}, \widetilde{Y}, \mathcal{M}, A)$ is called a binary soft P_1 space if for any two binary soft points $(x_1, y_1), (x_2, y_2)\widetilde{\mathcal{E}}(\widetilde{X}, \widetilde{Y})$ such that $x_1 > x_2, y_1 > y_2$ If there exists binary soft p-open sets (F_1, A) and (F_2, A) which behaves $as(x_1, y_1) \widetilde{\in} (F_1, A)$ and $(x_2, y_2) \widetilde{\in} (F_2, A)$ and $(x_1, y_1) \widetilde{\notin} (F_2, A)$.

Definition 13: Two binary soft p-open sets ((F, A), (G, A)) and (H, A), (I, A) are said to be disjoint if $((F, A) \sqcap (H, A), (G, A) \sqcap (I, A)) = (\Phi, \Phi)$. That is $(F, A) \sqcap (H, A) = (\Phi, \Phi)$ and $(G, A) \sqcap (I, A) = (\Phi, \Phi)$.

Definition 14: A binary soft topological space $(\widetilde{X}, \widetilde{Y}, \mathcal{M}, A)$ is called a binary soft P_2 space if for any two binary soft points $(x_1, y_1), (x_2, y_2)\widetilde{\mathcal{E}}(\widetilde{X}, \widetilde{Y})$ such that $x_1 > x_2$, $y_1 > y_2$ If there exists binary soft p-open sets (F_1, A) and (F_2, A) which behaves $as(x_1, y_1) \widetilde{\mathcal{E}}$ (F_1, A) and $(x_2, y_2) \widetilde{\mathcal{E}}$ (F_2, A) and moreover (F_1, A) and (F_2, A) are disjoint.

Definition 16: A binary soft topological space $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is called a binary soft P₀ with respect to the second coordinate if for every pair of binary points $(\beta, x_2), (\beta, y_2)$ there exists $((F, A), (G, A))\tilde{\mathcal{E}}\tau \times \sigma$ with $\beta\tilde{\mathcal{E}}(F, A), x_2\tilde{\mathcal{E}}(G, A), y_2 \notin (G, A)$. where p-open (F, A)'in τ and p- 'open (G, A)in $\sigma. e_G, e_H$

Definition 17: A binary soft topological space $(\widetilde{X}, \widetilde{Y}, \mathcal{M}, A)$ is called a binary soft P_0 space if for any two binary soft points $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}), (e_{\mathbb{G}_2}, e_{\mathbb{H}_2})\widetilde{\mathcal{E}}(\widetilde{X_A}, \widetilde{Y_A})$ such that $e_{\mathbb{G}_1} > e_{\mathbb{G}_2}, e_{\mathbb{H}_1} > e_{\mathbb{H}_2}$ there exists binary soft p-open sets (F_1, A) and (F_2, A) which behaves $as(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \widetilde{\widetilde{\in}} (F_1, A), (e_{\mathbb{G}_2}, e_{\mathbb{H}_2}) \widetilde{\widetilde{\notin}} (F_1, A)$ or $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2}) \widetilde{\widetilde{\in}} (F_2, A)$ and $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \widetilde{\widetilde{\notin}} (F_2, A)$.

Definition 18: A binary soft topological space $(\widetilde{X}, \widetilde{Y}, \mathcal{M}, A)$ is called a binary soft P_1 space if for any two binary soft points $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}), (e_{\mathbb{G}_2}, e_{\mathbb{H}_2})\widetilde{\mathcal{E}}(\widetilde{X}_A, \widetilde{Y}_A)$ such that $e_{\mathbb{G}_1} > e_{\mathbb{G}_2}, e_{\mathbb{H}_1} > e_{\mathbb{H}_2}$ If there exists binary soft popen sets (F_1, A) and (F_2, A) which behaves $\operatorname{as}(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \widetilde{\in} (F_1, A)$ and $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2}) \widetilde{\notin} (F_2, A)$ and $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \widetilde{\notin} (F_2, A)$.

 (F_1, A) and (F_2, A) are disjoint.

Definition 20: A binary soft topological space $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is called a binary soft P_0 with respect to the first coordinate if for every pair of binary points $(e_{\mathbb{G}_1}, \alpha), (e_{\mathbb{H}_1}, \alpha)$ there exists $((F, A), (G, A))\tilde{\mathcal{E}}\tau \times \sigma$ with $e_{\mathbb{G}_1}\tilde{\mathcal{E}}(F, A), e_{\mathbb{H}_1} \notin (F, A), \alpha \tilde{\mathcal{E}}(G, A)$.where p-open (F, A)'in τ and p-open (G, A) in σ .

Definition 21: A binary soft topological space $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is called a binary soft P_0 with respect to the second coordinate if for every pair of binary points $(\beta, e_{\mathbb{G}_2}), (\beta, e_{\mathbb{H}_2})$ there exists $((F, A), (G, A))\tilde{\mathcal{E}}\tau \times \sigma$ with $\beta\tilde{\mathcal{E}}(F, A), e_{\mathbb{G}_2}\tilde{\mathcal{E}}(G, A), e_{\mathbb{H}_2} \notin (G, A)$. where p-open (F, A)'in τ and p-open (G, A)in σ .

