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Abstract

Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is a rare disease 
with a wide spectrum of reproductive and non-reproductive clinical characteristics. 
Apart from the phenotypic heterogeneity, IGD is also highly genetically heterogeneous 
with >35 genes implicated in the disease. Despite this genetic heterogeneity, genetic 
enrichment in specific subpopulations has been described. We have previously described 
low prevalence of genetic variation in the Greek IGD cohort discovered with utilization of 
Sanger sequencing in 14 known IGD genes. Here, we describe the expansion of genetic 
screening in the largest IGD Greek cohort that has ever been studied with the usage of 
whole-exome sequencing, searching for rare sequencing variants (RSVs) in 37 known IGD 
genes. Even though Sanger sequencing detected genetic variation in 21/81 IGD patients 
in 7/14 IGD genes without any evidence of oligogenicity, whole exome sequencing (WES) 
revealed that 27/87 IGD patients carried a rare genetic change in a total of 15 genes with 
4 IGD cases being oligogenic. Our findings suggest that next-generation sequencing (NGS) 
techniques can discover previously undetected variation, making them the standardized 
method for screening patients with rare and/or more common disorders.

Introduction

Isolated gonadotropin-releasing hormone (GnRH) 
deficiency (IGD) is a rare disease with a wide spectrum 
of reproductive and non-reproductive clinical 
characteristics. Apart from the phenotypic heterogeneity, 
IGD is also a genetically enriched disease with ~37 genes 
being implicated in its pathophysiology (2, 3). The 
genetic basis of disorders of sex development has been 
previously studied with a prevalence of genetic changes 
~45% (4, 5), whereas in the genetically heterogeneous 
IGD only ~50% of patients have a genetic mutation that 
is identifiable (2, 6).

Mutations in genes that disrupt the 
neurodevelopmental pathway of GnRH, that is the 
development and migration of GnRH neurons cause 
Kallmann Syndrome (KS), and such genes include ANOS1 
– Anosmin 1, previously known as KAL1 – Kallmann 1, 

NSMF – NMDA receptor synaptonuclear signaling and 
neuronal migration factor, FGFR1 – fibroblast growth 
factor receptor 1, FGF8 – fibroblast growth factor 8, FGF17 
– fibroblast growth factor 17, IL17RD – interleukin 17 
receptor D, PROK2 – prokineticin 2, PROKR2 – prokineticin 
receptor 2, HS6ST1 – heparin sulfate 6 O sulfutransferase, 
CHD7 – chromodomain helicase DNA-binding protein 7, 
WDR11 – WD repeat-containing protein 11, SEMA3A – 
semaphorin 3A, TUBB3 – tubulin beta 3, SOX10 – SRY box 
10 and many more (7, 8). 

On the other hand, genes that interfere with the 
neuroendocrine physiology of the normal secretion of 
GnRH (GNRH1 – GnRH 1, KISS1 – kisspeptin 1, KISS1R 
(GPR54) – kisspeptin 1 receptor, TAC3 – tachykinin 
3, TACR3 – tachykinin receptor 3, LEP – leptin, 
LEPR – leptin receptor) or its action on the pituitary  
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(GNRHR – GnRH receptor), cause normosmic idiopathic 
hypogonadotropic hypogonadism (nIHH) (7, 9). The 
majority of the genes are considered ‘overlap genes’  
(i.e. the ones that are found to be disrupted in both KS and 
nIHH patients) and these (so far) include NSMF, FGFR1, 
FGF8, FGF17, IL17RD, PROK2, PROKR2, HS6ST1, CHD7, 
WDR11 and SEMA3A. Presumably, these genes may have 
multiple roles in GnRH biology including both GnRH 
neuronal migration and their secretory function, although 
for many genes this theory remains to be examined (8).

Different strategies have been utilized for gene 
discovery including analysis of chromosomal 
rearrangements, sequencing of syndromic cases, 
candidate gene approach and studies of endogamous 
families/populations (2). Despite the major genetic and 
phenotypic heterogeneity of IGD, genetic enrichment 
has been identified in specific ethnic sub-populations and 
several studies have estimated the prevalence of IGD genes 
in specific ethnic populations (10, 11, 12, 13). Studies of 
endogamous pedigrees of Turkish, Kurdish and Bedouin 
origin have identified important IGD players including the 
genes of KISS1 and KISS1R, TAC3 and its receptor TACR3 
as well as recently FEZF1 (14, 15, 16, 17). In addition to 
these pedigree-based analyses, studies in isolated patient 
populations have shown significant enrichment for rare 
loss-of-function (LoF) mutations in known genes (18). 
For example, the frequency of rare sequence variants 
(RSVs) in PROKR2 is far higher in the geographically 
limited Maghrebian (North African) KS population than 
in European KS patients and similarly (11) and 77% of 
familial nIHH cases of Turkish origin have been shown 
to be enriched for a subset of neuroendocrine IGD genes 
including GnRH receptor gene – GNRHR, TAC3, TACR3, 
KISS1 and KISS1R (19). Thus, it seems that geographically 
delimitated populations are enriched for specific genes 
that arise in the backbone of shared inherited haplotypes. 

