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Left alternative loops are loops satisfying x(xy)=(x)y. We construct an infinite family of non-associative non-

commutative left alternative loops whose smallest member is of order 8 .

1. INTRODUCTION

A groupoid (Q,-) is a quasigroup if, for each abeQ, the equations
ax=Db,ya=b have unique solutions where X,Y€Q [1]. A loop is a
quasigroup with an identity element € such that X*€ = X =€ * X .The
left nucleus of a loop Q is N, ={leQ : I(xy)=(X)y¥x,yeQ}. The right
nucleus of a loop Q is the set N, ={reQ :(xy)r=x(yr)vx,y €Q}, and
middle nucleus of Q is N, ={meQ :(ym)x=y(mx)¥x,y € Q}. The nucleus
of Q istheset N=N, AN, NN, [2,3].

Aloop (L,*) istermed as left alternative loop if the following identity is
satisfied forall X,Yy,Z € L:

Xox (Xxy) = (X*X) *y.

Every C-loop and Moufang loop is left alternative loop [4]. In this paper,
we construct left alternative loops of order 8 belongs to an infinite family
of non-associative non-commutative left alternative loops constructed
here for the first time.

2. CONSTRUCTION OF LEFT ALTERNATIVE LOOP

Let G be a multiplicative group with neutral element 1, and A an
abelian group written additively with neutral element 0 [5-7]. Any map

1 GxG oA
satisfyin,
fying u(1,9)=u(g,1)=0forevery g € G,

is called a factor set. When u : GxG — A is a factor set, we can

define multiplication on Gx by

(g,a)(h,b) = (gh,a+b+ (g, h)).

The resulting groupoid is clearly a loop with neutral element (1,0). It
will be denoted by (G, A 1) . Additional properties of (G,A ) can be
enforced by additional requirements on /.

We construct left alternative loop with the help of two groups such that
one is multiplicative group and other is additive abelian group [8-11].
Lemma 1. Let u : GxG—A be a factor set. Then (G, A u) is a left
alternative loop if and only if

#(g,9)+ #(g*,h)=p(g.h)+ (g, 9h) v g, heG. 1

Proof. By definition the loop (G, A u) is left alternative loop if and only if

[(9.a)(g.a)i(h.,b)=(g.a)(g.a)(h,b]]
= (g%, 2a+u(9.9))(h.b)=(g,a)x
(gh,a+b+u(g,h))
= (gzh,2a+b+y(g, g)uz(gz, h) =
(g(gh),2a+b+ x(g,h)+ u(g, gh))

comparing both sides we get
w9, 9)+ ul9?,h)= ulg.h)+ (g, gh)

Hence the result follows.
We call a factor set satisfying (1) a left alternative factor set.

Proposition 1 Let N > 2 be an integer. Let A be an abelian group of
order N,and c € A an element of order bigger than 1. Let G ={Lu,v,w}

be the Klein group with neutral element 1. Define

u: GxG—A
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by
it (a,b)=(u,u),(u,w)
if otherwise.

@by = {‘;

Then L=(G,A x) is a non-flexible (hence non-associative) and non-

commutative left alternative loop with N(L)={(La) : ac A}.

Proof. The map £ is clearly a factor set. It can be depicted as follows

To show that L=(G, A x) is a left alternative loop, we verify Equation (1)

as follows.

case 1 There is nothing to prove when g,h=1.

case 2 when g =u, Equation (1) becomes

#(u,u) = pulu,h)+ v, uh)-

If h=u, then 4{u,u)=4{u,u)+4ul)=a=a.
If h=V, then #(u,u)=u(u,v)+u(u,w)=a=a.
If h=w, then #(u,u)=pu(u,w)+uu,v)=a=a.

case 3 when g -y, Equation (1) becomes
21(v,v) = 2(v,h)+ zilv,vh)-

If h=u,then ,(v,v)= u(v,u)+ ulv,w)=0=0.
If h=v,then y(v,v)= u(v,v)+ u(v,1)=0=0.
If h=w,then ,(v,v)= u(v,w)+ u(v,u)=0=0.

case 4 when g =w, Equation (1) becomes

(W, w) = pa(w,h)+ po(w, wh)

If h=u,then u(w,w)= g(w,u)+ z(w,v)=0=0.
If h=v, then g(w,w)= z(w,v)+ p(w,u)=0=0.
If h=w, then /J(W

W)= (W, w)+ (1) = 0 =0.
Associativity:
(U, a)((v,2)(u,2)) = (u, ) (W, 0) = (v, 0)
And
(U, )V, ), @) = (W,0)(u, @) = (u, @)

This implies

(U 2)((v, @)(u, @) = (U, x)(v, 2))(u, @) -

It implies that L =(G, A x) is non-flexible and hence non-associative.

Commutativity:
U, 2)(w, @) # (w, a)(u, ).

It implies that L=(G, A ) is non-commutative.

Now it remains to show that N(L)={(L,a): a< A} . For this consider

((g.b).2))(h.c)=(g.b)(La)(h.c)
~(gbra+u(gD)(nc)
=(g,b)(h,a+c+uLh))
=(g,b+a+0)(hc)
=(g,b)(h,a+c+0)
=( (g.h))
=( (g.h)).

gh,b+a+c+ ul
gh,b+a+c+ ul

Which is true, so @a)eN,(L).

Similarly, we can show that

(La)eN,(L) and (L a)e N (L),
Hence (La)e N(L). This implies N(L)={(L.a) : ac A}.
Which is the required result.

Example 1. The smallest group A satisfying the assumptions of Proposition
1 is the 2-element cyclic group {0,1}. The construction of Proposition 1

with @ =1 then gives rise to the smallest non-commutative non-
associative left alternative loop of order 8.

~N|o|lo|a|lw|nv|F|o|o
o|~(s|a|v|w|o|r|-
gls(~|o|olF|lw|n|n
slo|o|v|Flo|v|w|w
wlin(F|lo|Nlo|o|s|s
vlwlo|rk|lo|~w|a|a|la
Flo|lw|v|s|lo|~|o|o
olF(viw|la|ls|o|~|~

~Nlolo|a|w|nv|E|o]

We verified the above example with the help of GAP (Group Algorithm
Program) package [12]
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