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ABSTRACT 

We establish common fixed point results for two self-mappings satisfying integral type contractive conditions in 
the framework of complete G-metric spaces. The established results generalize and extend many results in the 

existing literature. Moreover, we provide some comparative examples to show that our results are substantial 
improvements of some known results in literature.

1. INTRODUCTION 

Fixed point theory is one of the most active research subject in the 
development of nonlinear analysis. It is used in pure and applied 
mathematics and play a key part in nonlinear functional analysis as well 
as used for proving the existence theorems for nonlinear differential and 
integral equations. One of the main result in this area is the Banach 
contraction principle proved by Banach, which says that any contraction 
self-mappings on a complete metric space has a unique fixed point. 
Because of its importance for mathematical theory, this Principle has been 
extended and generalized in many directions and the references cited 
therein (Abbas et al., 2011; Suzuki, 2008; Zamfrescu, 1972). 

In 2002, an integral version of the Banach fixed point theorem 
(Branciari, 2002). This result was more generalized and extended by 
many authors for the existence of fixed points and common fixed points 
for numerous mapping satisfying integral type contraction (Aliouche, 
2006; Dsoudi and Merghadi, 2008; Khojesteh et al., 2010; Rhoades, 2003; 
Suuki, 2006; Liu and Kang, 2000). In recent years, there has been 
increasing interest in the study of fixed points of mappings satisfying 
integral type contraction. Recently, a studied common fixed point 
theorem for integral type contraction in generalized metric spaces (Ayadi, 
2012). 

The aims of this manuscript is to study the existence and uniqueness 
of common fixed points for contractive mappings of integral type in the 
set-up of generalized metric spaces. Our results generalize the G-metric 
spaces and carry the results in metric spaces to G-metric spaces (Ayadi, 
2012; Liu et al., 2011). Throughout this paper N  denotes the set of 

positive integers, R  is the set of real numbers, R  is the set of non-
negative real numbers and 
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1. Preliminaries 
Before going to the main results, we recall some definitions 

and results from the existing literature. 

Definition 2.1 (Manro et al., 2013; Mustafa and Sims, 2006). Let X
be a non-empty set and let  RXXXG : be a function

satisfying the following conditions: 
1) 0),,( zyxG implies that zyx   for all Xzyx ,, ;

2) ),,(0 yxxG for all Xyx ,, with yx  ; 

3) ),,(),,( zyxGyxxG  for all Xzyx ,, with zy  ; 

4)  ),,(),,(),,( xzyGyzxGzyxG (symmetry in all 

three variables); 
5) ),,(),,(),,( zyaGaaxGzyxG  for all Xazyx ,,,

Then it is called G-metric on X  and the pair ),( GX  is called G-

metric space. 

Example 2.2. Let ),0[ X  and  RXXXG :  be the 

function defined as follow 

.,,allfor |}||,||,{|max),,( XzyxxzzyyxzyxG 

Then G  is G-metric on X . 

Proposition 2.3 (Mustafa and Sims, 2006). Let ),( GX  be a G-

metric space. The following are equivalent: 
1) x n is G-convergent to x; 

2) 0),,( xxxG nn  as n  

3) 0),,( xxxG n as n

4) 0),,( xxxG mn  as mn,  
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Proposition 2.4 (Sintunavarat and Kumam., 2012) Let f  and g  be 

weakly compatible self-mappings on a set X . If f  and g  have a unique 

point of coincidence  gf  , then   is the unique common fixed 

point of f  and g . 

Proposition 2.5 (Sintunavarat and Kumam., 2012) Let  ),( GX   be a G-

metric space. Then following statement holds: 
1) )},,(),,,(max{|),,(),,(| aazGzzaGayxGzyxG  , 

2) ),,(2),,( xxyGyyxG  . 

Lemma 2.6 (Liu et al., 2011). Let   and 
Nnnr }{  is a non-negative 

sequence with arnn lim . Then 
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Lemma 2.7 (Liu et al., 2011). Let   and Nnnr }{  is a non-negative 

sequence. Then 
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Definition 2.8 (Sintunavarat and Kumam, 2012). Let S  and T  be self-

mappings of a nonempty set X . 