We have previously described an enrichment of the 
normosmic phenotypic variation of the IGD phenotype 
in the Greek patients with IGD as well as low prevalence 
of genetic variation in the Greek IGD cohort and absence 
of oligogenicity, highlighting the possible presence 
of a yet unidentified genetic cause that contributes to 
the expression of the IGD phenotype in this ethnic 
subpopulation (1). Given that next-generation sequencing 
(NGS) has emerged a huge number of genes and variation 
in multiple diseases and disorders, we utilized whole 
exome sequencing (WES) to examine if application of NGS 
has any effect on the prevalence of genetic variation and 
oligogenicity identified in the cohort studied. Thus, in our 
analysis we expanded the cohort of Greek patients with 

IGD to 87 probands and utilized the strength of this large 
cohort of IGD patients of Greek origin to investigate the 
genetic basis of IGD and uncover the prevalence of genetic 
variation in major genetic players of IGD. For the analysis 
we performed detailed phenotyping and genotyping using 
both Sanger and whole exome sequencing in order to  
(i) describe the reproductive and non-reproductive 
features of Greek patients with IGD; (ii) estimate the 
prevalence of RSVs in 37 IGD genes after utilization of 
WES (and compare it with ‘traditional’ screening using 
Sanger sequencing in 14 known genes) and finally  
(iii) estimate the prevalence of oligogenicity in the Greek 
IGD cohort by detecting genetic variants in ‘modifier’ genes.

Materials and methods

Subjects

Inclusion criteria for IGD patients have been described 
before (1) and consisted of (i) clinical diagnosis of 
IGD: this was defined as delay or absence of pubertal 
development by the age of 18 years and low sex steroid 
levels in the presence of low or normal gonadotropins; 
(ii) normal other pituitary function and (iii) no 
neuroanatomic or functional cause of hypogonadotropic 
hypogonadism. A total of 87 probands participated in this 
study. Forty-five patients were seen in the Department of 
Reproductive Endocrinology of the University of Patras 
and 42 were referred from collaborating physicians 
acknowledged at the end of this article. DNA samples 
and permission from the patients were obtained in the 
Division of Reproductive Endocrinology of the University 
of Patras as well as by collaborative providers (please 
refer to acknowledgements). All participants remained 
anonymous. The study was approved by Institutional 
Review Board of Patras Medical School.

Phenotyping

For phenotypic analysis, detailed clinical evaluation 
was performed in the patients seen in the University of 
Patras. Detailed medical history from the proband and the 
extended family was obtained to determine the pattern of 
inheritance and the degree of penetrance of any identified 
genetic changes. Additionally, subjects completed 
dedicated patient questionnaires, underwent detailed 
laboratory work-up, renal imaging and GnRH stimulation 
tests. The olfactory function was assessed based on the 
University of Pennsylvania Smell Identification Test 
(UPSIT). In few cases with a medical and/or family history 
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of psychiatric disorders, detailed psychiatric evaluation 
was performed using the Hamilton scale for depression 
and anxiety as well as the Hospital Anxiety and Depression 
Score (HADS) (20). For patients referred from collaborative 
physicians, the outside physician records were used for 
phenotypic analysis. To ascertain the enrichment of 
specific phenotypic features in each patient group, the 
proportion of probands exhibiting the phenotype was 
compared between those who were diagnosed with KS vs 
those who were diagnosed with nIHH. Therefore, a Fisher 
exact 2 × 2 test was used for each qualitative phenotype.  
A P value <.05 was considered statistically significant.

Sanger sequencing

Eighty-one probands were subjected to Sanger sequencing 
for 14 well-validated genes as described before (1). Those 
genes fulfilled the majority of the validated genetic 
criteria including genetic burden, protein interactions, 
biochemical function, tissue expression, model systems 
and rescue and gene burden analysis (2). Genomic DNA 
was obtained from peripheral blood samples by standard 
phenol-chloroform extraction. Exonic and proximal 
intronic (≤15 bp from splice sites) DNA sequences of the 
genes were amplified by PCR and determined by direct 
sequencing: ANOS1 (OMIM 308700), GNRH1 (OMIM 
152760), GNRHR (OMIM 138850), KISS1R (OMIM 
604161), KISS1 (OMIM 603286), CHD7 (OMIM 608892), 
NSMF (OMIM 608137), FGF8 (OMIM 600483), FGFR1 
(OMIM 136350), PROK2 (OMIM 607002), PROKR2 
(OMIM 607212), HS6ST1 (OMIM 1 604846), TAC3 (OMIM 
162330) and TACR3 (OMIM 162332). The PCR primers 
and amplification conditions for each gene have been 
previously published (21, 22). 

Whole exome sequencing

Eight-seven probands and 89 affected and unaffected 
family members (with a total number of 176 individuals) 
underwent WES. WES was performed at the Broad Institute 
Sequencing Platform. RSVs were sought in the following 37 
known IGD genes: AXL (OMIM ID: 109135), CHD7 (OMIM 
608892), DUSP6 (OMIM ID: 602748 ), FEZF1 (OMIM ID: 
613301), FGF17 (OMIM ID: 603725), FGF8 (OMIM 600483), 
FGFR1 (OMIM 136350), FLRT3 (OMIM ID: 604808), GNRH1 
(OMIM 152760), GNRHR (OMIM 138850), HS6ST1 (OMIM 
1604846), IL17RD (OMIM ID: 606807), ANOS1 (OMIM 
308700), KISS1 (OMIM 603286), KISS1R (OMIM 604161), 
LEP (OMIM ID: 164160), LEPR (OMIM ID: 601007), 
NSMF (OMIM 608137), OTUD4 (OMIM ID: 611744),  

