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ABSTRACT

The integrated approaches for instruction scheduling and register allocation have been promising area of research for 
code generation and compiler optimization. In this paper we have proposed an integrated algorithm for instruction 
scheduling and register allocation and implemented it for compiler optimization in machine description in trimaran 
infrastructure for exploitation of Instruction level parallelism. Our implementation in trimaran infrastructure shows 
that our scheduler reduces the number of active live ranges dealt with linear scan allocator. As a result only few spills 
were needed and the quality of the code generated was improved. For our experiments we used 20 benchmarks 
available with trimaran infrastructure for HPL-PD architecture. We compare some of these results with results 
obtained by Haijing Tang et al (2013) performed by LLVM compiler on MIPS architecture. For our experimental work 
we added machine description (MDES) targeted to HL-PD architecture. The implemented algorithm is based on 
subgraph isomorphism. The input program is represented in the form of directed acyclic graph (DAG). The vertices of 
the DAG represent the instructions, input and output operands of the program, while the edges represent dependencies 
among the instructions.  
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1. BACKGROUND OF TOPIC SELECTION

China For exploitation of instruction level parallelism through compiler 
optimization it is very important to consider the code optimization and 
code generation phases efficiently. Instruction scheduling and register 
allocation have great importance in code generation [1]. Recent studies 
show a lot of efforts on integrated approaches for instruction scheduling 
and register allocation [2,3]. The combinations of instruction scheduling 
and register allocation have been discussed in section 3. The key aspect of 
proposed technique is the modeling of the hardware resources by 
redefining the MDES of trimaran infrastructure and comparison of results 
with LLVM compiler [4].  

The algorithm is implemented for instruction scheduling and register 
allocation based on subgraph isomorphism theory on the trimaran 
compiler for HPL-PD architecture [5,6]. For the purpose of feasibility and 
flexibility, the integrated approach is designed for the HPL-PD architecture 
on the trimaran compiler. This paper is organized as follows: Section 2 
presents related work, Section 3 presents use of instruction scheduling 
and register allocation, Section 4 presents HPL-PD Architecture, Section 5 
presents proposed algorithm for instruction scheduling and register 
allocation, Section 6 presents MDES description steps, Section 7 
represents the Experimental results, Section 8 represents the comparison 
of some of the results with MIPS architecture on LLVM compiler, Section 9 
represents the conclusion and future scope [7,8]. 

The advantage of register allocation is the speed. Some researchers 
pointed that Register allocation is the optimization technique that can 
increase efficiency of algorithm upto 250% [9]. As the computers have 
limited number of CPU registers therefore it is not possible to assign all 
variables to the registers. A 32-bit variable spilled to memory avails an 
allocation of 32 bit of stack space. Such variable has a much slower 
processing speed then a variable in register. Another researchers pointed  

that the spill free register allocation is an NP-Complete problem [10]. They 
proved that any graph is the interference graph of a program. Graph 
coloring and Linear scan approaches have been used for register 
allocation. In a study, the researchers added a recent work to Linear Scan 
algorithms called Extended Linear Scan [11]. It applies copy and swap 
instructions along the source program and uses minimal number of 
registers to compile the program. 

The graph coloring is seen as the optimal approach for register allocation 
[12]. It has been adopted by several modern compilers like LLVM and 
Trimaran. A simpler approach linear scan has also been used for the same. 
The fact by which the minimal coloring to a graph was proved to be NP-
Complete [13]. Subgraph isomorphism is defined as a generalization of 
graph isomorphism problem which asks whether a graph G isomorphic to 
graph H. A group researcher also computed a subgraph isomorphism 
problem that has a query complexity of (n3/2) [14].  Subgraph 
isomorphism is seen as a very general form for pattern matching and it 
provides a platform for several important graph problem, like Hamiltonian 
paths, shortest path, cliques, etc [15-17]. 