4. BINARY SOFT STRUCTURES WITH RESPECT TO ORDINARY POINTS

Theorem 1. If the binary soft topological space $(\tilde{X}, \tilde{Y}, \rho \times \sigma, A)$ is a binary soft P_0 , then (\tilde{X}, ρ, A) and (\tilde{Y}, σ, A) are soft P_0 .

Proof. We suppose $(\tilde{X}, \tilde{Y}, \rho \times \sigma, A)$ is a binary soft P_0 . Suppose $x_1, x_2 \tilde{\mathcal{E}} \tilde{X}$ and $y_1, y_2 \tilde{\mathcal{E}} \tilde{Y}$ with such that $x_1 > x_2$, $y_1 > y_2$.Since $(\tilde{X}, \tilde{Y}, \rho \times \sigma, A)$ is a binary soft P_0 , accordingly there binary soft p-open set ((F, A), (G, A)) such that $(x_1, y_1) \tilde{\mathcal{E}}((F, A), (G, A)); (x_2, y_2) \tilde{\mathcal{E}}(F^c, A), (G^c, A)$ or $(x_1, y_1) \tilde{\mathcal{E}}((F^c, A), (G^c, A)); (x_2, y_2) \tilde{\mathcal{E}}((F, A), (G, A))$.This implies that either $x_1 \tilde{\mathcal{E}}(F, A); x_2 \tilde{\mathcal{E}}(F^c, A); y_1 \tilde{\mathcal{E}}(G, A); y_2 \tilde{\mathcal{E}}(G^c, A); or$

 $\begin{array}{ll} x_1\tilde{\mathcal{E}}(F^c,A); y_1\tilde{\mathcal{E}}(G^c,A); y_2\tilde{\mathcal{E}}(G,A). & \text{This} & \text{implies} & \text{either} \\ x_1\tilde{\mathcal{E}}(F,A); x_2\tilde{\mathcal{E}}(F^c,A) \text{or} & x_1\tilde{\mathcal{E}}(F^c,A); x_1\tilde{\mathcal{E}}(F,A) \text{and} & \text{either} \\ y_1\tilde{\mathcal{E}}(G,A); y_2\tilde{\mathcal{E}}(G^c,A) \text{or} y_1\tilde{\mathcal{E}}(G^c,A); y_2\tilde{\mathcal{E}}(G,A). & \text{Since} & ((F,A), (G,A))\tilde{\mathcal{E}}\rho \times \\ \sigma, \text{We have p- open} & (F,A)\tilde{\mathcal{E}}\rho \text{ and p-open}(F,A)\tilde{\mathcal{E}} \sigma. \text{ this proves that} & (\tilde{X},\rho,A) \\ \text{and} & (\tilde{Y},\sigma,A) \text{ are soft } P_0. \end{array}$

Theorem 2. A binary soft topological space $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is binary soft P_0 space with respect to first and the second coordinates, then $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is binary soft P_0 space.

Proof. Let $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is binary soft P_0 space with respect to first and the second coordinates. Let $(x_1, y_1), (x_2, y_2)\tilde{\mathcal{E}}X \times Y$ with $x_1 > x_2, y_1 > y_2$. Take $\alpha \tilde{\mathcal{E}}Y$ and $\beta \tilde{\mathcal{E}}X$. Then $(x_1, \alpha), (x_2, \alpha)\tilde{\mathcal{E}}X \times Y$. Since $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is a binary soft P_0 space with respect to the first coordinate, by using definition, there exists $((F, A), (G, A))\tilde{\mathcal{E}}\tau \times \sigma$ with $x_1\tilde{\mathcal{E}}(F, A), x_2 \tilde{\notin}(F, A), \alpha\tilde{\mathcal{E}}(G, A)$. Since $(\beta, y_1), (\beta, y_2)\tilde{\mathcal{E}}X \times Y$, by using the arguments and using definition there exists $((H, A), (K, A))\tilde{\mathcal{E}}\tau \times \sigma$ with $y_1\tilde{\mathcal{E}}(K, A), y_1 \tilde{\notin}(K, A), \beta\tilde{\mathcal{E}}(H, A)$. Therefore, $(x_1, y_1) \tilde{\mathcal{E}}((F, A), (K, A))$ and $(x_2, y_2) \tilde{\mathcal{E}}((F^c, A), (K^c, A))$. Hence $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is called a binary soft b- T_0

Theorem 3. A binary soft topological space (\tilde{X}, τ, A) and (\tilde{Y}, σ, A) are soft P_1 spaces if and only if the binary soft topological space $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_1 .