1) A point Xx  is said to be a fixed point of T  if xTx  . 

2) A point Xx  is said to be a coincidence point of S  and T  if 

TxSx   and we  call the point TxSxw   a point of coincidence of S  

and T . 
3) A point Xx  is said to be a common fixed point of S  and T  if 

TxSxx  . 

Definition 2.9 (Abbas et al., 2011; Aliouche, 2006). Let X  be a non-
empty set the mappings XXfT :,  are said to be weakly compatible 

if they commute at their coincidence point (i.e., fTxTfx   whenever 

fxTx  ). 

Theorem 2.10. (Branclari, 2002). If T  be a self-map of a complete 
metric space ),( dX  such that for all Xyx ,  

)1,0(,)()(
),(

0

),(

0
   dttdtt

yxdTyTxd . 

where,  . Then T  has a unique fixed point in .X  

In 2011, a researcher proved the following results which 
generalized Theorem 2.10 in metric spaces (Liu et al., 2011). 

Theorem 2.11. If T  be a mapping from a complete metric space ),( dX  

to itself such that for all Xyx ,   

,)()),(()(
),(

0

),(

0
dttyxddtt

yxdTyTxd

    

where,   and )1,0[),0[:   is a function with 

1)(suplim  sts  , 0 t . Then T  has a unique fixed point in .X  

Theorem 2.12. If T  be a mapping from a complete metric space ),( dX  

to itself such that for all Xyx ,  

,)(),(()(),(()(
),(

0

),(

0

),(

0
dttyxddttyxddtt

TyydTxxdTyTxd

    

where,   and )1,0[),0[:,   is a function with 

1suplim )(1

)(  s

s

ts 

  0 t . Then T  has a unique fixed point in .X  

In 2014, generalized the above theorem for integral type contraction 
and proved the following theorem in metric spaces (Liu et al., 2014a).  

Theorem 2.13. If T  be a mapping from a complete metric space 

),( dX  to itself such that for all  Xyx ,  
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For all Xyx ,  where,   and )1,0[),0[:,,   is a 

function with  
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Then T  has a unique fixed point in .X  

Recently, a researcher has established the following common fixed 
point theorems in generalized metric spaces (Ayadi, 2012). 

Theorem 2.14. Let ),( GX  be complete G-metric space and 

XXgf :,   be a mapping such that 

),,,(),,( gzgygxGfzfyfxG   

for all Xzyx ,,  where )1,0[ . If )()( XgXf   and 

)(Xg  is a complete subspace of X . Then f  and g  have a unique 

point of coincidence in X . Moreover if f  and g  are weakly 

compatible, then f  and g  have a unique common fixed point in 

.X  

Theorem 2.15. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that 

,)()(
)),,((
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0
dttdtt

gzgygxGfzfyfxG
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for all Xzyx ,,  where )1,0[  and  . If 

)()( XgXf   and )(Xg  is a complete subspace of X . Then f  

and g  have a unique point of coincidence in X . Moreover if f  

and g  are weakly compatible, then f  and g  have a unique 

common fixed point in .X  

2. Main results 
Theorem 3.1. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that  

,)()),,(()(
)),,((

0

),,(

0
dttgzgygxGdtt

gzgygxGfzfyfxG

                                 
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for all Xzyx ,, , where   and )1,0[),0[:   is a 

function with ,1)(  Rtt  1)(suplim 


s
ts

 , 0 t . If 

)()( XgXf   and )(Xg  is a complete subspace of X . Then f  

and g  have a unique point of coincidence in X . Moreover if f  and 

g  are weakly compatible, then f  and g  have a unique common 

fixed point in .X  

Proof. Let 0x  be arbitrary point in X . Since )()( XgXf   choose 

Xx 1  such that 01 fxgx   choose Xx 2  such that 12 fxgx   in 

last we choose Xxn 1  such that .1 nnn fxgxy    Let 

),,( 21  nnnn yyyGG  by using (3.1) we get 
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which yields that 