2. RELATED WORK 

Integer programming based optimal register allocation algorithm have 
been developed for regular architecture. The recent research on register 
allocation is based on SSA-form [18,19]. The interference graphs of SSA-
form can be colored in polynomial time. SSA (Static Single Assignment) is 
defined as the property of an intermediate presentation which requires 
every variable to be assigned only once. Ever variable is to be defined 
before it is used. The LLVM and trimaran compiler infrastructure use SSA 
form for all scalar register values in their primary code representation. 
Some researchers presented steps to convert the intermediate 
representation in to SSA form [20]. SSA form is optimal and has no 
unnecessary terms. 
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Several instruction scheduling has been developed and implemented 
recently. An instruction scheduling algorithm for the TRIPS architecture is 
presented presented as an integrated algorithm for instruction selection 
and register allocation but focused on instruction set with mixed 
instruction formats for 16- and 32-bit instructions on the ARCompact ISA 
[21,22]. They got a good code reduction of 16.7% and also a performance 
gain of 17.7%. This contribution differs from this work because they have 
an instruction set architecture with two representations of the same 
instruction and focused on selecting the best one for each case. 

An interesting way to see register allocation is as a Multi-Flow of 
Commodities (MFC) problem. This idea was introduced in order to 
perform local register allocation [23]. Local allocation is the version of 
register allocation that is restricted to basic blocks only, in contrast to 
global register allocation, that is concerned about the whole program. A 
study discussed that Spill Free Register Allocation has polynomial time 
solution for SSA-form programs, but it is NP-complete for programs in 
general [24]. An important breakthrough in register allocation happened 
in 2005, when three different research groups, proved independently that 
the interference graphs of programs in Static Single Assignment (SSA) 
form are chordal [25-27]. A researcher mentioned that this result is 
important because chordal graphs can be colored in polynomial time [28]. 
Some researcher implemented various groups code generators 
integrating optimal instruction selection, instruction scheduling and 
register allocation, based on formulations such as integer linear 
programming [29]. 

3. INSTRUCTION SCHEDULING AND REGISTER ALLOCATION

3.1 Instruction Scheduling 

In VLIW ILP compilers schedule various operations on two different 
functional units. The VLIW compilers perform all the scheduling and 
translation at compile time. For instruction scheduling, it is assumed that 
all the functional unit of same kind and have the same latency [30-32]. The 
VLIW compilers read the program in HLL and translate the complex 
operations into micro-operations supported by the processor. The next 
task for the complier is to check the data and control dependencies among 
the operations and the compiler selects which operations can be executed 
in parallel.  

The conventional algorithms for list scheduling attempts to select the first 
freely available functional unit to schedule an operation. But in modern 
commodity of processors, the functional units of same kind may have 
different latencies. As a result, conventional instruction scheduling 
algorithm may not produce good performance, at least not if integrated 
with register allocation [33]. 

3.2 Register Allocation 

The various schemes for register allocation include: Region based, linear 
scan, graph coloring, integer programming, SSA-form, etc. The primary job 
of a register allocator is to assign the many temporals to a small number 
of CPU registers and to assign the source and destination of a move of same 
register if possible so that the move can be deleted. In optimizing compiler, 
the register allocation is the process of assigning large number of program 
variables on to a limited number of CPU registers. The register allocation 
can be locally as well as globally. When it is done over a basic block then it 
is local register allocation and when it is applied to whole function or a 
program then it is called global register allocation. 

A special category called inter-procedural register allocation also exists 
when register allocation is done across the function boundaries. In 
trimaran infrastructure, mainly three register allocation schemes are 
used: IMPACT Register allocation, Linear Scan, and Region Based. This 
paper opted Linear Scan approach integrated with Fast Instruction 
Scheduling (FIS). The integrated approach was implemented using 
subgraph isomorphism. 

As an example, a below code is: 

Z = A(i) 
T = A(i+1+N) 

The intermediate code (basic block) for above source code is: 

Figure 1: Basic Block 

This basic block has six instructions with one two-stage pipeline and two 
physical registers. Figure 2 is the dependence graph for above basic block 
(Figure 1): 

Figure 2: Dependence Graph 

The association of instruction scheduling and register allocation has been 
implemented in three ways: Instruction scheduling followed by register 
allocation, register allocation followed by instruction scheduling, and 
integrated Instruction scheduling and Register allocation. 

3.2.1 Instruction Scheduling Followed by Register Allocation 

In this scheme the priority is given to instruction scheduling over register 
utilization for exploitation of ILP. In modern RISC processors, if only one 
approach has to be chosen over instruction scheduling and register 
allocation, this scheme is preferred. Figure 3 shows the schedule 
generated by this approach. There is no idle slot and completion is done in 
6 cycles. 