PCSK1 (OMIM ID: 162150), PNPLA6 (OMIM ID: 603197), 
POLR3A (OMIM ID: 614258), POLR3B (OMIM ID: 614366), 
PROKR2 (OMIM 607212), PROK2 (OMIM 607002), RNF216 
(OMIM ID: 609948), SEMA3A (OMIM ID: 603961), SEMA3E 
(OMIM ID: 608166), SOX10 (OMIM ID: 602229), SOX2 
(OMIM ID: 184429), SPRY4 (OMIM ID: 607984), STUB1 
(OMIM ID: 607207), TAC3 (OMIM 162330), TACR3 (OMIM 
162332), WDR11 (OMIM ID: 606417), KL (OMIM ID: 
604824) and DMXL2 (OMIM ID: 612186). 

A RSV was defined as a variant (i) affecting splice 
junctions within 10 bp of coding sequence or a protein-
altering/protein-truncating non-synonymous variant 
and (ii) present in <1% of the non–Finnish European 
population of the Exome Aggregation Consortium (ExAC) 
(Cambridge, MA, USA; http://exac.broadinstitute.org). 
Since no control cohorts of Greek origin are publicly 
available, an association test was performed for each of 
the RSVs detected, utilizing control sub-cohorts consisting 
of healthy individuals of European ancestry. To validate 
the accuracy of the use of such control cohort principal 
component analysis (PCA) data provided from the 
Reproductive Endocrine Unit of Massachusetts General 
Hospital in 12 IGD patients of Greek origin who underwent 
SNP-chip-sequencing was compared to multi-ethnic cohort 
data. Importantly, the patients of Greek origin clustered 
within European cohorts (data not shown). 

Validation of detected RSVs

Given the accelerating discovery of rare genetic variation, 
several clear guidelines should be applied in order to 
determine a discovered genetic variant as causative, potential 
causative or not. Based on the recently published guidelines 
by MacArthur et al. (23) we tried to determine if the detected 
RSVs met the criteria for confidence in pathogenicity. As 
proposed by McArthur et al., the functional validation for all 
detected RSVs can be divided into three different categories: 
genetic, informative and experimental.

Genetic validation

To assess if a RSV is rare or not, the cut-off of MAF <1% 
in non-Finnish European was utilized. When an RSV 
was detected in a familial case, segregation analysis was 
performed among family members. 

Informatic validation

To assess for informatic validation of a detected RSV, we 
examined if the site of the variant displayed evolutionary 
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conservation consistent with deleterious effects of genomic 
changes at that location. To test for conservation, we utilized 
the publicly available database of genome.ucsc.edu that 
lists detailed conservation across multiple species including 
rhesus, mouse, dog, elephant, chicken, X_tropicalis, zebrafish 
and lamprey. A RSV occurring in a highly conserved region 
was considered to be of a high impact (24).

Several of the variants discovered have already 
undergone experimental validation including evidence 
of how the RSV alters the levels, splicing or normal 
biochemical function of the product of the affected 
gene in patient’s cells or in vitro, evidence or phenotype 
recapitulation and rescue (25, 26, 27). We also utilized bio-
informatic prediction programs to predict the RSVs effect 
on the protein function in silico. For example, if a variant 
is found at a location within the protein predicted to cause 
functional disruption such as enzyme active site, protein-
binding region etc., it is more likely to have a functional 
effect on the protein level, and thus, be damaging. 

The functional effect of the RSVs was analyzed based 
on the nature of the genomic change. In particular, 
high-impact variants included frameshift, nonsense and 
essential splice site RSVs and were considered pathogenic. 
Missense RSVs were considered of moderate impact and 
their functional effect was based on either previous 
functional studies or analysis based on bioinformatic 
prediction programs. The functional effect of such 
RSVs was tested using 4 prediction programs including 
Polyphen2 (28), SIFT (29), Pathner and FatHMM (30) 
and RSVs were characterized based on them as benign, 
likely benign, likely deleterious and deleterious. Finally, 
low impact RSVs included synonymous and extended 
splice site RSVs. Since in silico functional analysis can 
only provide with supporting evidence of pathogenicity, 
a thorough evaluation of the detected variants was 
undertaken based on the recently published criteria by the 
American College of Medical Genetics and the discovered 
RSVs were classified as pathogenic, likely pathogenic, 
benign, likely benign and of uncertain significance (31).

Multiplex-ligation-dependent-probe amplification 
(MLPA) analysis

It is known that ANOS1 genetic changes are exclusively 
identified in patients with KS, the majority of which 
display additional features such as renal agenesis or 
synkinesia (32, 33). As published before (1), apart from 
the analysis of coding RSVs, we searched for the presence 
of intergenic ANOS1 deletions and/or duplication in a 
subset of Greek patients who met the following criteria: 

(i) KS phenotype; (ii) negative for ANOS1 RSVs and (iii) 
expressing a non-reproductive phenotype consistent with 
ANOS1 mutations, such as synkinesia or unilateral renal 
agenesis (URA) (32). Gene dosage analysis was performed 
using the SALSA MLPA kit P132 Kallmann-1 (MRC 
Holland, Amsterdam, Netherlands) designed to detect 
exonic deletions/duplications across the entire coding 
region of ANOS1 gene.