.,1 N  nGG nn
                                                                                     

(3.3) 
Thus, the sequence 

NnnG }{  is decreasing. Consequently, them exist 

a constant c  such that 

.lim cGn
n
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We claim that 0c . If 0c , then from (3.2) we have  
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Taking limit sup and using equation (3.4) and Lemma 2.6 we get 
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Which is contradiction. Hence 

.0lim 


n
n

G                                                                                                 (3.5) 

Next, we prove that Nnny }{  is a Cauchy sequence in )(Xg . 
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Suppose Nnny }{  is not a Cauchy sequence. Then there exists 0  

and for each positive integer k , there are positive integers )(km  

and )(kn  with kkmkn  )()(  such that 

.),,( )()()( kmkmkn yyyG                                                                            (3.6) 

Corresponding to )(km , we can choose )(kn  such that it is the smallest 

integer with )()( kmkn   and satisfying (3.6). Then 

.),,( 1)(1)()(  kmkmkn yyyG                                                                            (3.7) 

Then we have 

).,,(),,(),,( )()(1)(1)(1)()()()()( kmkmkmkmkmknkmkmkn yyyGyyyGyyyG     

    ).,,( )()(1)( kmkmkm yyyG    

Letting k  and using (3.5) we get 

.),,(lim )()()( 
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k

yyyG                                                                       (3.8) 

Next by using Proposition 2.5 we can write 
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By letting k  and taking into account (3.5), (3.8), (3.9), (3.10) and 

(3.11) we get the following system 
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Using (3.1) we get 
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Taking limit superior and using (3.12) we have 
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Again contradiction arises. Thus Nnny }{  is a Cauchy sequence in )(Xg  

and since )(Xg  is complete, there exists a point )(Xgr  such that 

rxyn
n


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)(lim . So, there exist Xw  such that rgw . From 

Proposition 2.3 we have 
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Further we show that fwgw  . Suppose that fwgw   then by using 

inequality, one can get 
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By taking n  and using (3.14) we have,  
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which contradict the fact that fwgw  . Thus .gwfw   

Uniqueness: We now show that f  and g  have a unique point of 

coincidence. Suppose that  gf   for some X , the using 

inequality (3.1), we can write 
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but this holds if 0),,( gwgwgG  . Hence gwg  . Which 

gives f  and g  have a unique point of coincident. From 

Proposition 2.4 f  and g  have unique common fixed point. 

Now we present some corollaries of Theorem 3.1. 

Corollary 3.2. Let  X,G  be complete G-metric space and 
XXgf :,  be a mapping such that 
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for all Xzyx ,,  where )1,0[c  and  . If )()( XgXf   

and )(Xg  is a complete subspace of X . Then f  and g  have a 

unique point of coincidence in X . Moreover if f  and g  are 

weakly compatible, then f  and g  have a unique common fixed 

point in .X  

Proof. It follows by taking cs )(  in Theorem 3.1. 

Corollary 3.3. Let ),( GX  be a complete G-metric space and 

XXgf :,  such that 

)),,,((),,( gzgygxGfzfyfxG   

for all Xzyx ,,  where .10   If )()( XgXf   and 

)(Xg  is a complete subspace of X , then f  and g  have a 

unique point of coincidence in X . Moreover if f  and g  are 

weakly compatible, then f  and g  have a unique common fixed 

point in X . 
Proof. It follows by taking 1)( t  and  )(x   in Theorem 3.1. 

Corollary 3.4. Let ),( GX  be a complete G-metric space and 

XXf :  be a mapping such that 
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for all Xzyx ,,  where   and )1,0[),0[:   

is a function with ,1)(  Rtt  1)(suplim 


s
ts

 , 0 t

. Then f  has a unique fixed point in X . 

Proof. The proof follows by taking xxg )(  in Theorem 3.1. 

Corollary 3.5. Let ),( GX  be a complete G-metric space and 

XXgf :,  such that 

)),,,())(,,((),,( gzgygxGgzgygxGfzfyfxG   

for all Xzyx ,,  where )1,0[),0[:   is a function with 

,1)(  Rtt  ,1)(suplim 


s
ts

  0 t . If )()( XgXf   

and )(Xg  is a complete subspace of X , Then f  and g  have a 

unique point of coincidence in X . Moreover if f  and g  are 

weakly compatible, then f  and g  have a unique common fixed 

point in X . 
Proof. It follows by taking 1)( t  in Theorem 3.1. 