Figure 3: Instruction Scheduling followed by Register Allocation 

3.2.2 Register Allocation Followed by Instruction Scheduling 

In this scheme the priority is given to register utilization over instruction 
scheduling for exploitation of ILP. It was most common approach in early 
compilers but now-a-days it is not used as the sufficient numbers of 
registers are available because of reduced cost of hardware. Below figure 
shows the schedule and register allocation for this scheme. There are no 
spills during register allocation. 

Figure 4: Register Allocation followed by Instruction Scheduling 
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3.2.3 Integrated Instruction Scheduling and Register Allocation 

This approach deal with issues related to instruction scheduling and 
register allocation both. The solution chose to move V5 closer to V6 but 
does not move V3 closer to V2. Thus, there is one idle slot in the schedule 
and no spill at all. 

Figure 5: Integrated Instruction scheduling and Register allocation 

4. THE HPL-PD ARCHITECTURE 

This work is focused on instruction scheduling and register allocation for 
HPL-PD architecture. HPL-PD is a parametric processor architecture 
accepted for research in Instruction Level parallelism [31]. The 
architecture is parametric in the sense that it admits hardware of different 
specifications and scale exclusively the nature and amount of ILP that can 
be exploited. HPL-PD implementation provides the merits and demerits of 
each implementation as well. Figure 6 illustrates an overview of HPL-PD 
datapath [30]. The code generation for this architecture has been a 
challenge since there are dedicated functional units associated to the 
register banks. 

Figure 6: The HPL-PD Datapath 

Figure 7 is the Base Graph of HPL-PD processor. In this ABG (Abstract Base 
Graph), the base files are represented by rectangles and the circles 
represent the functional units. 

Figure 7: The Base Graph of HPL-PD Processor 

HPL-PD version 1.1 is used for experiments. This version has five new 
integer operations namely: ABS, MIN, MINL, MAX and MAXL. The 
conversion operations, hold by the architecture are CONVLWS, CONVLWD, 
CONVLSW and CONVLDW. A number of few MOVE operations are 
included. Some of them are MOVEGBP, MOVEB, MOVEGCM. HPL-PD is a 
meta architecture, as a result it encompasses a space of machines each of 
which can have different amount of ILP and a different ISA (Instruction Set 
Architecture). Architectures lying in HPL-PD space consists of a set of 
registers, functional units connected to those registers and a hierarchical 
memory system. 

5. PROPOSED ALGORITHM 

The concepts of subgraph isomorphism library is used to design the 
algorithm and used trimaran infrastructure for implementation of 
algorithm in association with redefining the machine description [32]. The 
implementation of this algorithm is attempted as a new pass on the 
backend. 

Algorithm 

1. Input the program in C language 
2. Split the program into basic blocks
3. Construct the DAGs from the basic blocks and base graphs.
4. For each DAG D and base graph B
(a) Compute the unrolling for B 
(b) Create unrolled base graph
(c) Perform subgraph matching between D and B 
5. If subgraph matching between D and B = false
a) if B is not large enough then  increase the unrolling factor by 1 and goto 
4 (b) if there exists a spill then  include vertices representing STORE and 
LOAD from memory, and  update DAG D with vertices and goto 4 (c) 
c) if matching is not found after 5 (a) and 4 (b) then 

break up the DAG D under matching, and goto 4 (c)
5. Furnish the scheduled and register allocated instructions for each basic 
block. 

Above describes the main steps of proposed algorithm. It takes a C 
program and converts into basic blocks. Then the algorithm receives the 
DAG from the basic block. The Base Graph size then calculates the 
unrolling factor. Larger is the size of unrolling factor, higher is the 
exploitation of ILP. The unrolling factor is passed to procedure named 
Graph Creator. Then the subgraph matching is performed. It may be 
possible that the matching is not found then the subgraph isomorphism 
runs a specific procedure depending upon the result of matching. If finally, 
the matching is not found as per the time constraints, the algorithm breaks 
up the DAG and repeats the matching step. Once the matching is found, the 
trimaran performs a task of code emission with CPU registers. 

For implementation of HPL-PD instruction scheduling and register 
allocation, the inputs are DAGs, which are generated by Trimaran 
compiler. An internal procedure builds HPL-PD architecture base graph 
that accepts DAGs as input and produces ABG. 

