
Engineering Heritage Journal (GWK) 2(2) (2018) 04-08

Cite The Article: Rajendra Kumar (2018). Comparison Of Instruction Scheduling And Register Allocation For Mips And Hpl -Pd Architecture For Exploitation Of Instruction Level
Parallelism .Engineering Heritage Journal , 2(2) : 04-08.

Print ISSN : 2521-0904
Online ISSN : 2521-0440

CODEN: EHJNA9

 ARTICLE DETAILS

 Article History:

Received 12 November 2017
Accepted 12 December 2017
Available online 1 January 2018

ABSTRACT

The integrated approaches for instruction scheduling and register allocation have been promising area of research for
code generation and compiler optimization. In this paper we have proposed an integrated algorithm for instruction
scheduling and register allocation and implemented it for compiler optimization in machine description in trimaran
infrastructure for exploitation of Instruction level parallelism. Our implementation in trimaran infrastructure shows
that our scheduler reduces the number of active live ranges dealt with linear scan allocator. As a result only few spills
were needed and the quality of the code generated was improved. For our experiments we used 20 benchmarks
available with trimaran infrastructure for HPL-PD architecture. We compare some of these results with results
obtained by Haijing Tang et al (2013) performed by LLVM compiler on MIPS architecture. For our experimental work
we added machine description (MDES) targeted to HL-PD architecture. The implemented algorithm is based on
subgraph isomorphism. The input program is represented in the form of directed acyclic graph (DAG). The vertices of
the DAG represent the instructions, input and output operands of the program, while the edges represent dependencies
among the instructions.

 KEYWORDS

ILP, Instruction Scheduling, Register Allocation, Trimaran Simulator, Parallelilsm.

1. BACKGROUND OF TOPIC SELECTION

China For exploitation of instruction level parallelism through compiler
optimization it is very important to consider the code optimization and
code generation phases efficiently. Instruction scheduling and register
allocation have great importance in code generation [1]. Recent studies
show a lot of efforts on integrated approaches for instruction scheduling
and register allocation [2,3]. The combinations of instruction scheduling
and register allocation have been discussed in section 3. The key aspect of
proposed technique is the modeling of the hardware resources by
redefining the MDES of trimaran infrastructure and comparison of results
with LLVM compiler [4].

The algorithm is implemented for instruction scheduling and register
allocation based on subgraph isomorphism theory on the trimaran
compiler for HPL-PD architecture [5,6]. For the purpose of feasibility and
flexibility, the integrated approach is designed for the HPL-PD architecture
on the trimaran compiler. This paper is organized as follows: Section 2
presents related work, Section 3 presents use of instruction scheduling
and register allocation, Section 4 presents HPL-PD Architecture, Section 5
presents proposed algorithm for instruction scheduling and register
allocation, Section 6 presents MDES description steps, Section 7
represents the Experimental results, Section 8 represents the comparison
of some of the results with MIPS architecture on LLVM compiler, Section 9
represents the conclusion and future scope [7,8].

The advantage of register allocation is the speed. Some researchers
pointed that Register allocation is the optimization technique that can
increase efficiency of algorithm upto 250% [9]. As the computers have
limited number of CPU registers therefore it is not possible to assign all
variables to the registers. A 32-bit variable spilled to memory avails an
allocation of 32 bit of stack space. Such variable has a much slower
processing speed then a variable in register. Another researchers pointed

that the spill free register allocation is an NP-Complete problem [10]. They
proved that any graph is the interference graph of a program. Graph
coloring and Linear scan approaches have been used for register
allocation. In a study, the researchers added a recent work to Linear Scan
algorithms called Extended Linear Scan [11]. It applies copy and swap
instructions along the source program and uses minimal number of
registers to compile the program.

The graph coloring is seen as the optimal approach for register allocation
[12]. It has been adopted by several modern compilers like LLVM and
Trimaran. A simpler approach linear scan has also been used for the same.
The fact by which the minimal coloring to a graph was proved to be NP-
Complete [13]. Subgraph isomorphism is defined as a generalization of
graph isomorphism problem which asks whether a graph G isomorphic to
graph H. A group researcher also computed a subgraph isomorphism
problem that has a query complexity of (n3/2) [14]. Subgraph
isomorphism is seen as a very general form for pattern matching and it
provides a platform for several important graph problem, like Hamiltonian
paths, shortest path, cliques, etc [15-17].