Proof. Suppose (\tilde{X}, τ, A) and (\tilde{X}, σ, A) are soft P_1 spaces. Let $(x_1, y_1), (x_2, y_2)\tilde{\mathcal{E}}X \times Y$ with $x_1 > x_2$, $y_1 > y_2$. since (\tilde{X}, τ, A) is soft P_1 space, there exists soft p-open sets such that $(F, A), (G, A)\tilde{\mathcal{E}}\tau, x_1\mathcal{E}(F, A)$ and $x_2 \mathcal{E}(G, A)$ such that $x_1 \notin (G, A)$ and $x_2 \notin (F, A)$. Also, since (\tilde{Y}, σ, A) is soft P_1 space, there exists soft p-open sets such that $(H, A), (I, A)\tilde{\mathcal{E}}\sigma, y_1\mathcal{E}(H, A)$ and $y_2\mathcal{E}(I, A)$ such that $y_1 \notin (I, A)$ and $y_2 \notin (H, A)$.thus $(x_1, y_1) \mathcal{E}((F, A), (H, A))$ and $(x_2, y_2) \mathcal{E}((G, A), (I, A))$ with $(x_1, y_1) \mathcal{E}((G^C, A), (I^C, A))$ and $(x_1, y_1) \mathcal{E}((F^C, A), (H^C, A))$. This implies that $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_1 . Conversely assume that $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_1 . Let $x_1, x_2 \mathcal{E} X$ and $y_1, y_2 \mathcal{E} Y$ such that $x_1 > x_2$, $y_1 > y_2$. Therefore $(x_1, y_1), (x_2, y_2)\tilde{\mathcal{E}}X \times Y$. Since $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_1 , there exists (F, A), (G, A)and $(H, A), (I, A)\mathcal{E}(\tau \times$ σ), $(x_1, y_1)\tilde{\mathcal{E}}((F, A), (G, A))$ and $(x_1, y_1)\tilde{\mathcal{E}}((H, A), (I, A))$ such that $(x_2,y_2)\tilde{\mathcal{E}}\big((F^c,A),(G^c,A)\big).$ $(x_1, y_1) \mathcal{E}(H^c, \widetilde{A}), (I^c, A)$ and Therefore, $x_1 \mathcal{E}(F, A)$, $x_2 \mathcal{E}(H, A)$ and $x_1 \mathcal{E}(H^c, A)$ and $x_2 \mathcal{E}(F^c, A)$ and , $y_1 \mathcal{E}(G^c, A)$ and $y_1 \mathcal{E}(I, A)$ and $y_1 \mathcal{E}(I^c, A)$ and $y_2 \mathcal{E}(G^c, A)$. Since $(F,A), (G,A)\tilde{\mathcal{E}}\tau \times \sigma$, We have $(F,A), (H,A)\mathcal{E}\tau$ and $(G,A), (I,A)\mathcal{E}\sigma$. This proves that (\tilde{X}, τ, A) and (\tilde{X}, σ, A) are soft P_1 spaces.

Theorem 4. A binary soft topological space $(\tilde{X}, \tilde{Y}, \mathcal{M}, A)$ is binary soft P_1 space if and only if every binary soft point $\wp(X) \times \wp(Y)$ is binary soft p-closed.

Proof. Suppose that $(\tilde{X}, \tilde{Y}, \mathcal{M}, A)$ is binary soft P_1 space. Let $(x, y)\tilde{\mathcal{E}}X \times Y$. Let $(\{x\}, \{y\})\tilde{\mathcal{E}}\wp(X) \times \wp(Y)$. We shall show that $(\{x\}, \{y\})$ is binary soft pclosed.it is sufficient to show that $(X \setminus \{x\}, Y \setminus \{y\})$ is binary soft p-open. Let $(a, b)\mathcal{E}(X \setminus \{x\}, Y \setminus \{y\})$. This implies that $a\tilde{\mathcal{E}}X \setminus \{x\}$ and $b\tilde{\mathcal{E}}Y \setminus \{y\}$. hence $a \neq$

Cite The Article: Arif Mehmood Khattak, Zia Ul-Haq, Zamir Barki, Muhammad Ilyas (2018). Application Of Soft P-Open Set To Binary Soft Structures. Acta Scientifica Malaysia, 2(2): 23-26. x and $b \neq y$. That is, (a, b) and (x, y) are distinct binary soft points of $X \times Y$. Since $(\tilde{X}, \tilde{Y}, \mathcal{M}, A)$ is binary soft P_1 space, there exists binary soft popen sets ((F, A), (G, A)) and $(H, A), (I, \overline{A})$ such that $(a, b)\mathcal{E}((F, A), (G, \overline{A}))$ and $(x, y) \mathcal{E}((H, A), (I, A))$ such that $(a,b)\mathcal{E}((H^{c},A),(I^{c},A))$ and $(x, y) \mathcal{E}((F^{\mathcal{C}}, A), (G^{\mathcal{C}}, A)).$ Therefore, $((F, A), (G, A)) \subseteq (\{x\}^c, \{y\}^c).$ Hence($\{x\}^c, \{y\}^c$) is a soft neighbourhood of (a, b). This implies that $({x}, {y})$ is binary soft p-closed. Conversely, suppose that $({x}, {y})$ is binary soft b-closed for every $(x, y) \mathcal{E}X \times Y$. Suppose $(x_1, y_1), (x_2, y_2) \mathcal{E}X \times$ Y with $x_1 > x_2$, $y_1 > y_2$. Therefore, $(x_2, y_2)\mathcal{E}(\{x_1\}^c, \{y_1\}^c)$ and $\mathcal{E}(\{x_1\}^c, \{y_1\}^c)$ is binary soft p-open. Also $(x_1, y_1)\mathcal{E}(\{x_2\}^c, \{y_2\}^c)$ and $\mathcal{E}(\{x_1\}^c, \{y_1\}^c)$ is binary soft p-open set. Also $(x_1, y_1)\mathcal{E}(\{x_2\}^c, \{y_2\}^c)$ and $\mathcal{E}({x_2}^{\widetilde{f}},{y_2}^c)$ is binary soft p-open set. This shows that $(\tilde{X},\tilde{Y},\mathcal{M},A)$ is binary soft P_1 space.