6. MDES DESCRIPTION STEPS 

The MDES (Machine DEScription) model in trimaran infrastructure 
provides the flexibility to develop a machine description for HPL-PD group 
of processors in high level language to be translated into equivalent low-
level representation used by the compiler at later stage. The purpose of 
low level representation is to allow the compiler to check the execution 
constraints efficiently. The HPL-PD machine description is bound to follow 
a well-defined format called HMDES (High level Machine DEScription).  

After the processing of macro and compilation of high level machine 
description (here, P. hmdes2), the corresponding low-level machine 
description (here, P. lmdes2) is loaded to read the LMDES specification and 
constructs the internal data structures of the MDES database. The 
information contained within the machine description is made available 
to various modules of trimaran infrastructure.  For optimization of 
compiler, a machine description database specifies the following to the 
compiler: 

1. A meta grammar 
2. An internal data structure for instruction format tree.
3. Explicitly scheduled resources.
4. The resource usage behavior of each operation.
5. Latency description. 
6.

The high-level description is for user’s convenience and the compiler 
performs the activities at low level description. Following script is 
applied for converting high level description (*. hmdes2) into low 
level description (*. lmdes2): 

1. Run the hc script /* conversion into *. lmdes2 */
2. Run hmdesc /*Generation of customized file for IMPACT user 

interface to MDES Module. */ 
3. Processing and compilation of MDES file called by hc and hmdes 

scripts by using the binaries md_processor, md_compiler and 
lmdes2_customizer. 

The back-end source files in MDES are integrated in ELCOR. The ELCOR 
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side MDES source is implemented by following steps: 
1. Define internal data structure created in mdes. *
2. Define the function for loading *.lmdes2 file in mdes_reader.cpp
3. Include the object files of the ELCOR side of the MDES library

libmdes.a 

The front end side MDES source is integrated in libmspec.a library that 
contains the object modules. The directory 
TRIMARAN_HOME/impact/src/machine contains all the files related to 
high level machine description. 

7. EXPERIMENTAL RESULTS 

In this section the summery of experiments is presented. The 
experimental setup is prepared as integrated approach for instruction 
scheduling and register allocation. The table below shows the number of 
emitted instructions and registers usages for each benchmark. The 
experiments performed using the basic and greedy registers allocators 
and fast scheduling algorithm for trimaran compiler (version 4.0) on 
Ubuntu 10.10.   

Table 1: Summary of Instruction Scheduling and Register Allocation 
Experiments 

8. COMPARISON OF RESULTS WITH LLVM COMPILER ON MIPS 
ARCHITECTURE 

Figure 7 shows the comparison of emitted instruction between Trimaran 
and LLVM. The experiments show that the emitted instruction by trimaran 
on HPL-PD produce better results than the LLVM on MIPS. The number of 
emitted instructions are more in Trimaran than LLVM. The scheduler 
performance gain of proposed approach can be observed for all the 
benchmarks used for Trimaran on HPL-PD than the LLVM on MIPS.

Figure 7: Comparison of Emitted Instructions 

The figure 8 shows the register usages for both the compilers. Here 
observations are that less number of registers used by HPL-PD than MIPS. 
The integrated approach for Trimaran using subgraph isomorphism leads 
to fewer registers for all the evaluated benchmarks. 

Figure 8: Comparison of Register Utilization 

9. CONCLUSION AND FUTURE SCOPE

The comparison of integrated approach for instruction scheduling and 
register allocation between LLVM and trimaran compilers has been 
presented in this paper. The comparison was based on matching the DAGs 
to the base graph on LLVM and Trimaran compiler. The matching result is 
in the form of subgraph of the base graph isomorphic to the input DAG that 
represents the allocated resources to run the DAG. In this paper it is shown 
that proposed algorithm allocates fewer registers per benchmark and 
spills fewer temporaries. The fast and basic strategy provided better 
results than isomorphism strategy lying in the range 05 ms – 20 ms. The 
average compilation time achieved was 49 ms for isomorphism and 37 ms 
for fast and basic strategy. On average spill codes generated for the all 
benchmarks were 0.03% dynamically and 0.05% statically. 

The Intel/Itanium processors are HPL-PD based. The optimization and 
analysis models can be improved with HPL-PD processors. HPL-PD 
configurations can widely be used in computer architecture research. It 
can provide ideal simulation environment for machine learning. As future 
work, some new parameters can be included for analysis for base graph 
heuristic. Evaluation of the scheduling algorithm may be introduced under 
the architectures based on multiple processing elements dynamic 
schemes. 
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