Corollary 3.6. Let ),( GX  be complete G-metric space and 

XXf :  such that 

)),,,())(,,((),,( zyxGzyxGfzfyfxG   

for all Xzyx ,,  where )1,0[),0[:   is a function with 
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,1)(  Rtt  ,1)(suplim 


s
ts

  0 t . Then f  has a 

unique fixed point in X . 
Proof. It follows by taking xxg )(  and 1)( t  in Theorem 3.1. 

Corollary 3.7. Let ),( GX  be complete G-metric space and 

XXgf :,  such that 

,)()),,(()(
)),,((

0

),,(

0
dttzgygxgGdtt

zgygxgG
mmm

zfyfxfG mmmmmm

    

for all Xzyx ,,  where   and )1,0[),0[:   is a function 

with ,1)(  Rtt  1)(suplim 


s
ts

 , 0 t . If 

)()( XgXf mm   and )(Xg  is a complete subspace of X , Then f  

and g  have a unique point of coincidence in X . Moreover, if 
mf  and 

mg  are weakly compatible, then f  and g  have a unique common 

fixed point X . 

Proof. It is follow from Theorem 3.1 that )(xf m
, )(xgm

 have a unique 

common fixed point ☺. Now 

))(()())(()( 1  ffffff mmm  
, 

))(()())(()( 1  gggggg mmm  
 implies that f , 

g  are also fixed point for )(xf m
, )(xgm

. Since the common fixed 

point of )(xf m
, )(xgm

 is unique. Hence,  gf  . 

Theorem 3.8. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that for all Xzyx ,,  

 

,)()),,(()()),,((

)()),,(()(

)),,((

0

)),,((

0

)),,((

0

),,(

0

dttgzgygxGdttgzgygxG

dttgzgygxGdtt

gzgygxGgxfygyG

gxfxgxGfzfyfxG











    (3.15) 

 

where   and )1,0[),0[:,,   are functions such 

that 

,1)()()(  Rtttt                                     (3.16) 

and 

.01)]()()([suplim 


tttt
ts

                          (3.17) 

If )()( XgXf   and )(Xg  is a complete subspace of X . Then f  

and g  have a unique point of coincidence in X . Moreover if f  and g  

are weakly compatible, then f  and g  have a unique common fixed 

point in .X  

Proof. Let 0x  be arbitrary point in X . Since )()( XgXf   choose 

Xx 1  such that 01 fxgx   choose Xx 2  such that 12 fxgx   in 

last we choose Xxn 1  such that .1 nnn fxgxy    Let 

),,( 21  nnnn yyyGG  by using (3.15)  

 

,)()),,((

)()),,((

)()),,((

)()(

),,(

0
21

),,(

0
21

),,(

0
21

),,(

00

21

11

21

dttgxgxgxG

dttgxgxgxG

dttgxgxgxG

dttdtt

nnn

nnn

nnn

nnnn

gxgxgxG

nnn

gxfxgxG

nnn

gxfxgxG

nnn

fxfxfxGG





































 

 

Using symmetric property of G -metric and ),,(),,( zyxGyxxG   

we get  

.,)(

)()()()()()(

)()()()()(

1

11

11

0

0
111

0
1

0
1

0
1

0

)(
N





















ndtt

dttGGGdttG

dttGdttGdtt

n

nn

nnn

G

G

nnn

G

n

G

n

G

n

G







 

Thus 

.,1 N  nGG nn
                                             

(3.18) 
 

Which shows that the sequence 
NnnG }{  is decreasing. 

Consequently, them exist a constant c  such that 

 

.lim cGn
n




                                          

(3.19) 

We show that 0c , Otherwise if 0c  then from above we have 

 

dttGGGdtt
nn G

nnn

G

)()()()()(
1

0
111

0
)(  



   

 
Taking limit superior and using (3.17) and (3.19) we get 
 

.)(

)(suplim)()()(suplim

)(suplim)(0

0

0
111

00

1)(

dtt

dttGGG

dttdtt

c

G

n
nnn

n

G

n

c

n

n


























  

 
Which is contradiction. Hence 
 

.0lim 


n
n

G                                                                                                       

(3.20) 

Next, we prove that Nnny }{  is a Cauchy sequence in )(Xg . 