Results

Phenotyping of the IGD patients of Greek origin

Male-to-female ratio
In this study, we expanded our analysis to 87 Greek 
patients who met the inclusion criteria for this study. 
The cohort consisted of 58 male and 29 female probands. 
A total of 57 probands were classified as nIHH, while 
30 probands were diagnosed with KS. KS was strikingly 
predominant in men with a 5:1 male-to-female ratio 
(25 males and 5 females) compared to a modest 3:2 male-
to-female ratio in nIHH (33 males and 24 females). The 
male predominance in the KS phenotype compared to the 
nIHH variant was found to be statistically significant with 
a P value of 0.0183.

Reproductive and non-reproductive features
Patients were phenotyped in detail for both reproductive 
and non-reproductive features. No statistically significant 
difference was found between the groups of KS and nIHH 
with regard to cryptorchidism or microphallus. A variety 
of non-reproductive features were detected including 
ichthyosis, URA, synkinesia, primary hypothyroidism, 
neurosensory hearing loss, osteopenia/ osteoporosis, 
congenital heart defects including coarctation of the aorta 
and ventricular septal defect (VDS), hematologic/immune 
disorders such as G6PD and IgA deficiency, cleft lip and 
palate, obesity and strabismus.

Of the assessed phenotypes, URA and synkinesia (S) were 
statistically enriched in KS, as shown in Table 1. Interestingly, 
the neuropsychiatric evaluation revealed depression in four 
IGD cases as well as few additional psychiatric disorders 
including psychotic syndrome and paranoid schizophrenia 
in a small subset of the IGD patients. 

Patterns of inheritance
The vast majority of the cases assembled were found to be 
sporadic (71/87) with the rest being familial, displaying 
different patterns of inheritance including X-linked (2/87), 
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autosomal recessive (5/87) and autosomal dominant 
(11/87) mode of inheritance. A representative sample of a 
sample of IGD familial cases is shown in Fig. 1.

Genotyping of IGD Greek patients

Prevalence of detected RSV in IGD genes using 
Sanger sequencing
We have previously discovered genetic changes in IGD 
genes in 21/81 probands of Greek origin with the usage of 
Sanger sequencing in 14 known genes. RSVs were detected 
in 7/14 genes including CHD7, ANOS1, GNRHR, FGFR1, 
PROKR2, TACR3 and KISS1R. As shown in Fig. 2, the gene 
with the highest prevalence was CHD7, as four RSVs were 
detected in CHD7 in six different IGD patients. Sanger 
sequencing detected two RSVs in ANOS1 (one nonsense 
and one missense RSV), whereas MLPA discovered two 
ANOS1 deletions in patients with KS and other non-
reproductive features such as renal agenesis, synkinesia 
and icthyosis, making it the second most commonly 
genetically changed gene in the Greek IGD cohort. 
GNRHR was also found to carry RSVs in 4/81 IGD patients,  

who were all diagnosed with nIHH. PROKR2 and FGFR1 
RSVs were also detected in 3/81 and 2/81 probands 
respectively, whereas only one patient in our cohort was 
found to carry an RSV in TACR3 and KISS1R.

Estimating oligogenicity with Sanger sequencing
Even though a large number of IGD genes was screened 
with Sanger sequencing, no oligogenic cases were detected 
in contrast to previous studies (34) that usually detect 
oligogenicity in ~2.5–10% of the IGD population. 

Prevalence of detected RSV in IGD genes using WES
The lack of genetic variation in a large number of IGD 
patients (60/81) of the cohort analyzed as well as the 
lack of oligogenicity could reflect the presence of a yet 
unidentified genetic cause underlying the Greek cohort of 
IGD. To optimize the detection of RSVs in all genes that 
are implicated in the disease and test for oligogenicity 
in the cohort, we performed WES in all 81 patients that 
have undergone Sanger sequencing as well as six more 
IGD probands that were enrolled more recently in our 
study. We performed WES in both affected and unaffected 
family members (a total number of 176 individuals were 
screened). All RSVs discovered via WES were confirmed 
with Sanger sequencing and ten more rare variants were 
discovered in eight additional genes including DMXL2, 
SOX2, KL, POLR3A, POLR3B, PNPLA6, SEMA3A and 
RNF216. The number of subjects carrying RSVs in those 
genes is shown in Fig. 3. Thirty-one genetic changes were 
found in 27 subjects. Even though eight more genes were 
found to be implicated in the genetic characterization 
of the IGD cohort, there was no statistically significant 
difference in the prevalence of genetic detection after 
WES was performed (21/81 vs 27/87, P value, 0.49). 

We were able to detect five pathogenic genetic changes 
including intergenic deletions in the gene of ANOS1, a 
frameshift RSV in the gene of CHD7 and two missense 
RSVs in GNRHR. One frameshift RSV was detected in 
PNAPL6 and two SOX2 RSVs that were predicted to be 
deleterious/damaging in all prediction programs. Ten 
of the RSVs were likely deleterious based on the in silico 
analysis and ten RSVs were predicted to be benign or 
likely benign. A summary of the detected variation with 
the MAF in non-Finnish Europeans is shown in Table 2. 

Estimating oligogenicity after WES
After performing WES, four cases of oligogenicity were 
detected including (i) a KS male with two heterozygous RSVs 
in KL c.860G>A p.R287H and POLR3A c.3734G>A p.R1245Q;  

Table 1 Reproductive and non- reproductive features in  
the IGD.