2. RELATED WORK

Integer programming based optimal register allocation algorithm have
been developed for regular architecture. The recent research on register
allocation is based on SSA-form [18,19]. The interference graphs of SSA-
form can be colored in polynomial time. SSA (Static Single Assignment) is
defined as the property of an intermediate presentation which requires
every variable to be assigned only once. Ever variable is to be defined
before it is used. The LLVM and trimaran compiler infrastructure use SSA
form for all scalar register values in their primary code representation.
Some researchers presented steps to convert the intermediate
representation in to SSA form [20]. SSA form is optimal and has no
unnecessary terms.

Engineering Heritage Journal (GWK)

DOI : http://doi.org/10.26480/gwk.02.2018.04.08

COMPARISON OF INSTRUCTION SCHEDULING AND REGISTER ALLOCATION FOR
MIPS AND HPL-PD ARCHITECTURE FOR EXPLOITATION OF INSTRUCTION LEVEL
PARALLELISM

Rajendra Kumar*

Vidya College of Engineering, Meerut (India)
*Corresponding Author Email: rajendra04@gmail.com

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited

mailto:rajendra04@gmail.com

Engineering Heritage Journal (GWK) 2(2) (2018) 04-08

Cite The Article: Rajendra Kumar (2018). Comparison Of Instruction Scheduling And Register Allocation For Mips And Hpl -Pd Architecture For Exploitation Of Instruction Level
Parallelism .Engineering Heritage Journal , 2(2) : 04-08.

Several instruction scheduling has been developed and implemented
recently. An instruction scheduling algorithm for the TRIPS architecture is
presented presented as an integrated algorithm for instruction selection
and register allocation but focused on instruction set with mixed
instruction formats for 16- and 32-bit instructions on the ARCompact ISA
[21,22]. They got a good code reduction of 16.7% and also a performance
gain of 17.7%. This contribution differs from this work because they have
an instruction set architecture with two representations of the same
instruction and focused on selecting the best one for each case.

An interesting way to see register allocation is as a Multi-Flow of
Commodities (MFC) problem. This idea was introduced in order to
perform local register allocation [23]. Local allocation is the version of
register allocation that is restricted to basic blocks only, in contrast to
global register allocation, that is concerned about the whole program. A
study discussed that Spill Free Register Allocation has polynomial time
solution for SSA-form programs, but it is NP-complete for programs in
general [24]. An important breakthrough in register allocation happened
in 2005, when three different research groups, proved independently that
the interference graphs of programs in Static Single Assignment (SSA)
form are chordal [25-27]. A researcher mentioned that this result is
important because chordal graphs can be colored in polynomial time [28].
Some researcher implemented various groups code generators
integrating optimal instruction selection, instruction scheduling and
register allocation, based on formulations such as integer linear
programming [29].

3. INSTRUCTION SCHEDULING AND REGISTER ALLOCATION

3.1 Instruction Scheduling

In VLIW ILP compilers schedule various operations on two different
functional units. The VLIW compilers perform all the scheduling and
translation at compile time. For instruction scheduling, it is assumed that
all the functional unit of same kind and have the same latency [30-32]. The
VLIW compilers read the program in HLL and translate the complex
operations into micro-operations supported by the processor. The next
task for the complier is to check the data and control dependencies among
the operations and the compiler selects which operations can be executed
in parallel.

The conventional algorithms for list scheduling attempts to select the first
freely available functional unit to schedule an operation. But in modern
commodity of processors, the functional units of same kind may have
different latencies. As a result, conventional instruction scheduling
algorithm may not produce good performance, at least not if integrated
with register allocation [33].

3.2 Register Allocation

The various schemes for register allocation include: Region based, linear
scan, graph coloring, integer programming, SSA-form, etc. The primary job
of a register allocator is to assign the many temporals to a small number
of CPU registers and to assign the source and destination of a move of same
register if possible so that the move can be deleted. In optimizing compiler,
the register allocation is the process of assigning large number of program
variables on to a limited number of CPU registers. The register allocation
can be locally as well as globally. When it is done over a basic block then it
is local register allocation and when it is applied to whole function or a
program then it is called global register allocation.

A special category called inter-procedural register allocation also exists
when register allocation is done across the function boundaries. In
trimaran infrastructure, mainly three register allocation schemes are
used: IMPACT Register allocation, Linear Scan, and Region Based. This
paper opted Linear Scan approach integrated with Fast Instruction
Scheduling (FIS). The integrated approach was implemented using
subgraph isomorphism.