Suppose Nnny }{  is not a Cauchy sequence. Then there exists 

0  and for each positive integer k , there are positive integers 

)(km  and )(kn  with kkmkn  )()(  such that 

.),,( )()()( kmkmkn yyyG                                

(3.21) 

Corresponding to )(km , we can choose )(kn  such that it is the 

smallest integer with )()( kmkn   and satisfying (3.21). Then 

.),,( 1)(1)()(  kmkmkn yyyG                                        

(3.22) 
Then we have 

).,,(),,(),,( )()(1)(1)(1)()()()()( kmkmkmkmkmknkmkmkn yyyGyyyGyyyG    

    ).,,( )()(1)( kmkmkm yyyG    

Setting k  and using (3.21) we have, 

.),,(lim )()()( 


knkmkm
k

yyyG                    

(3.23) 
Now by using Proposition 2.5 we get the next three inequalities 
 

);(2),,(2

},,(),,,({max

|,,(),,(|

2)(1)()(

1)(1)()()()(1)(

1)()()()()()(

kGyyyG

yyyGyyyG

yyyGyyyG

nknknkn

knknknknknkn

knkmkmknkmkm












                          

(3.24) 
 

);(2),,(2

},,(),,,({max

|,,(),,(|

2)(1)()(

1)(1)()()()(1)(

)(1)(1)(1)(1)(1)(

kGyyyG

yyyGyyyG

yyyGyyyG

mkmkmkm

kmkmkmkmkmkm

kmkmknkmkmkn












                         

(3.25) 
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And 
 

.2),,(2

},,(),,,({max

|,,(),,(|

1)(3)(1)(1)(

1)(1)(2)(2)(1)(1)(

2)(1)(1)(1)(1)(1)(













knknknkn

knknknknknkn

knkmkmknkmkm

GyyyG

yyyGyyyG

yyyGyyyG
               

(3.26) 

Letting k  and combining (3.20), (3.23), (3.24), (3.25) and (3.26) 

one can get 









































.),,(lim

,),,(lim

,),,(lim

,),,(lim

,),,(lim

2)(1)(1)(

)(1)(1)(

1)(1)(1)(

1)()()(

)()()(











knkmkm
k

kmkmkn
k

kmkmkn
k

knkmkm
k

knkmkm
k

yyyG

yyyG

yyyG

yyyG

yyyG

                                      

(3.27) 
 

Using (3.15) we can write 
 

.,)(),,((

)(),,((

)(),,((

)(

),,(

0
1)()()(

),,(

0
1)()()(

),,(

0
1)()()(

),,(

0

1)()()(

)(1)()(

)(1)()(

2)(1)(1)(

N



























kdttyyyG

dttyyyG

dttyyyG

dtt

knkmkm

kmkmkm

kmkmkm

knkmkm

yyyG

knkmkm

yyyG

knkmkm

yyyG

knkmkm

yyyG









           

(3.28) 
 

Also 
 

).,,(

),,(),,(

2)(1)()(

1)()()()(1)()(









kmkmkm

kmkmkmkmkmkm

yyyG

yyyGyyyG
              

(3.29) 
 

Taking limit superior of (3.28) and using (3.20), (3.27) and (3.29) we get 

dttdttyyyG

dttyyyG

dttyyyG

dttdtt

knkmkm
k

yyyG

k
knkmkm

k

yyyG

knkmkm
k

yyyG

k

knkmkm

knkmkm

knkmkm

)()(),,(((suplim

)(suplim)),,((suplim

))()),,(((suplim

)(suplim)(0

00
1)()()(

),,(

0
1)()()(

),,(

0
1)()()(

),,(

00

1)()()(

1)()()(

2)(1)(1)(
















































 

which is contradiction. Thus Nnny }{  is a Cauchy sequence in )(Xg  and 

since )(Xg  is complete, there exists a point )(Xgr  such that 

rxynn  )(lim . So, there exist Xw  such that rgw . From 

Proposition 2.3 we have 

.0),,(lim),,(lim 


gwgwgxGgwgxgxG n
n

nn
n

                            