Theorem 5. A binary soft topological space (\tilde{X}, τ, A) and (\tilde{Y}, σ, A) are soft P_2 spaces if and only if the binary soft topological space $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_2 .

Proof. Suppose (\tilde{X}, τ, A) and (\tilde{X}, σ, A) are soft P_2 spaces. Let $(x_1, y_1), (x_2, y_2)\tilde{\mathcal{E}}X \times Y$ with $x_1 > x_2$, $y_1 > y_2$. since (\tilde{X}, τ, A) is soft P_2 space, there exists soft p-open sets such that (F, A), $(G, A)\tilde{\mathcal{E}}\tau$, $x_1\mathcal{E}(F, A)$ and $x_2 \mathcal{E}(G, A)$ such that $x_1 \notin (G, A)$ and $x_2 \notin (F, A)$. Also, since (\tilde{Y}, σ, A) is soft P_2 space, there exists disjoint soft p-open sets such that(*H*,*A*), (*I*,*A*) $\tilde{\mathcal{E}}\sigma$, $y_1\mathcal{E}(H,A)$ and $y_2\mathcal{E}(I,A)$ such that $y_1 \notin (I,A)$ and $y_2 \notin (H, A)$.thus $(x_1, y_1) \mathcal{E}((F, A), (H, A))$ and $(x_2, y_2) \mathcal{E}((G, A), (I, A))$ with $(x_1,y_1)\mathcal{E}\bigl((F^c,A),(H^c,A)\bigr).$ $(x_1, y_1) \mathcal{E}((G^c, A), (I^c, A))$ and Snce(*F*, *A*) and (*G*, *A*)are disjoint, (*F*, *A*) \sqcap (*H*, *A*) = (ϕ , ϕ). since $(H, A) \sqcap (I, A) = (\Phi, \Phi)$. $\mathrm{Thus}\big((F,A) \sqcap (H,A), (G,A) \sqcap (I,A)\big) =$ (Φ, Φ) . This implies that we have this implies that $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_2 . Conversely assume that $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_2 . Let $x_1, x_2 \mathcal{E}X$ and $y_1, y_2 \mathcal{E}Y$ such that $x_1 > x_2$, $y_1 > y_2$. Therefore $(x_1, y_1), (x_1, y_1) \tilde{\mathcal{E}} X \times Y$. Since $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_2 , there exists binary soft p-open sets (F, A), (G, A) and there exists binary soft b-open $(H,A), (I,A)\mathcal{E}(\tau \times \sigma), (x_1, y_1)\overline{\mathcal{E}}((F,A), (G,A))$ sets and $(x_2, y_2)\tilde{\mathcal{E}}((\mathcal{H}, A), (I, A))$ such that $(x_1, y_1) \mathcal{E}(H^c, \widetilde{A}), (I^c, A)$ and $(x_2, y_2)\tilde{\mathcal{E}}((F^c, A), (G^c, A))$. Therefore, $x_1\mathcal{E}(F, A), x_2\mathcal{E}(H, A)$ and $x_1\mathcal{E}(H^c, A)$ and $x_2 \mathcal{E}(F^c, A)$ and $y_1 \mathcal{E}(G^c, A)$ and $y_2 \mathcal{E}(I, A)$ and $y_1 \mathcal{E}(I^c, A)$ and , $y_2 \mathcal{E}(G^C, A)$. Since $(F, A), (G, A) \tilde{\mathcal{E}} \tau \times \sigma$, We have $(F, A), (H, A) \mathcal{E} \tau$ and $(G, A), (I, A)\mathcal{E}\sigma$. This proves that (\tilde{X}, τ, A) and (\tilde{X}, σ, A) are soft b- T_2 spaces.

5. BINARY SOFT STRUCTURES WITH RESPECT TO SOFT POINTS

Theorem 6. If the binary soft topological space $(\tilde{X}, \tilde{Y}, \rho \times \sigma, A)$ is a binary soft P_0 , then (\tilde{X}, ρ, A) and (\tilde{Y}, σ, A) are soft P_0 .

