

Contents List available at RAZI Publishing Matriks Sains Matematik (MSMK)

Journal Homepage: http://www.razipublishing.com/journals/matriks-sains-matematik https://doi.org/10.26480/msmk.02.2017.04.05

ON LEFT ALTERNATIVE LOOPS

Amir Khan^{1*}, Mehtab Khan², Hidayat Ullah Khan³, Gul Zaman³

¹Department of Mathematics and Statistics, University of Swat, Khyber Pakhtunkhwa, Pakistan. ²School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan. ³Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan. *Corresponding Author email: <u>amir.maths@gmail.com</u>

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

ARTICLE DETAILS

ABSTRACT

Article History:

Left alternative loops are loops satisfying x(xy) = (xx)y. We construct an infinite family of non-associative non-commutative left alternative loops whose smallest member is of order 8.

Received 3 July 2017 Accepted 6 October 2017 Available online 2 November 2017

Keywords:

Left alternative loops, Alternative loops, Construction of loops, C-loops, Moufang loops.

1. INTRODUCTION

A groupoid (Q, \cdot) is a quasigroup if, for each $a, b \in Q$, the equations ax = b, ya = b have unique solutions where $x, y \in Q$ [1]. A loop is a quasigroup with an identity element e such that x * e = x = e * x. The left nucleus of a loop Q is $N_{\lambda} = \{l \in Q : l(xy) = (lx)y \forall x, y \in Q\}$. The right nucleus of a loop Q is the set $N_{\rho} = \{r \in Q : (xy)r = x(yr) \forall x, y \in Q\}$, and middle nucleus of Q is $N_{\mu} = \{m \in Q : (ym)x = y(mx) \forall x, y \in Q\}$. The nucleus of Q is the set $N = \{m \in Q : (ym)x = y(mx) \forall x, y \in Q\}$. The nucleus of Q is the set $N = N_{\rho} \cap N_{\lambda} \cap N_{\mu}$ [2, 3].

of Q is the set $N = N_{\rho} \cap N_{\lambda} \cap N_{\mu}$ [2, 3].

A loop (L,*) is termed as left alternative loop if the following identity is satisfied for all $x, y, z \in L$:

$$x \ast (x \ast y) = (x \ast x) \ast y.$$

Every C-loop and Moufang loop is left alternative loop [4]. In this paper, we construct left alternative loops of order 8 belongs to an infinite family of non-associative non-commutative left alternative loops constructed here for the first time.

2. CONSTRUCTION OF LEFT ALTERNATIVE LOOP

Let G be a multiplicative group with neutral element 1, and A an abelian group written additively with neutral element 0 [5-7]. Any map

$$\mu : G \times G \to A$$

 $\mu(1, g) = \mu(g, 1) = 0$ for every $g \in G$,

satisfying

is called a factor set. When μ : $G \times G \rightarrow A$ is a factor set, we can

define multiplication on $G \times$ by

 $(g,a)(h,b) = (gh, a+b+\mu(g,h)).$

The resulting groupoid is clearly a loop with neutral element (1,0). It will be denoted by (G, A, μ) . Additional properties of (G, A, μ) can be enforced by additional requirements on μ .

We construct left alternative loop with the help of two groups such that one is multiplicative group and other is additive abelian group [8-11].

Lemma 1. Let $\mu : G \times G \rightarrow A$ be a factor set. Then (G, A, μ) is a left alternative loop if and only if

$$\mu(g,g) + \mu(g^{2},h) = \mu(g,h) + \mu(g,gh) \,\forall \, g, \, h \in G.$$
(1)

Proof. By definition the loop (G, A, μ) is left alternative loop if and only if

$$\begin{split} [(g,a)(g,a)](h,b) &= (g,a)(g,a)(h,b)] \\ \Rightarrow (g^2, 2a + \mu(g,g))(h,b) &= (g,a) \times \\ (gh,a+b+\mu(g,h)) \\ \Rightarrow (g^2h, 2a+b+\mu(g,g)+\mu(g^2,h)) &= \\ (g(gh), 2a+b+\mu(g,h)+\mu(g,gh)), \end{split}$$

comparing both sides we get

 $\mu(g,g) + \mu(g^2,h) = \mu(g,h) + \mu(g,gh).$

Hence the result follows.

We call a factor set satisfying (1) a left alternative factor set. **Proposition 1** Let $n \ge 2$ be an integer. Let A be an abelian group of order n, and $\alpha \in A$ an element of order bigger than 1. Let $G = \{1, u, v, w\}$ be the Klein group with neutral element 1. Define

 $\mu \, : \, G \times G \to A,$

ISSN:2521-0831 (Print)

by

$$\mu(a,b) = \begin{cases} \alpha, & \text{if } (a,b) = (u,u), (u,w) \\ 0, & \text{if } \text{otherwise.} \end{cases}$$

Then $L = (G, A, \mu)$ is a non-flexible (hence non-associative) and noncommutative left alternative loop with $N(L) = \{(1, a) : a \in A\}$.