(3.30) 

Now we will show that fwgw  . Suppose that fwgw   by (3.15), we 

have 

dttgwgwgxG

dttgwgwgxG

dttgwgwgxG

dttdtt

gwgwgxG

n

gxfwgwG

n

gxfxgxG

n

fwfwfxGgwfwgxG

n

n

nnn

nn

)(),,((

)()),,((

)(),,((

)()(

),,(

0
1

),,(

0
1

),,(

0
1

),,(

0

),,(

0

1

1

111

1







































 

By taking n  and using (3.30) we get 

dttgwgwgxGdtt
gwfwgwG

n

gwfwgwG

)(),,(()(
),,(

0
1

),,(

0
     

which contradict the fact that gwfw  . Hence fwgw  . 

Uniqueness: By following the lines in the proof of Theorem 3.1 we 
conclude the uniqueness of fixed point. 

Theorem 3.8 yields the following corollaries: 

Corollary 3.9. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that for all Xzyx ,,  

,)(

)()()),,(()(

)

(
)),,((

0

)),,((

0

)),,((

0

),,(

0

dtt

dttdttgzgygxGdtt

gzgygxG

gxfygyGgxfxgxGfzfyfxG











  

where   and )1,0[),0[:   is a function with 

1)( t  for all Rt and 1)]([suplim 


s
ts

  for all 0t . If 

)()( XgXf   and )(Xg  is a complete subspace of X . Then 

f  and g  have a unique point of coincidence in X . Moreover if 

f  and g  are weakly compatible, then f  and g  have a unique 

common fixed point in .X  

Proof. It follows by taking )()()( sss    in Theorem 3.8. 

Corollary 3.10. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that for all Xzyx ,, . 

,)(

)()()(

)),,((

0

)),,((

0

)),,((

0

),,(

0

dttc

dttbdttadtt

gzgygxG

gxfygyGgxfxgxGfzfyfxG












 

where   and .1 cba  If )()( XgXf   and 

)(Xg  is a complete subspace of X . Then f  and g  have a 

unique point of coincidence in X . Moreover if f  and g  are 

weakly compatible, then f  and g  have a unique common fixed 

point in .X  

Proof. It follows by taking csbsas  )(,)(,)(   in 

Theorem 3.8. 
Corollary 3.11. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that for all Xzyx ,,  

,)()),,(()()),,((

)()),,(()(

)),,((

0

)),,((

0

)),,((

0

),,(

0

dttzyxGdttzyxG

dttzyxGdtt

zyxGxfyyG

xfxxGfzfyfxG












 

where   and )1,0[),0[:,,   are functions such 

that 
 Rtttt ,1)()()(   and 

.0,1)]()()([suplim 


tsss
ts

  If )()( XgXf   and 

)(Xg  is a complete subspace of X . Then f  and g  have a 

unique point of coincidence in X . Moreover if f  and g  are 

weakly compatible, then f  and g  have a unique common fixed 

point in .X  

Proof. The proof follows by taking xxg )(  in Theorem 3.8. 

Corollary 3.12. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that for all Xzyx ,,  

 

,)()),,((

)()),,((

)()),,(()(

)),,((

0

)),,((

0

)),,((

0

),,(

0

dttzgygxgG

dttzgygxgG

dttzgygxgGdtt

zgygxgG
mmm

xgyfygG
mmm

xgxfxgG
mmm

zfyfxfG

mmm

mmm

mmmmmm



















 

 

where   and )1,0[),0[:,,   are functions such 

that 
 Rtttt ,1)()()(   and 

.0,1)]()()([suplim 


tsss
ts

  If )()( XgXf mm   and 
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)(Xg  is a complete subspace of X . Then f  and g  have a unique 

point of coincidence in X . Moreover if f  and g  are weakly 

compatible, then f  and g  have a unique common fixed point in 

.X  

Proof. The proof is same as of the Corollary 3.7. 
Corollary 3.13. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that for all Xzyx ,,  