Proof. We suppose $(\widetilde{X}_{A}, \widetilde{Y}_{A}, \rho \times \sigma, A)$ is a binary soft P₀. Suppose $e_{\mathbb{G}_{1}}, e_{\mathbb{G}_{2}} \widetilde{E} \widetilde{X}_{A}$ and $e_{\mathbb{H}_{1}}, e_{\mathbb{H}_{2}} \widetilde{E} \widetilde{Y}_{A}$ with such that $e_{\mathbb{G}_{1}} > e_{\mathbb{G}_{2}}, e_{\mathbb{H}_{1}} > e_{\mathbb{H}_{2}}$.Since $(\widetilde{X}_{A}, \widetilde{Y}_{A}, \rho \times \sigma, A)$ is a binary soft P₀, accordingly there binary soft p-open set ((F, A), (G, A)) such that $(e_{\mathbb{G}_{1}}, e_{\mathbb{H}_{1}})\widetilde{\mathcal{E}}((F, A), (G, A))$; $(e_{\mathbb{G}_{2}}, e_{\mathbb{H}_{2}})\widetilde{\mathcal{E}}(F^{C}, A), (G^{C}, A)$ or $(e_{\mathbb{G}_{1}}, e_{\mathbb{H}_{1}})\widetilde{\mathcal{E}}((F^{C}, A), (G^{C}, A))$; $(e_{\mathbb{G}_{2}}, e_{\mathbb{H}_{2}})\widetilde{\mathcal{E}}((F, A), (G, A))$.This implies that eithere $e_{\mathbb{G}_{1}}\widetilde{\mathcal{E}}(F, A); e_{\mathbb{G}_{2}}\widetilde{\mathcal{E}}(F^{C}, A); e_{\mathbb{H}_{1}}\widetilde{\mathcal{E}}(G, A); e_{\mathbb{H}_{2}}\widetilde{\mathcal{E}}(G^{C}, A); or e_{\mathbb{G}_{1}}\widetilde{\mathcal{E}}(F^{C}, A); e_{\mathbb{H}_{2}}\widetilde{\mathcal{E}}(G^{C}, A)$. This implies either

 $e_{\mathbb{G}_{1}}\tilde{\mathcal{E}}(F^{C},A); e_{\mathbb{H}_{1}}\tilde{\mathcal{E}}(G^{C},A); e_{\mathbb{H}_{2}}\tilde{\mathcal{E}}(G,A). \text{ This implies either } e_{\mathbb{G}_{1}}\tilde{\mathcal{E}}(F,A); e_{\mathbb{G}_{2}}\tilde{\mathcal{E}}(F^{C},A); e_{\mathbb{H}_{2}}\tilde{\mathcal{E}}(G,A). \text{ this either } e_{\mathbb{H}_{1}}\tilde{\mathcal{E}}(G,A); e_{\mathbb{H}_{2}}\tilde{\mathcal{E}}(G^{C},A); e_{\mathbb{H}_{2}}\tilde{\mathcal{E}}(G,A). \text{ Since } ((F,A), (G,A))\tilde{\mathcal{E}}\rho \times \sigma, \text{We have p- open } (F,A)\tilde{\mathcal{E}}\rho \text{ and p-open}(F,A)\tilde{\mathcal{E}}\sigma. \text{ this proves that } (\tilde{X}, \rho, A) \text{ and } (\tilde{Y}, \sigma, A) \text{ are soft } P_{0}.$

Theorem 7. A binary soft topological space $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is binary soft P_0 space with respect to first and the second coordinates, then $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is binary soft P_0 space.

Proof. Let $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is binary soft P_0 space with respect to first and the second coordinates. Let $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}), (e_{\mathbb{G}_2}, e_{\mathbb{H}_2})\tilde{\mathcal{E}}X \times Y$ with $e_{\mathbb{G}_1} > e_{\mathbb{G}_2}, e_{\mathbb{H}_1} > e_{\mathbb{H}_2}$. Take $\alpha \tilde{\mathcal{E}}Y$ and $\beta \tilde{\mathcal{E}}X$. Then $(e_{\mathbb{G}_1}, \alpha), (e_{\mathbb{G}_2}, \alpha)\tilde{\mathcal{E}}X \times Y$. Since $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is a binary soft P_0 space with respect to the first coordinate, by using definition, there exists $((F, A), (G, A))\tilde{\mathcal{E}}\tau \times \sigma$ with $e_{\mathbb{G}_1}\tilde{\mathcal{E}}(F, A), e_{\mathbb{G}_2} \tilde{\mathcal{E}}(F, A), \alpha \tilde{\mathcal{E}}(G, A)$. Since $(\beta, e_{\mathbb{H}_1}), (\beta, e_{\mathbb{H}_2})\tilde{\mathcal{E}}X \times Y$, by using the arguments and using definition there exists $((H, A), (K, A))\tilde{\mathcal{E}}\tau \times \sigma$ with $e_{\mathbb{H}_1}\tilde{\mathcal{E}}(K, A), e_{\mathbb{H}_1} \tilde{\mathcal{E}}(K, A), \beta \tilde{\mathcal{E}}(H, A)$ where (H, A) is p-open in τ and (K, A) is p-open in σ Therefore, $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}), \tilde{\mathcal{E}}((F, A), (K, A))$ and $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2}), \tilde{\mathcal{E}}((F^c, A), (K^c, A))$. Hence $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is called a binary soft P_0

Theorem 8. A binary soft topological space (\tilde{X}, τ, A) and (\tilde{Y}, σ, A) are soft P₁spaces if and only if the binary soft topological space $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is

soft binary P_1 .