Clinical features
KS (N = 24, 

males, N = 19)
nIHH (N = 29, 
males, N = 14) P value

Cryptorchidism 7/24, 7/19 5/29, 5/14 1
Microphallus 6/24, 6/19 3/29 0.6982
URA* 6/24 1/29 0.0377
Synkinesia* 6/24 0/29 0.0059
CL/CP 2/24 1/29 0.5841
Strabismus 1/24 0/29 0.4528
Primary 

hypothyroidism
2/24 5/29 0.6173

Icthyosis 2/24 0/29 0.2003
Obesity 2/24 1/29 0.5841
Congenital heart 

disease
0/24 1/29 1

Hematologic 
disorder

0/24 2/29 0.4949

Hearing loss 0/24 1/29 1
Osteoporosis 2/24 6/29 0.2688
Depression 2/24 2/29 1
Other psychiatric 

disorders
1/24 2/29 1

Table 1 shows the reproductive and non-reproductive features of a 
subset of patients that presented to the Reproductive Endocrine Clinic of 
the University of Patras. The table shows the number of probands with KS 
and nIHH that displayed the different features and in parentheses is 
written the percentage of them displaying the characteristics.
Asterisk (*) indicates features with statistically significant differences.
CL/CP, cleft lip/cleft palate; congenital heart defect, coarctation of the 
aorta and ventricular septal defect (VSD); hematologic disorders, G6PD 
and IgA deficiency; other psychiatric disorders, psychotic syndrome and 
paranoid schizophrenia; URA, unilateral renal agenesis.
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(ii) a KS male patient with heterozygous RSVs 
in DMXL2 c.3104C>G p.P1035R and PNPLA6 
c.851_859delinsACCGTGT p.S284YfsX56, as well as a 
possible deletion of ANOS1 exon 1-Xp22.31; (iii) a KS 
male with RSVs in the genes of SPRY4 c.46G>A p.V16I 
and SEMA3A c.1457C>T p.P486L and finally (iv) a nIHH 
female patient who carried two heterozygous RSVs in 
PROKR2 c.1069C>T p.R357W and RNF216 c.106G>A 
p.D36N. Oligogenicity in the IGD Greek cohort was 
found in 4 out of 87 probands. Importantly, even in 
oligogenic cases, the RSVs were found to be inherited 
with incomplete penetrance, highlighting the presence 
of possible additional genetic or epigenetic variations 
contributing to the expression of the phenotypes 
in those cases. A summary of the oligogenic cases is 
shown in Supplementary Figs 6, 8 and 9 (see section on 
supplementary data given at the end of this article).

Validation of detected RSVs

Genetic validation
Due to small power of our studied cohort, gene burden 
testing (i.e. if a gene is significantly enriched in cases 
compared to controls) could not be determined. The 
segregation of the detected variation was examined via 
Sanger sequencing as shown in Supplementary Figs 1, 2, 
3, 4, 5, 6, 7, 8 and 9.

Informatic validation
We tested the conservation among different species and 
all the RSVs detected in the Greek IGD cohort occurred in 
highly conserved genomic regions. 

Some of the variants discovered have already 
undergone experimental validation including evidence 
of how the RSV alters the levels, splicing or normal 

Figure 1
Different examples of familial cases of the Greek cohort. Both nIHH and KS are inherited with various pattern of inheritance: X-linked (Pedigree B), 
autosomal recessive (Pedigrees C, D and E) and autosomal dominant with incomplete penetrance and variable expressivity (Pedigrees A, F, G, H, I, J and 
K). Of note, IGD was inherited with sporadic pattern of inheritance in most cases.
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biochemical function of the product of the affected 
gene in patient’s cells or in vitro, evidence or phenotype 
recapitulation and rescue (25, 26, 27). The in silico 
functional validation of the detected RSVs is shown 
in Table  3. Of note, high-impact variants including 
frameshift, nonsense and slice site could not be evaluated 
by utilizing bioinformatics as they are considered 
deleterious a priori. As in silico validation is only one of 
the criteria that supports pathogenicity, we performed 
a detailed analysis of all detected RSVs and were able to 
categorize them as pathogenic, likely pathogenic, likely 
benign, benign and of unknown significance based on 
the ACMG criteria (see Table 3). The presence of a several 
variants of unknown significance among the detected 
variation can be attributed mostly to the lack of in vitro 
functional studies, lack of parental DNA that prevents 
testing for de novo variants and the oligogenic nature of 
the disease we study. 

Discussion

Throughout the years of investigation, different techniques 
have been used to discover novel genes in IGD, such as 
structural defects, including contiguous gene deletion 
syndromes or copy number variations, syndromic cases, 
protein–protein interactions and endogamous pedigrees. 
Interestingly, specific subpopulations have been found to 

be enriched for particular genes that cause the disease. 
In our study, we attempted to describe the genetic 
background of a large cohort of IGD patients of Greek 
origin with the utilization of NGS. Even though studies 
of population isolated have led to novel gene discovery, 
the recruitment area of our cohort was nationwide, 
making this cohort the largest IGD cohort of Greek 
origin ever studied. We performed detailed phenotypic 
and genotypic analysis in 176 individuals, including 
87 probands with KS and nIHH as well as 89 additional 
affected and unaffected family members.