 

)),,,())(,,(()),,())(,,((

)),,())(,,((),,(

gzgygxGgzgygxGgxfygyGgzgygxG

gxfxgxGgzgygxGfzfyfxG







  

 
where )1,0[),0[:,,   are function such that 

 Rtttt ,1)()()(   and 

.0,1)]()()([suplim 


tsss
ts

  If )()( XgXf   and )(Xg  

is a complete subspace of .X  Then f  and g  have a unique point of 

coincidence in X . Moreover if f  and g  are weakly compatible, then 

f  and g  have a unique common fixed point in .X  

Proof. The proof follows by taking 1)( t  in Theorem 3.8. 

Corollary 3.14. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that for all Xzyx ,,  

)),,,(()),,(()),,((),,( gzgygxGcgxfygyGbgxfxgxGafzfyfxG   

where .1 cba  If )()( XgXf   and )(Xg  is a complete 

subspace of X . Then f  and g  have a unique point of coincidence in 

X . Moreover, if f  and g  are weakly compatible, then f  and g  have 

a unique common fixed point in .X  

Proof. The proof follows by taking 1)( t  and 

csbsas  )(,)(,)(   in Theorem 3.8. 

Similar to Theorem 3.8 we can prove the following theorem. 
Theorem 3.15. Let ),( GX  be complete G-metric space and 

XXgf :,  be a mapping such that for all Xzyx ,,  
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where   and )1,0[),0[:,   is a function with 

 Rttt ,1)()(   and .0,1)]()([suplim 


tss
ts

  If 

)()( XgXf   and )(Xg  is a complete subspace of X . Then f  and g  

have a unique point of coincidence in X . Moreover if f  and g  are 

weakly compatible, then f  and g  have a unique common fixed point in 

.X  

Example 3.16. Let ]1,0[X  and defined  RXXXG :  by 

.,,||||||),,( XzyxxzzyyxzyxG   

Then ),( GX  is complete G-metric space. Let XXgf :, , 
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Clearly )()( XgXf   also f  and g  are weakly compatible. Now we 

have 
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Thus all conditions of Theorem 3.1 are satisfied. Hence f  and g  

have a unique common fixed point which is 0 . 

The following example shows that Theorem 3.1 is more 
general than Theorem 14. 

Example 3.17. Let ],0[
2
1X  and defined  RXXXG :  

by  

.,,||||||),,( XzyxxzzyyxzyxG   
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Clearly )()( XgXf   also f  and g  are weakly compatible. 

Now for all Xzyx ,,  
4

3
),,( fzfyfxG  and hence 

.0)(
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0
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Clearly, all conditions of Theorem 3.1 are satisfied. So f  and g  

have a unique common fixed point. 

On the other hand, if we take 
4
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So we have the following bound 
 

)).,,((),,( gzgygxGkfzfyfxG   

 
From the inequality, it is clear that Theorem th1.51 fail to guaranty 

that f  and g  have a unique common fixed point. 

Example 3.18. Let ]1,0[X  and defined 
 RXXXG :  by 
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clearly )()( XgXf   also f  and g  are weakly compatible and 
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)(Xg  are complete subspace. Without loss of generality, we 

suppose that zyx   for all Xzyx ,, . To check the validity 

of (3.15) we distinguish the following cases: 
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Case 2. If ]1,[,,
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clearly )()( XgXf   also f  and g  are weakly compatible and )(Xg  

are complete subspace. Without loss of generality, we suppose that 
zyx   for all Xzyx ,, . To check the validity of (3.15) we 

distinguish the following cases: 
 

Case 1. If ),0[,,
2
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Case 3. If ),0[
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1x  and ]1,[,
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1zy , then 
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Clearly all conditions of Theorem 3.8 are satisfied. Thus f  and g  

have a unique common fixed point which is .0  

 
Remarks 

• Corollary 3.2 and Corollary 3.3 are the results of H (Ayadi, 
2012). 

• Corollary 3.3 and Corollary 3.11 generalize the results of 
respectively (Liu et al., 2011; Liu et al., 2014b). 
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