As an example, a below code is:

Z = A(i)
T = A(i+1+N)

The intermediate code (basic block) for above source code is:

Figure 1: Basic Block

This basic block has six instructions with one two-stage pipeline and two
physical registers. Figure 2 is the dependence graph for above basic block
(Figure 1):

Figure 2: Dependence Graph

The association of instruction scheduling and register allocation has been
implemented in three ways: Instruction scheduling followed by register
allocation, register allocation followed by instruction scheduling, and
integrated Instruction scheduling and Register allocation.

3.2.1 Instruction Scheduling Followed by Register Allocation

In this scheme the priority is given to instruction scheduling over register
utilization for exploitation of ILP. In modern RISC processors, if only one
approach has to be chosen over instruction scheduling and register
allocation, this scheme is preferred. Figure 3 shows the schedule
generated by this approach. There is no idle slot and completion is done in
6 cycles.

Figure 3: Instruction Scheduling followed by Register Allocation

3.2.2 Register Allocation Followed by Instruction Scheduling

In this scheme the priority is given to register utilization over instruction
scheduling for exploitation of ILP. It was most common approach in early
compilers but now-a-days it is not used as the sufficient numbers of
registers are available because of reduced cost of hardware. Below figure
shows the schedule and register allocation for this scheme. There are no
spills during register allocation.

Figure 4: Register Allocation followed by Instruction Scheduling

Engineering Heritage Journal (GWK) 2(2) (2018) 04-08

Cite The Article: Rajendra Kumar (2018). Comparison Of Instruction Scheduling And Register Allocation For Mips And Hpl -Pd Architecture For Exploitation Of Instruction Level
Parallelism .Engineering Heritage Journal , 2(2) : 04-08.

3.2.3 Integrated Instruction Scheduling and Register Allocation

This approach deal with issues related to instruction scheduling and
register allocation both. The solution chose to move V5 closer to V6 but
does not move V3 closer to V2. Thus, there is one idle slot in the schedule
and no spill at all.

Figure 5: Integrated Instruction scheduling and Register allocation

4. THE HPL-PD ARCHITECTURE

This work is focused on instruction scheduling and register allocation for
HPL-PD architecture. HPL-PD is a parametric processor architecture
accepted for research in Instruction Level parallelism [31]. The
architecture is parametric in the sense that it admits hardware of different
specifications and scale exclusively the nature and amount of ILP that can
be exploited. HPL-PD implementation provides the merits and demerits of
each implementation as well. Figure 6 illustrates an overview of HPL-PD
datapath [30]. The code generation for this architecture has been a
challenge since there are dedicated functional units associated to the
register banks.

Figure 6: The HPL-PD Datapath

Figure 7 is the Base Graph of HPL-PD processor. In this ABG (Abstract Base
Graph), the base files are represented by rectangles and the circles
represent the functional units.

Figure 7: The Base Graph of HPL-PD Processor

HPL-PD version 1.1 is used for experiments. This version has five new
integer operations namely: ABS, MIN, MINL, MAX and MAXL. The
conversion operations, hold by the architecture are CONVLWS, CONVLWD,
CONVLSW and CONVLDW. A number of few MOVE operations are
included. Some of them are MOVEGBP, MOVEB, MOVEGCM. HPL-PD is a
meta architecture, as a result it encompasses a space of machines each of
which can have different amount of ILP and a different ISA (Instruction Set
Architecture). Architectures lying in HPL-PD space consists of a set of
registers, functional units connected to those registers and a hierarchical
memory system.

5. PROPOSED ALGORITHM

The concepts of subgraph isomorphism library is used to design the
algorithm and used trimaran infrastructure for implementation of
algorithm in association with redefining the machine description [32]. The
implementation of this algorithm is attempted as a new pass on the
backend.

Algorithm

1. Input the program in C language
2. Split the program into basic blocks
3. Construct the DAGs from the basic blocks and base graphs.
4. For each DAG D and base graph B
(a) Compute the unrolling for B
(b) Create unrolled base graph
(c) Perform subgraph matching between D and B
5. If subgraph matching between D and B = false
a) if B is not large enough then increase the unrolling factor by 1 and goto
4 (b) if there exists a spill then include vertices representing STORE and
LOAD from memory, and update DAG D with vertices and goto 4 (c)
c) if matching is not found after 5 (a) and 4 (b) then

break up the DAG D under matching, and goto 4 (c)
5. Furnish the scheduled and register allocated instructions for each basic
block.