 (\tilde{X}, τ, A) and (\tilde{X}, σ, A) are soft P₁spaces. Let **Proof.** Suppose $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}), (e_{\mathbb{G}_2}, e_{\mathbb{H}_2}) \tilde{\mathcal{E}}X \times Y$ with $e_{\mathbb{G}_1} > e_{\mathbb{G}_2}, e_{\mathbb{H}_1} > e_{\mathbb{H}_2}$ since (\tilde{X}, τ, A) is soft P₁space, there exists soft p-open sets such that $(F, A), (G, A)\tilde{\mathcal{E}}\tau$, $e_{\mathbb{G}_1}\mathcal{E}(F,A)$ and $e_{\mathbb{G}_2}\mathcal{E}(G,A)$ such that $e_{\mathbb{G}_1} \notin (G,A)$ and $e_{\mathbb{G}_2} \notin (F,A)$. Also, since (\tilde{Y}, σ, A) is soft P₁space, there exists soft p-open sets such that $(H,A), (I,A)\widetilde{\mathcal{E}}\sigma, e_{\mathbb{H}_1}\mathcal{E}(H,A)$ and $e_{\mathbb{H}_2}\mathcal{E}(I,A)$ such that $e_{\mathbb{H}_1} \widetilde{\notin} (I,A)$ and $e_{\mathbb{H}_2} \notin (H, A)$.thus $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \mathcal{E}((F, A), (H, A))$ and $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2}) \mathcal{E}((G, A), (I, A))$ with $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \mathcal{E}((G^C, A), (I^C, A))$ and $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \mathcal{E}((F^C, A), (H^C, A))$. This implies that $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P₁. Conversely assume that $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_1 .Let $e_{\mathbb{G}_1}, e_{\mathbb{G}_2} \mathcal{E}X$ and $e_{\mathbb{H}_1}, e_{\mathbb{H}_2} \mathcal{E}Y$ such that $e_{\mathbb{G}_1} > e_{\mathbb{G}_2}, e_{\mathbb{H}_1} > e_{\mathbb{H}_2}$. Therefore $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}), (e_{\mathbb{G}_2}, e_{\mathbb{H}_2})\tilde{\mathcal{E}}X \times Y$. Since $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P₁, there exists p-open sets (*F*, *A*), (*G*, *A*) and p-open sets $(H, A), (I, A)\mathcal{E}(\tau \times \sigma), (e_{\mathbb{G}_1}, e_{\mathbb{H}_1})\mathcal{\tilde{E}}((F, A), (G, A))$ and $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2})\widetilde{\mathcal{E}}((H, A), (I, A))$ such that $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1})\mathcal{E}(H^c, \widetilde{A}), (I^c, A)$ and $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2})\tilde{\mathcal{E}}((F^c, A), (G^c, A)).$ Therefore, $e_{\mathbb{G}_1}\mathcal{E}(F, A), e_{\mathbb{G}_2}\mathcal{E}(H, A)$ and $e_{\mathbb{G}_1}\mathcal{E}(H^C, A)$ and $e_{\mathbb{G}_2}\mathcal{E}(F^C, A)$ and $y_1\mathcal{E}(G^C, A)$ and $e_{\mathbb{H}_1}\mathcal{E}(I, A)$ and $e_{\mathbb{H}_1}\mathcal{E}(I^c, A)$ and $e_{\mathbb{H}_2}\mathcal{E}(G^c, A)$. Since $(F, A), (G, A)\tilde{\mathcal{E}}\tau \times \sigma$, We have(*F*, *A*), (*H*, *A*) $\mathcal{E}\tau$ and (*G*, *A*), (*I*, *A*) $\mathcal{E}\sigma$. This proves that (\tilde{X}, τ, A) and (\tilde{X}, σ, A) are soft P_1 spaces.

Theorem 9. A binary soft topological space $(\tilde{X}, \tilde{Y}, \mathcal{M}, A)$ is binary soft P_1 space if and only if every binary soft point $\wp(X) \times \wp(Y)$ is binary soft p-closed.

Proof. Suppose that $(\tilde{X}, \tilde{Y}, \mathcal{M}, A)$ is binary soft P_1 space. Let $(x, y)\tilde{\mathcal{E}}X \times Y$. Let $({x}, {e_{\mathbb{H}}})\tilde{\mathcal{E}}\wp(X) \times \wp(Y)$. We shall show that $({x}, {e_{\mathbb{H}}})$ is binary soft p-closed.it is sufficient to show that $(X \setminus \{e_{\mathbb{G}}\}, Y \setminus \{e_{\mathbb{H}}\})$ is binary soft p-open. Let $(a, b) \mathcal{E}(X \setminus \{e_{\mathbb{G}}\}, Y \setminus \{e_{\mathbb{H}}\})$. This implies that $a \mathcal{\tilde{E}} X \setminus \{e_{\mathbb{G}}\}$ and $b \mathcal{\tilde{E}} Y \setminus \{e_{\mathbb{H}}\}$. hence $a \neq e_{\mathbb{G}}$ and $b \neq e_{\mathbb{H}}$. That is, (a, b) and $(e_{\mathbb{G}}, e_{\mathbb{H}})$ are distinct binary soft points of $X \times Y$. Since $(\tilde{X}, \tilde{Y}, \mathcal{M}, A)$ is binary soft P_1 space, there exists binary soft p-open sets ((F, A), (G, A)) and (H, A), (I, A) such that $(a,b) \mathcal{E}((F,A),(G,A))$ and $(x, y) \mathcal{E}((H, A), (I, A))$ such that $(a,b) \mathcal{E}((H^{\mathcal{C}},A),(I^{\mathcal{C}},A))$ and $(e_{\mathbb{G}}, e_{\mathbb{H}}) \mathcal{E}((F^{\mathcal{C}}, A), (G^{\mathcal{C}}, A)).$ Therefore, $\left((F,A),(G,A)\right)\subseteq \left(\{e_{\mathbb{G}}\}^{c},\{e_{\mathbb{H}}\}^{c}\right).$ Hence($\{e_{\mathbb{G}}\}^c, \{e_{\mathbb{H}}\}^c$) is а soft neighbourhood of (a, b). This implies that $(\{e_{\mathbb{G}}\}, \{e_{\mathbb{H}}\})$ is binary soft pclosed. Conversely, suppose that ({ $e_{\mathbb{G}}$ }, { $e_{\mathbb{H}}$ })is binary soft p-closed for every $(e_{\mathbb{G}}, e_{\mathbb{H}}) \mathcal{E}X \times Y$. Suppose $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1})$, $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2}) \mathcal{\tilde{E}}X \times Y$ with $e_{\mathbb{G}_1} >$ $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2}) \mathcal{E}(\{e_{\mathbb{G}_1}\}^c, \{e_{\mathbb{H}_1}\}^c)$ and $e_{\mathbb{G}_2}$, $e_{\mathbb{H}_1} > e_{\mathbb{H}_2}$. Therefore,