Proof. The map $\,\mu\,$ is clearly a factor set. It can be depicted as follows

To show that $L = (G, A, \mu)$ is a left alternative loop, we verify Equation (1) as follows.

case 1 There is nothing to prove when g, h=1.

case 2 when g = u, Equation (1) becomes

$$\mu(u,u) = \mu(u,h) + \mu(u,uh).$$

If $_{h=u}$, then $\mu(u,u) = \mu(u,u) + \mu(u,1) \Rightarrow \alpha = \alpha$. If h = v, then $\mu(u,u) = \mu(u,v) + \mu(u,w) \Rightarrow \alpha = \alpha$. If h = w, then $\mu(u,u) = \mu(u,w) + \mu(u,v) \Rightarrow \alpha = \alpha$.

case 3 when g = v, Equation (1) becomes

 $\mu(v,v) = \mu(v,h) + \mu(v,vh) \cdot$

If h = u, then $\mu(v, v) = \mu(v, u) + \mu(v, w) \Longrightarrow 0 = 0$. If h = v, then $\mu(v, v) = \mu(v, v) + \mu(v, 1) \Longrightarrow 0 = 0$. If h = w, then $\mu(v, v) = \mu(v, w) + \mu(v, u) \Longrightarrow 0 = 0$.

case 4 when g = W, Equation (1) becomes

 $\mu(w,w) = \mu(w,h) + \mu(w,wh)$

If h = u, then $\mu(w, w) = \mu(w, u) + \mu(w, v) \Longrightarrow 0 = 0$. If h = v, then $\mu(w, w) = \mu(w, v) + \mu(w, u) \Longrightarrow 0 = 0$. If h = w, then $\mu(w, w) = \mu(w, w) + \mu(w, 1) \Longrightarrow 0 = 0$.

Associativity:

 $(u,\alpha)((v,\alpha)(u,\alpha)) = (u,\alpha)(w,0) = (v,0)$

And

 $((u,\alpha)(v,\alpha))(u,\alpha) = (w,0)(u,\alpha) = (u,\alpha)$

This implies

 $(u,\alpha)((v,\alpha)(u,\alpha)) \neq ((u,\alpha)(v,\alpha))(u,\alpha) \cdot$

It implies that $L = (G, A, \mu)$ is non-flexible and hence non-associative. Commutativity:

 $(u,\alpha)(w,\alpha) \neq (w,\alpha)(u,\alpha).$

It implies that $L = (G, A, \mu)$ is non-commutative. Now it remains to show that $N(L) = \{(1, a) : a \in A\}$. For this consider

$$\begin{split} ((g,b)(1,a))(h,c) &= (g,b)((1,a)(h,c)) \\ &= (g,b+a+\mu(g,1))(h,c) \\ &= (g,b)(h,a+c+\mu(1,h)) \\ &= (g,b)(h,a+c+\mu(1,h)) \\ &= (g,b+a+0)(h,c) \\ &= (g,b)(h,a+c+0) \\ &= (g,b)(h,a+c+\mu(g,h)) \\ &= (gh,b+a+c+\mu(g,h)). \end{split}$$

5

Which is true, so $(1, a) \in N_{\mu}(L)$.

Similarly, we can show that $(1,a)\in N_{\lambda}(L) \text{ and } (1,a)\in N_{\rho}(L) \ ,$

Hence $(1,a) \in N(L)$. This implies $N(L) = \{(1,a) : a \in A\}$. Which is the required result.

Example 1. The smallest group A satisfying the assumptions of Proposition 1 is the 2-element cyclic group $\{0,1\}$. The construction of Proposition 1

with $\alpha = 1$ then gives rise to the smallest non-commutative nonassociative left alternative loop of order 8.

	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	1	0	6	7	5	4
3	3	2	0	1	7	6	4	5
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

We verified the above example with the help of GAP (Group Algorithm Program) package [12]

REFERENCES

[1] Bruck, R. H. 1958. A Survey of Binary Systems. Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, 20, Springer.

[2] Kinyon, M. K., Pula, K., and Vojtechovsky, P. 2009. Admissible Orders of Jordan Loops. Journal of Combinatorial Designs, 17 (2), 103--118.

[3] McCrimmon, K. 2004. A Taste of Jordan Algebras, Universitext, Springer.

[4] Philips, J. D., and Vojtechovsky, P. 2006. C-loops: An Introduction. Publicationes Mathematicae Debrecen, 68 (1-2), 115-137.

[5] Khan, A., Shah, M., and Ali, A. 2013. Construction of Middle Nuclear Square Loops. The Journal of Prime Research in Mathematics, 9 (2013), 72-78.

[6] Khan, A., Shah, M., and Ali, A. 2013. A Construction of Right Alternative Loop. International Journal of Algebra and Statistics, 2 (2), 29-32.

[7] Khan, A., Shah, M., Ali, A., Muhammad, F. 2014. On Commutative Quasigroup. International Journal of Algebra and Statistics, 3, 42-45.

[8] Pula, K. 2008. Power of elements in Jordan loops, Commentationes Mathematicae Universitatis Carolinae.

[9] Slaney, J., and Ali, A. 2008. Generating loops with the inverse property, Sutcliffe G., Colton S., Schulz S. (eds.); Proceedings of ESARM, 55-66.

[10] Slaney, J., FINDER, finite domain enumerator: System description. In Proceedings of the twelfth Conference on Automated Deduction(CADE-12), pages 798-801,1994.

[11] Vasantha Kandasamy, W. B. 2002. Smarandache Loops, American Research Press, Rehoboth.

[12] Nagy, G. P., and Vojtechovsky, P. *LOOPS:* Computing with quasigroups and loops in *GAP*, version 1.0.0, computational package for GAP; http://www.math.du.edu/loops.