Above describes the main steps of proposed algorithm. It takes a C
program and converts into basic blocks. Then the algorithm receives the
DAG from the basic block. The Base Graph size then calculates the
unrolling factor. Larger is the size of unrolling factor, higher is the
exploitation of ILP. The unrolling factor is passed to procedure named
Graph Creator. Then the subgraph matching is performed. It may be
possible that the matching is not found then the subgraph isomorphism
runs a specific procedure depending upon the result of matching. If finally,
the matching is not found as per the time constraints, the algorithm breaks
up the DAG and repeats the matching step. Once the matching is found, the
trimaran performs a task of code emission with CPU registers.

For implementation of HPL-PD instruction scheduling and register
allocation, the inputs are DAGs, which are generated by Trimaran
compiler. An internal procedure builds HPL-PD architecture base graph
that accepts DAGs as input and produces ABG.

6. MDES DESCRIPTION STEPS

The MDES (Machine DEScription) model in trimaran infrastructure
provides the flexibility to develop a machine description for HPL-PD group
of processors in high level language to be translated into equivalent low-
level representation used by the compiler at later stage. The purpose of
low level representation is to allow the compiler to check the execution
constraints efficiently. The HPL-PD machine description is bound to follow
a well-defined format called HMDES (High level Machine DEScription).

After the processing of macro and compilation of high level machine
description (here, P. hmdes2), the corresponding low-level machine
description (here, P. lmdes2) is loaded to read the LMDES specification and
constructs the internal data structures of the MDES database. The
information contained within the machine description is made available
to various modules of trimaran infrastructure. For optimization of
compiler, a machine description database specifies the following to the
compiler:

1. A meta grammar
2. An internal data structure for instruction format tree.
3. Explicitly scheduled resources.
4. The resource usage behavior of each operation.
5. Latency description.
6.

The high-level description is for user’s convenience and the compiler
performs the activities at low level description. Following script is
applied for converting high level description (*. hmdes2) into low
level description (*. lmdes2):

1. Run the hc script /* conversion into *. lmdes2 */
2. Run hmdesc /*Generation of customized file for IMPACT user

interface to MDES Module. */
3. Processing and compilation of MDES file called by hc and hmdes

scripts by using the binaries md_processor, md_compiler and
lmdes2_customizer.

The back-end source files in MDES are integrated in ELCOR. The ELCOR

Engineering Heritage Journal (GWK) 2(2) (2018) 04-08

Cite The Article: Rajendra Kumar (2018). Comparison Of Instruction Scheduling And Register Allocation For Mips And Hpl -Pd Architecture For Exploitation Of Instruction Level
Parallelism .Engineering Heritage Journal , 2(2) : 04-08.

side MDES source is implemented by following steps:
1. Define internal data structure created in mdes. *
2. Define the function for loading *.lmdes2 file in mdes_reader.cpp
3. Include the object files of the ELCOR side of the MDES library

libmdes.a

The front end side MDES source is integrated in libmspec.a library that
contains the object modules. The directory
TRIMARAN_HOME/impact/src/machine contains all the files related to
high level machine description.

7. EXPERIMENTAL RESULTS

In this section the summery of experiments is presented. The
experimental setup is prepared as integrated approach for instruction
scheduling and register allocation. The table below shows the number of
emitted instructions and registers usages for each benchmark. The
experiments performed using the basic and greedy registers allocators
and fast scheduling algorithm for trimaran compiler (version 4.0) on
Ubuntu 10.10.

Table 1: Summary of Instruction Scheduling and Register Allocation
Experiments

8. COMPARISON OF RESULTS WITH LLVM COMPILER ON MIPS
ARCHITECTURE

Figure 7 shows the comparison of emitted instruction between Trimaran
and LLVM. The experiments show that the emitted instruction by trimaran
on HPL-PD produce better results than the LLVM on MIPS. The number of
emitted instructions are more in Trimaran than LLVM. The scheduler
performance gain of proposed approach can be observed for all the
benchmarks used for Trimaran on HPL-PD than the LLVM on MIPS.

Figure 7: Comparison of Emitted Instructions

The figure 8 shows the register usages for both the compilers. Here
observations are that less number of registers used by HPL-PD than MIPS.
The integrated approach for Trimaran using subgraph isomorphism leads
to fewer registers for all the evaluated benchmarks.

