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ABSTRACT

Left alternative loops are loops satisfying yxxxyx )()(  . We construct an infinite family of non-associative non-

commutative left alternative loops whose smallest member is of order 8 . 

1. INTRODUCTION 

A groupoid ),( Q  is a quasigroup if, for each Qba , , the equations 
byabax  ,  have unique solutions where Qyx ,  [1]. A loop is a 

quasigroup with an identity element e  such that xexex  . The 

left nucleus of a loop Q  is },)()(:{ QyxylxxylQlN 
 . The right 

nucleus of a loop Q  is the set },)()(:{ QyxyrxrxyQrN 
 , and 

middle nucleus of Q  is },)()(:{ QyxmxyxymQmN 
 . The nucleus 

of Q  is the set 
NNNN   [2, 3]. 

A loop ),( L  is termed as left alternative loop if the following identity is 

satisfied for all Lzyx ,, :

.)()( yxxyxx 

Every C-loop and Moufang loop is left alternative loop [4]. In this paper, 
we construct left alternative loops of order 8 belongs to an infinite family 
of non-associative non-commutative left alternative loops constructed 
here for the first time. 

2. CONSTRUCTION OF LEFT ALTERNATIVE LOOP

Let G  be a multiplicative group with neutral element 1 , and A  an 

abelian group written additively with neutral element 0  [5-7]. Any map 

,: AGG 

satisfying 
,every for  0)1,(),1( Gggg  

is called a factor set. When AGG : is a factor set, we can  

define multiplication on G by 

.)),(,(),)(,( hgbaghbhag 

The resulting groupoid is clearly a loop with neutral element )0,1( . It 
will be denoted by ),,( AG . Additional properties of ),,( AG  can be 

enforced by additional requirements on .  

We construct left alternative loop with the help of two groups such that 
one is multiplicative group and other is additive abelian group [8-11]. 

Lemma 1. Let AGG :  be a factor set. Then ),,( AG  is a left 

alternative loop if and only if 

        . , ,,,, 2 Ghgghghghggg   (1) 

Proof. By definition the loop ),,( AG is left alternative loop if and only if  
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comparing both sides we get 

       .,,,, 2 ghghghggg  

Hence the result follows. 
We call a factor set satisfying (1) a left alternative factor set. 
Proposition 1 Let 2n  be an integer. Let A   be an abelian group of 

order n , and A  an element of order bigger than 1 . Let },,,1{ wvuG   

be the Klein group with neutral element 1. Define  

,: AGG 
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Then ),,( AGL   is a non-flexible (hence non-associative) and non-
commutative left alternative loop with }:),1{()( AaaLN  . 

Proof. The map   is clearly a factor set. It can be depicted as follows
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To show that ),,( AGL   is a left alternative loop, we verify Equation (1) 
as follows. 

case 1 There is nothing to prove when .1, hg

case 2 when ,ug   Equation (1) becomes

     uhuhuuu ,,,   . 

If uh  , then       .1,,,   uuuuu

If vh  , then       .,,,   wuvuuu  

If wh  , then       .,,,   vuwuuu  

case 3 when ,vg   Equation (1) becomes

     vhvhvvv ,,,   .

If uh  , then       .00,,,  wvuvvv 

If vh  , then       .001,,,  vvvvv 

If wh  , then       .00,,,  uvwvvv 

case 4 when ,wg   Equation (1) becomes

     whwhwww ,,,  

If uh  , then       .00,,,  vwuwww 

If vh  , then       .00,,,  uwvwww 

If wh  , then       .001,,,  wwwww 

Associativity: 

)0,()0,)(,()),)(,)((,( vwuuvu  

And 

),(),)(0,(),))(,)(,((  uuwuvu 

This implies 

),))(,)(,(()),)(,)((,(  uvuuvu  .

It implies that ),,( AGL   is non-flexible and hence non-associative. 
Commutativity: 

).,)(,(),)(,(  uwwu 

It implies that ),,( AGL   is non-commutative. 
Now it remains to show that }:),1{()( AaaLN   . For this consider 
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Which is true, so ).(),1( LNa


  

Similarly, we can show that  
)(),1( and )(),1( LNaLNa


 , 

Hence )(),1( LNa  . This implies }:),1{()( AaaLN  . 
Which is the required result. 

Example 1. The smallest group A satisfying the assumptions of Proposition 

1 is the 2-element cyclic group }1,0{ . The construction of Proposition 1 

with 1  then gives rise to the smallest non-commutative non-

associative left alternative loop of order 8. 

012345677

103254766

230167455

321076544

546710233

457601322

674523011

765432100

76543210

We verified the above example with the help of GAP (Group Algorithm 
Program) package [12] 
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