Phenotypic analysis

Similar to our prior analysis of the 81 probands, our cohort 
was represented by a large number of nIHH patients compared 
to patients with KS, suggestive of a phenotypic enrichment 
of the normosmic feature, even though evaluation of the 
olfactory function of a subset of nIHH patients was based 
only on data given by our referring collaborators. Previous 
reports of ethnically mixed IGD patients report an almost 
equal ratio of KS and nIHH phenotypes (35) and studies 
in ethnically homogeneous populations have reported the 
enrichment of one of the two sub-phenotypes (11, 19). Thus, 
the higher percentage of the nIHH phenotype in the studied 
population may reflect a common genetic background 
among those nIHH patients, which is yet unsurfaced.

Figure 2
The genes positive for rare sequence variants 
(RSVs) detected with Sanger sequencing in 81 IGD 
patients as well as the number of probands 
carrying them. RSVs were detected in the 
following genes: CHD7, ANOS1, GNRHR, PROKR2, 
FGFR1, KISS1R and TACR3.
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Despite the expansion of the number of probands to 
87, we are still reporting a higher male-to-female ratio 
in the total number of IGD patients with enrichment 
for higher male-to-female ratio in KS compared to nIHH 
patients. The precise reason for the male predominance 
KS has hitherto been considered to be secondary to the 
X-linked form of KS. Thus, even though the prevalence 
of ANOS1 genetic changes was relatively low in the IGD 
cohort, 4/30 KS patients and 3/ 25 KS males carried a LoF 
genetic change in ANOS1 including an ANOS1 deletion or 
nonsense mutation. Additional explanations for this male 
predominance could be a potential non-genetic cause or 
possible bias of ascertainment.

In our study, we evaluated the IGD patients for 
reproductive and non-reproductive symptoms. Patients 
with or without anosmia displayed a wide spectrum 
of reproductive phenotypic features, including 
cryptorchidism and microphallus, with the mean 
testicular volume of males before initiation of treatment 
being not different in patients with KS compared to 
nIHH (data not shown). Importantly, synkinesia and URA 
were significantly enriched in KS patients and several 
neuropsychiatric disorders were detected in both KS and 
nIHH patients, highlighting the importance of detailed 
clinical evaluation in IGD patients. Even though the genetics 
of psychiatric disorders is highly complicated (36, 37),  

the outcome of this evaluation along with the previously 
reported cases of KS and schizophrenia (38, 39), raise 
the importance of such evaluation in patients with IGD  
and strong family history of neuropsychiatric disorders. 
The reproductive and non-reproductive data are shown 
in Table 1.

Genotypic analysis

Using Sanger sequencing and MLPA we discovered 
variation in 21 out of 81 IGD patients with a lack of 
enrichment for a particular genetic cause. Even though 
a large number of IGD genes were screened, our sample 
lacked evidence of oligogenicity, i.e. RSVs in more than 
one gene causing the expression of the phenotype, a 
phenomenon that has been detected in prior studies 
affecting 2.5–10% of the IGD population (data not shown) 
(34). All these observations could reflect the presence of 
a yet unidentified genetic cause underlying the Greek 
cohort of IGD. 

Thus, to search for genetic variation in additional 
IGD genes and determine the prevalence of genetic 
variation in all genes that have been implicated in the 
disease, we performed WES, making this the first report 
of the prevalence of RSVs in a large number of IGD genes  
(37 genes) using NGS in this population. 

Figure 3
The genes positive for rare sequence variants 
(RSVs) detected with whole exome sequencing in 
87 IGD patients as well as the number of 
probands carrying them. RSVs were detected in 
the following additional genes: DMXL2, SOX2, KL, 
POLR3A, POLR3B, PNPLA6, SEMA3A and RNF216.
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WES increased the prevalence of IGD genetic 
variation to 31 genetic variations in 27 IGD patients 
and the number of genes implicated in the disease to 
15, suggesting that NGS is crucial for the discovery on 
genetic variation in patients with such rare diseases. Most 
importantly, while genetic search in 14 genes did not 
reveal any oligogenicity, expanding the search to 37 IGD 
genes detected oligogenicity in 4 cases (4/87 probands).

Deleterious, likely deleterious, likely benign and benign 
genetic variation with multiple inheritance patterns were 
seen and both single point variations as well as intergenic 
deletions were detected in 15 genes that affect either the 
neurodevelopmental and neuroendocrine pathways of 
IGD including CHD7, ANOS1, FGFR1, PROKR2, GNRHR, 
DMXL2, SOX2, SPRY4, KISSR1, TACR3, POLR3B, POLR3A, 
RNF216, SEMA3A and PNAPL6. We discovered several 
RSVs in neurodevelopmental genes including CHD7 that 

was a gene with the most genetic changes, with ANOS1 
and PROKR2 following. Apart from the genes that were 
found to disrupt the neurodevelopmental pathway of 
IGD, we also detected the variation that affected the genes 
that form the KNDy neuronal regulatory system that 
controls GnRH release and action. In fact, GNRHR was the 
second most prevalence gene carrying RSVs along with 
ANOS1. GNRHR RSVs were only detected in nIHH patients 
with a prevalence of 4 out of 57 nIHH patients. All of the 
RSVs were LoF with 1 of them being slice site and the 3 
missense predicted to be deleterious in silico. One more 
missense TACR3 RSV was detected in 1 nIHH patient and 
1 missense KISS1R RSV was detected in a KS patient.