Figure 8: Comparison of Register Utilization

9. CONCLUSION AND FUTURE SCOPE

The comparison of integrated approach for instruction scheduling and
register allocation between LLVM and trimaran compilers has been
presented in this paper. The comparison was based on matching the DAGs
to the base graph on LLVM and Trimaran compiler. The matching result is
in the form of subgraph of the base graph isomorphic to the input DAG that
represents the allocated resources to run the DAG. In this paper it is shown
that proposed algorithm allocates fewer registers per benchmark and
spills fewer temporaries. The fast and basic strategy provided better
results than isomorphism strategy lying in the range 05 ms – 20 ms. The
average compilation time achieved was 49 ms for isomorphism and 37 ms
for fast and basic strategy. On average spill codes generated for the all
benchmarks were 0.03% dynamically and 0.05% statically.

The Intel/Itanium processors are HPL-PD based. The optimization and
analysis models can be improved with HPL-PD processors. HPL-PD
configurations can widely be used in computer architecture research. It
can provide ideal simulation environment for machine learning. As future
work, some new parameters can be included for analysis for base graph
heuristic. Evaluation of the scheduling algorithm may be introduced under
the architectures based on multiple processing elements dynamic
schemes.

REFERENCES

[1] Santos, L.S.R., Silva, R. 2012. An Integrated Technique for Instruction
Scheduling and Register Allocation Based on Subgraph Isomorphism.
Proceedings of the 16th Brazilian Symposium on Programming Languages,
Brazil, 1-5.

[2] Lozano, R.C., Carlsson, M., Drejhammar, F., Schulte, C. 2012. Constraint-
Based Register Allocation and Instruction Scheduling. Conference
Proceeding, Springer-Verlag Berlin Heidelberg, LNCS, 7514, 750 –766.

[3] Tang, H., Yang, X., Wang, S., Zhang, Y. 2013. Optimizing Instruction
Scheduling and Register Allocation for Register-File-Connected Clustered
VLIW Architectures. The Scientific World Journal, 1-11.

[4] Chakrapani, L.N., Gyllenhaal, J.C., Hwu, W.W., Mahlke, S.A., Palem, K.V.,
Rabbah, R.M. 2005. Trimaran: An Infrastructure for Research in
Instruction-Level Parallelism. LCPC 2005, 32-41.

[5] Kumar, M., Mishra, S. 2014. Approximation Algorithms for Node
Deletion Problems on Bipartite Graphs with Finite Forbidden Subgraph
Characterization. Journal of Theoretical Computer Science, 526, 90-96.

[6] Kathail, V., Schlansker, M.S., Rau, B.R. 2000. HPL-PD Architecture
Specification: Version 1.1, Technical report, HP Laboratories Palo Alto,
HPL-93-80 (R.1).

[7] Chow, P. 1988. MIPS-X Instruction Set and Programmer’s Manual.
Technical Report, Natural Sciences and Engineering Research Council of

Engineering Heritage Journal (GWK) 2(2) (2018) 04-08

Cite The Article: Rajendra Kumar (2018). Comparison Of Instruction Scheduling And Register Allocation For Mips And Hpl -Pd Architecture For Exploitation Of Instruction Level
Parallelism .Engineering Heritage Journal , 2(2) : 04-08.

Canada, No. CSL-86-289.

[8] Lattner, C., Adve, V. 2004. The LLVM Compiler Framework and
Infrastructure Tutorial. Proceedings of the 17th international conference
on Languages and Compilers for High Performance Computing, USA, 15-
16.

[9] Magno, F., Pereira, Q. 2014. A survey on Register Allocation. US Patent
8,732,680 B2, May 20.

[10] Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E.,
Markstein, P.W. 1981. Register Allocation via Coloring. ACM Journal
Computer languages, 6, 47 -57.

[11] Sarkar, Barik. 2007. Extended Linear Scan: An Alternate Foundation
for Global Register Allocation. ACM, Proceeding LCTES/CC, 141-148.

[12] Björklund, A., Husfeldt, T. 2008. Exact Graph Coloring Using
Inclusion–Exclusion. Encyclopedia of Algorithms, Springer US, 289.

[13] Karp, R. 1972. Reducibility among combinatorial problems.
Complexity of Computer Computations, Plenum, New York, 85-103.