 $\mathcal{E}^{\circ}(\{e_{\mathbb{G}_{1}}\}^{c},\{e_{\mathbb{H}_{1}}\}^{c})\text{ is binary soft } p\text{-open. Also}$ $(e_{\mathbb{G}_{1}},e_{\mathbb{H}_{1}})\mathcal{E}(\{e_{\mathbb{G}_{2}}\}^{c},\{e_{\mathbb{H}_{2}}\}^{c})\text{ and } \mathcal{E}(\{e_{\mathbb{G}_{1}}\}^{c},\{e_{\mathbb{H}_{1}}\}^{c})\text{ is binary soft } p\text{-open set.}$ Also $(e_{\mathbb{G}_{1}},e_{\mathbb{H}_{1}})\mathcal{E}(\{e_{\mathbb{G}_{2}}\}^{c},\{e_{\mathbb{H}_{2}}\}^{c})\text{ and } \mathcal{E}(\{e_{\mathbb{G}_{2}}\}^{c},\{e_{\mathbb{H}_{2}}\}^{c})\text{ is binary soft } p\text{-open set.}$ Also $(e_{\mathbb{G}_{1}},e_{\mathbb{H}_{1}})\mathcal{E}(\{e_{\mathbb{G}_{2}}\}^{c},\{e_{\mathbb{H}_{2}}\}^{c})\text{ and } \mathcal{E}(\{e_{\mathbb{G}_{2}}\}^{c},\{e_{\mathbb{H}_{2}}\}^{c})\text{ is binary soft } p\text{-open set.}$ Solve that $(\tilde{X},\tilde{Y},\mathcal{M},A)$ is binary soft P_{1} space.

Theorem 10. A binary soft topological space (\tilde{X}, τ, A) and (\tilde{Y}, σ, A) are soft P_2 spaces if and only if the binary soft topological space $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_2 .