The variety of RSVs that were detected in different 
IGD genes in this heterogeneous sample of IGD patients 
of Greek origin is in keeping with the study of a rather 
mixed population compared to a population isolate 

Table 2 The characteristics of the discovered IGD rare sequencing variants.

Gene Change
Functional 
effect PP Pathogenicity

MAF in ExAC browse 
non-Finnish Europeans

No of 
probands Dx

CHD7 c.8962 8963insG p.
D2988GfsX2

Frameshift NA Deleterious Not seen 1 nIHH

CHD7 c.5051-4C>T Splice site NA Deleterious Not seen 1 KS
CHD7 c.101 8A>G p.M340V Missense 0/4 Benign 0.0063 2 nIHH, KS
CHD7 c.7579A>C p.M2527L Missense 0/4 Benign 0.0031 2 nIHH
FGFR1 c.760C>T p.R254W Missense 3/4 Likely deleterious Not seen 1 KS
FGFR1 c.1408C>T p.R470C Missense 2/4 Likely deleterious 0.000015 1 nIHH
SPRY4 c.46G>A p.V16I Missense 1/4 Likely benign 0.0002462 1 KS
GNRHR c.436C>T p.P146S Missense 3/4 Likely deleterious 0.0011 1 nIHH
GNRHR c 317A>G p Q106R Missense 3/4 Likely deleterious 0.003 2 nIHH
GNRHR c.785G>A p.R262Q Missense 3/4 Likely deleterious 0.002 1 nIHH
GNRHR c.1-8G>A Frameshift NA Deleterious Not seen 1 nIHH
KISS1R c.458C>T p.R153C Missense 1/4 Likely benign Not seen 1 KS
PROKR2 c.254G>A p.R85H Missense 1/4 Likely benign 0.0011 1 KS
PROKR2 c.1069C>T p.R357W Missense 3/4 Likely deleterious 0.00089 1 nIHH
TACR3 c.1305T>A p.S435R Missense 1/4 Likely benign 0.000029 1 nIHH
ANOS1 Possible deletion from KAL1 

exon1 through Xp22.31
Intragenic 

deletion
NA Deleterious NA 2 KS

ANOS1 c.550delC p.L184* Nonsense NA Deleterious Not seen 1 KS
ANOS1 c.1 532C>A p.S511Y Missense 0/4 Benign 0.0024 1 KS
KL c.860G>A p.R287H Missense 3/4 Likely deleterious 0.00001648 1 KS
POLR3A c.3734G>A p.R1245Q Missense 0/4 Benign 0.00283 1 KS
DMXL2 c.31 04C>G p.P1035R Missense 0/4 Benign 0.00004946 1 KS
DMXL2 c.1787C>G p.S596C Missense 1/4 Likely benign 0.0003747 1 KS
PNPLA6 c.851 859delinsACCGTGT p.

S284YfsX56
Frameshift NA Deleterious Not seen 1 KS

POLR3B c.1958A>T p.D653V Missense 1/4 Likely benign 0.006968 1 nIHH
POLR3B c.3358A>G p.M1120V Missense 3/4 Likely deleterious 0.000008238 1 KS
RNF216 c.1 06G>A p.D36N Missense 2/4 Likely deleterious Not seen 1 nIHH
SPRY4 c.46G>A p.V16I Missense 1/4 Likely benign 0.0002822 1 KS
SOX2 c. 750 C>A p S250T Missense 4/4 Deleterious Not seen 1 KS
SOX2 c. 297 C>A pA99G Missense 4/4 Deleterious 0.000008347 1 nIHH
SEMA3A c.1 457C>T p.P486L Missense 2/4 Likely deleterious 0.00006603 1 KS

Table 2 shows the characteristics of the detected RSVs including the genomic changes, function effect, number of prediction programs that consider the 
changes deleterious, pathogenicity, MAF in ExAC, number of probands carrying the diagnosis and associated diagnosis.
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that is characterized by the presence of distinct founder 
mutations. The genetic heterogeneity which was 
observed could also be attributed to the sample selected, 
since patients came to the clinic from the different 
parts of Greece. Studies of Greek isolate populations 
have previously shown an enrichment of genomic loci 
associated with complex phenotypes such as hematologic 
traits (40), suggestive of the presence of a common genetic 
background for such phenotypic characteristics in isolated 

populations of Greece. Studies in IGD patients from such 
populations will be crucial for establishing novel genetic 
causes for other rare and common genetic traits. 

Interestingly, despite the enrichment for the 
normosmic phenotypic variation in our cohort, none of 
the neuroendocrine genes were found to be significantly 
enriched in our cohort, in contrast with other IGD 
subpopulation, highlighting the potential presence 
of a yet unidentified genetic cause for the disease.  

Table 3 In silico validation of the discovered RSVs.