[14] Higuera, D.L., Janodet, C., Samuel, J.C., Émilie, Damiand, Guillaume,
Solnon, Christine. 2013. Polynomial algorithms for open plane graph and
subgraph isomorphisms. Theoretical Computer Science, 76–99.

[15] Wang, S., Zhang, S., Yang, Y. 2014. Hamiltonian Path Embeddings in
Conditional Faulty k-ary n-cubes. Journal of Information Sciences, 268,
463-488.

[16] Elkin, M. 2005. Computing Almost Shortest Paths. ACM Transactions
on Algorithms, 1 (2), 283-323.

[17] Cheng, J., Ke, Y., Fu, A.W.C., Yu, J.X., Zhu, L. 2011. Finding Maximal
cliques in Massive Networks. ACM Transactions on Database Systems, 36
(4), 1–21.

[18] Hack, S., Grund, D., Goos, G. 2006. Register allocation for programs in
SSA-Form. Proceedings of the 15th International Conference Theory and
Practice of Software, ETAPS, Vienna, Austria, 247-262.

[19] Braun, M., Hack, S. 2009. Register Spilling and Live-Range Splitting for
SSA-Form Programs. 18th International Conference, CC 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
York, UK, 174–189.

[20] Kumar, R., Singh, P.K. 2014. An Approach for Compiler Optimization
to Exploit Instruction Level Parallelism. Proceeding of International
Conference ICACNI-14 (Springer), Kolkata, 509-16.

[21] Nagarajan, R., Kushwaha, S.K., Burger, D., McKinley, K.S., Lin, C.,
Keckler, S. 2004. Static Placement, Dynamic Issue (SPDI) Scheduling for
EDGE Architectures. Proceedings of the 13th International Conference on

Parallel Architectures and Compilation Techniques, IEEE Computer
Society Washington, 74–84.

[22] Tobias, J.K., Koch, E.V., Bohm, I., Franke, B. 2010. Integrated
Instruction Selection and Register Allocation for Compact Code Generation
Exploiting Freeform Mixing of 16- and 32-bit Instructions. Proceedings of
the 8th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, New York, USA, 180–189.

[23] Koes, D., Goldstein, S.C. 2005. A Progressive Register Allocator for
Irregular Architectures. Proceeding of International Symposium on Code
Generation and Optimization (CGO'05), Washington, 269–280.

[24] Bouchez, F., Darte, A., Rastello, F. 2007. On the complexity of spill
everywhere under SSA form. Proceedings of the ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded systems, NY,
USA, 42 (7), 103 – 112.

[25] Pereira, F.M.Q., Palsberg, J. 2005. Register Allocation Via Coloring of
Chordal Graphs. Programming Languages and Systems, Lecture Notes in
Computer Science, 3780, 315-329.

[26] Brisk, P., Dabiri, F., Macbeth, J., Sarrafzadeh, M. 2005. Polynomial-
Time Graph Coloring Register Allocation. 14th International Workshop on
Logic and Synthesis, Lake Arrowhead, California.

[27] Hack, S., Grund, D., Goos, G. 2006. Register allocation for programs in
SSA-form. Proceeding of 15th International Conference as Part of the Joint
European Conferences on Theory and Practice of Software, Vienna,
Austria, 247–262.

[28] Gavril, F. 1972. Algorithms for Minimum Coloring, Maximum Clique,
Minimum Covering by Cliques, and Maximum Independent Set of a
Chordal Graph. SIAM Journal of Computing, 1, 180 – 187.

[29] Eriksson, M.V., Skoog, O., Kessler, C.W. 2008. Optimal vs. Heuristic
Integrated Code Generation for Clustered VLIW Architectures.
Proceedings of the 11th International Workshop on Software & Compilers
for Embedded Systems, New York, USA, 11-20.

[30] Schlansker, M.S., Rau, B.R. 2000. EPIC: Explicitly Parallel Instruction
Computing. IEEE Journal of Computer, 33 (2), 37 – 45.

[31] Rajendra, K., Singh, P.K. 2010. A Modern Parallel Register Sharing
Architecture for Code Compilation. International Journal of Computer
Applications, 1 (16), 95-99.

[32] Blankstein, A., Goldstein, M. 2010. Subgraph Isomorphism, Technical
Report, MIT 6.884.

[33] Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W.,
Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J., Wang,
Y., Zhou, C., Yang, G. 2016. The Sunway Taihu Light supercomputer: system
and applications, Science China Information Sciences, 59 (7), 1–16.