Proof. Suppose (\tilde{X}, τ, A) and (\tilde{X}, σ, A) are soft P_2 spaces. Let $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}), (e_{\mathbb{G}_2}, e_{\mathbb{H}_2})\tilde{\mathcal{E}}X \times Y \text{ with } e_{\mathbb{G}_1} > e_{\mathbb{G}_2}, e_{\mathbb{H}_1} > e_{\mathbb{H}_2}. \text{ since } (\tilde{X}, \tau, A) \text{ is}$ soft P_2 space, there exists soft p-open sets such that $(F, A), (G, A)\tilde{\mathcal{E}}\tau$, $e_{\mathbb{G}_1}\mathcal{E}(F,A)$ and $e_{\mathbb{G}_2}\mathcal{E}(G,A)$ such that $e_{\mathbb{G}_1} \notin (G,A)$ and $e_{\mathbb{G}_2} \notin (F,A)$. Also, since (\tilde{Y}, σ, A) is soft P_2 space, there exists distoint soft p-open sets such that(*H*, *A*), (*I*, *A*) $\tilde{\mathcal{E}}\sigma$, $e_{\mathbb{H}_1}\mathcal{E}(H, A)$ and $e_{\mathbb{H}_2}\mathcal{E}(I, A)$ such that $e_{\mathbb{H}_1} \notin (I, A)$ and $e_{\mathbb{H}_2} \notin (H, A)$.thus $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \mathcal{E}((F, A), (H, A))$ and $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2}) \mathcal{E}((G, A), (I, A))$ $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \mathcal{E}((G^C, A), (I^C, A))$ with $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}) \mathcal{E}((F^c, A), (H^c, A))$.Snce(F, A) and (G, A) are disjoint, $(F, A) \sqcap$ $(H, A) = (\Phi, \Phi)$. Also since $(H, A) \sqcap (I, A) = (\Phi, \Phi)$. Thus $((F, A) \sqcap$ $(H, A), (G, A) \sqcap (I, A) = (\Phi, \Phi)$. This implies that we have this implies that $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ is soft binary P_2 . Conversely assume that $(\tilde{X}, \tilde{Y}, \tau \times \sigma, A)$ σ, A) is soft binary P_2 . Let $e_{\mathbb{G}_1}, e_{\mathbb{G}_2} \mathcal{E}X$ and $e_{\mathbb{H}_1}, e_{\mathbb{H}_2} \mathcal{E}Y$ such that $e_{\mathbb{G}_1} >$ $e_{\mathbb{G}_2}, e_{\mathbb{H}_1} > e_{\mathbb{H}_2}$ Therefore $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1}), (e_{\mathbb{G}_2}, e_{\mathbb{H}_2})\tilde{\mathcal{E}}X \times Y$. Since $(\tilde{X}, \tilde{Y}, \tau \times I)$ σ , A) is soft binary P_2 there exists binary soft p-open sets (F, A), (G, A) and there exists binary soft p-open sets $(H, A), (I, A)\mathcal{E}(\tau \times$ σ), $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1})\tilde{\mathcal{E}}((F, A), (G, A))$ and $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2})\tilde{\mathcal{E}}((H, A), (I, A))$ such that $(e_{\mathbb{G}_2}, e_{\mathbb{H}_2}) \tilde{\mathcal{E}}((\mathbf{F}^{\mathsf{C}}, \mathbf{A}), (\mathbf{G}^{\mathsf{C}}, \mathbf{A})).$ $(e_{\mathbb{G}_1}, e_{\mathbb{H}_1})\mathcal{E}(\mathbb{H}^{\mathbb{C}}, \widetilde{\mathbb{A}}), (\mathbb{I}^{\mathbb{C}}, \mathbb{A})$ and Therefore, $e_{\mathbb{G}_1}\mathcal{E}(F,A)$, $e_{\mathbb{G}_2}\mathcal{E}(H,A)$ and $e_{\mathbb{G}_1}\mathcal{E}(H^C,A)$ and $e_{\mathbb{G}_2}\mathcal{E}(F^C,A)$ and , $e_{\mathbb{H}_1}\mathcal{E}(G^C, A)$ and $e_{\mathbb{H}_2}\mathcal{E}(I, A)$ and $e_{\mathbb{H}_1}\mathcal{E}(I^C, A)$ and $e_{\mathbb{H}_2}\mathcal{E}(G^C, A)$. Since $(F, A), (G, A)\tilde{\mathcal{E}}\tau \times \sigma$, We have $(F, A), (H, A)\mathcal{E}\tau$ and $(G, A), (I, A)\mathcal{E}\sigma$. This proves that (\tilde{X}, τ, A) and (\tilde{X}, σ, A) are soft P_2 spaces.

6. CONCLUSION

The soft Separation Axioms namely, $T_{\rm o},~T_1\text{-}T_2$ are extended to binary soft P-T_0, P- T_1 and P-T_2 structures with respect to first and second coordinates.

REFERENCES

[1] Molodtsov, D. 1999. Soft Set Theory First Results. Computers and Mathematics with Applications, 37, 19 - 31.

[2] Molodtsov, D., Leonov, V.Y., Kovkov, D.V. 2006. Soft sets technique and its Application. Nechetkie Sistemy Myagkie Vychisleniya, 1 (1), 8-39.

[3] Acikg ö z, A., Tas, N. 2016. Binary Soft Set Theory. European Journal of Pure and Applied Mathematics, 9 (4), 452-463.

[4] Benchalli, S.S., Patil, P.G., Dodamani, A.S., Pradeepkumar, J. 2017. On Binary Soft Separation Axioms in Binary Soft Topological Spaces. Global journal and Applied Mathematics, 13 (9), 5393-5412.

[5] Benchalli, S.S., Patil, G., Dodamani, A.S., Kumar, J.P. 2017. On Binary Soft Topological Spaces. International Journal of Applied Mathematics, 30 (6), 437-453. [6] Kalaichelvi, A., Malini, P.H. 2011. Application of Fuzzy Soft Sets to Investment Decision Making Problem. International Journal of Mathematical Sciences and Applications, 1 (3), 1583-1586.

[7] Özgür, N.Y., Taş, N. 2015. A Note on Application of Fuzzy Soft Sets to Investment Decision Making Problem. Journal of New Theory, 7, 1-10.

[8] Taş, N., Özgür, N.Y., Demir, P. 2017. An Application of Soft Set and Fuzzy Soft Set Theories to Stock Management. Süleyman Demirel University Journal of Natural and Applied Sciences, 21 (2), 791-196.

[9] Alcantud, J.C.R., Rambaud, S.C., Torrecillas, M.J.M. 2017. Valuation Fuzzy Soft Sets: A Flexible Fuzzy Soft Set Based Decision-Making Procedure for the Valuation of Assets. Symmetry, 9 (11), 253; doi:10.3390/sym9110253

[10] Çağman, N., Enginoğlu, S. 2010. Soft Matrix Theory and Its Decision Making. Computers and Mathematics with Applications, 59, 3308-3314.

[11] Shabir, M., Naz, M. 2011. On Some New Operations in Soft Set Theory. Computers and Mathematics with Applications, 57, 1786-1799.