Gene Change
Functional 
effect Polyphen SIFT Pathner FATHMM ACMG

CHD7 c.8962_8963insG p.D2988Gfs 
het;

Frameshift Pathogenic

CHD7 c.5051-4C>T het; Splice site Not applicable Benign
CHD7 c.1018A>G p.M340V het; Missense Benign Tolerated NA Tolerated Benign
CHD7 c.7579A>C p.M2527L het; Missense Benign Tolerated NA Tolerated Benign
FGFR1 c.760C>T p.R254W het Missense Probably 

damaging
Deleterious Probably damaging Tolerated VUS

FGFR1 c.1408C>T p.R470C het; Missense Benign Deleterious NA Damaging VUS
GNRHR c.436C>T p.P146S het; Missense Probably 

damaging
Deleterious Probably damaging Tolerated VUS

GnRHR c 317A>G p Q106R het Missense Probably 
damaging

Deleterious Probably damaging Tolerated Pathogenic

GNRHR c.785G>A p.R262Q het; Missense Probably 
damaging

Deleterious Probably damaging Tolerated Pathogenic

GNRHR c.1-8G>A het; Frameshift Not applicable VUS
KISS1R c.458C>T p.R153C het; Missense Benign Tolerated Probably damaging Tolerated VUS
PROKR2 c.254G>A p.R85H het; Missense Probably 

damaging
Deleterious Probably damaging Tolerated VUS

PROKR2 c.1069C>T p.R357W het; Missense Benign Tolerated Probably benign Tolerated VUS
TACR3 c.1305T>A p.S435R het; Missense Benign Tolerated Possible damaging Tolerated VUS
ANOS1 c.550delC p.L184* hem Stop gain Not applicable Pathogenic
ANOS1 possible deletion from KAL1 

exon1 through Xp22.31
Intragenic 

deletion
Not applicable Pathogenic

ANOS1 c.1532C>A p.S511Y het Missense Benign Tolerated Probably benign Tolerated Benign
KL c.860G>A p.R287H het Missense Probably 

damaging
Deleterious Probably damaging Tolerated VUS

POLR3A c.3734G>A p.R1245Q het; Missense Benign Tolerated NA Tolerated VUS
DMXL2 c.3104C>G p.P1035R het;; Missense Benign Tolerated Probably benign Tolerated VUS
DMXL2 c.1787C>G p.S596C het; Missense Benign Tolerated Possible damaging Tolerated VUS
PNPLA6 c.851_859delinsACCGTGT 

p.S284YfsX56 het
Frameshift Not applicable VUS

POLR3B c.1958A>T p.D653V het; Missense Benign Tolerated Possible damaging Tolerated VUS
POLR3B c.3358A>G p.M1120V het; Missense Probably 

damaging
Deleterious Possible damaging Tolerated VUS

RNF216 c.106G>A p.D36N het; Missense Probably 
damaging

Tolerated Possible damaging Tolerated VUS

SPRY4 c.46G>A p.V16I het; Missense Benign Tolerated Possible damaging Tolerated VUS
SOX2 c.748T>A p.S250T het Missense Possibly 

damaging
Deleterious Possible damaging Damaging VUS

SOX2 c. 297 C>A pA99G Missense Possibly 
damaging

Deleterious Possible damaging Damaging VUS

SEMA3A c.1457C>T p.P486L het; Missense Possibly 
damaging

Deleterious Probably benign Tolerated VUS

Table 3 shows the results of four bioinformatic programs including Polyphen 2, SIFT, Pathner and FATHMM, as well as the assessment based on the 
ACMG criteria.
VUS, variant of unknown significance.
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Additionally, even though the prevalence of genetic 
variation increased with WES, a large portion of Greek 
patients with IGD (60 probands) lacked any rare RSVs. 
The additional lack of genetic explanation of the 
normosmic phenotypic enrichment suggests that novel 
genes in coding and/or non-coding regions as well as 
epigenetic factors could contribute to the expression  
of the phenotype in that particular subset of patients 
with IGD.

Future steps in the analysis of the genetic architecture 
in the Greek cohort of IGD include (i) the analysis of 
a more homogenous sample of patients with this rare 
disorder; (ii) the analysis in endogamous familial cases; 
(iii) analysis in syndromic cases of IGD and finally (iv) 
search for chromosomal rearrangement with copy number 
variations that could be carried by such patients. Since WES 
data are already available in 87 probands and 89 family 
members search for genetic enrichment in the IGD cohort 
compared to a control cohort is also likely to lead us to a 
gene causative for GnRH deficiency in those patients.

This analysis highlights the importance of NGS in 
the detailed description of the genetic background or rare 
Mendelian diseases that either appear to be monogenic 
or oligogenic. It has been striking that to date, traditional 
gene discovery approaches have yielded a genetic cause 
in only ~50% of IGD patients, similar to that described 
in the IGD Greek cohort (41) while the genetic etiology 
in the remaining patients is currently unknown. By 
expanding the genetic screening in the Greek IGD cohort 
with utilization of WES, we discovered an increase in the 
prevalence of the RSVs as well as significant detection 
of oligogenicity. This highlights how genetic defects 
can be missed due to the limited depth and range of 
existing sequencing that, to date, has only screened 
coding sequences or short genome segments with low-
resolution techniques. The lack of identification of RSVs 
in cases with a clear heritable cause of IGD highlights 
the common notion that genetic changes may still exist 
in non-coding areas of the human genome, structural 
defects in the genome or epigenetic factors contributing 
to the disease. 

Limitations of this study include (i) the relatively small 
sample size of the cohort studied; (ii) the lack of screening 
for copy number variation in the patients studied and 
the (iii) lack of availability of all the phenotypic details, 
especially in the patients referred to the University of Patras. 

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
EC-19-0010.
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