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ABSTRACT

In this paper, an HOC scheme with multigrid algorithm is developed for solving the Cauchy problem associated 
with two dimensional Helmholtz type equations. The suggested scheme has up to fourth order accuracy. Lastly, 
some numerical experiments are given to show the accuracy and performance of the proposed scheme. 

1. INTRODUCTION 

Helmholtz equation has many real-world applications related to wave 
propagation and vibrating phenomena [1], the radiation and scattering of 
wave [2, 3]. We focus on the important application of Helmholtz equation 
that is the problem of heat conduction in fins [4-6]. The boundary 
conditions are often incomplete in many engineering problems and the 
solution is prescribed at some interior points in the domain. Generally, 
these are called ill-posed problems such that the stability and uniqueness 
of their solution are not guaranteed [7]. A classic example of an inverse 
problem for Helmholtz-type equation is the Cauchy problem. In this 
problem, the boundary conditions for both the solution and its normal 
derivative are prescribed only on a part of the boundary of the solution 
domain while having no information about the remaining part of the 
boundary. The uniqueness of the Cauchy problem is guaranteed unlike 
the direct problems without removing the eigenvalues for the Laplacian. 
Most models of real life problems are still very difficult to solve either 
theoretically or numerically. There has recently devoted to the search for 
better and more efficient methods for determining an approximate or 
numerical solution. 

The objective of this work is to establish an algorithm based on Multigrid 
method for Helmholtz equation. Higher order compact schemes (HOC) 
are used for the solution of Helmholtz equation and other elliptic PDEs [8, 
9]. Consider the three-dimensional (3D) Helmholtz equation 
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where   is a cubic domain and   is a wave number? The forcing 

function ),,( zyxf  and the solution ),,( zyxu  have the required 

continuous differentiability up to a specific order. Helmholtz equation has 
many real-world applications like elasticity, electromagnetic waves, 
acoustic wave scattering, weather and climate prediction, water wave 
propagation, noise reduction in silencers and radar scattering.  In this  
paper, we use a finite difference approximation on non-uniform grids in    
discrete domain to obtain a scheme up to fourth order accuracy. We also  

considered Helmholtz equation with constant value of k . The discretized 

form of Equation (1) is  
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Equation (1) has been solved by different techniques such as finite-
difference method (FDM) [10], fast Fourier transform- based (FFT) 
methods [11], finite element method (FEM) [12], the spectral-element 
method [13], compact finite-difference method [14] and multigrid 
methods [15]. Multigrid method based on HOC schemes is among the 
most efficient iterative technique for solving PDEs [16, 17]. 

In FDM the number of mesh points will be enlarged to increase the 
accuracy however, it will also increase the computational time. Helmholtz 
equation is solved by FEM and spectral-element method, but the 
limitations of these methods are of high computational cost [13]. Many 
iterative techniques for Helmholtz equation suffer due to their slow 
convergence. The investigation for fast iterative methods to achieve 
higher order accuracy for PDEs is more attractive a area of research. 

Multigrid method together with the HOC schemes on uniform grids are 
developed in [18-20, 17]. In most cases, when sudden changes occur in a 
flow, the step sizes have to be rectified over the entire domain. Under 
these situations, where points are concentrated in the regions of sharp 
variation local mesh refinement procedures [8, 15, 21-24] are necessary, 
thus dramatically reducing the computational time and computer 
storage. Cao and Ge developed a multigrid method with HOC scheme on 
non-uniform grids for solving 2D convection diffusion equation [21]. This 
paper is based on approach that an interpolation operator and a 
projection operator that are suited for HOC scheme using non-uniform 
mesh is represented by transformation-free HOC scheme on non-uniform 
grids. The main focus in this paper is to develop multigrid method based 
on HOC scheme on non-uniform grids for solving of 3D Helmholtz 
equation. To the best of our knowledge 3D Helmholtz equation is not 
solved by multigrid method based on HOC scheme on non-uniform grids. 
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2. MATHEMATICAL FORMULATION

For the sake of explanation physically referring to the heat transfer, it is 

assuming that the temperature field )(xT  satisfies the Helmholtz 

equation in an open bounded domain d , where d is the dimension 

of the space and }3,2,1{d . 
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where 1,  iCik   and 2k , when 0  and b , the 

partial differential Equation (3) models the heat conduction in a fin [4, 5, 

6]. Where T  is the local fin temperature, 
tk

h
~

2  , such that k
~

 is the 

thermal conductivity, h  is the coefficient of the heat transfer of the fin 

and t  is the half- fin thickness. The Cauchy problem under consideration 

requires solution of PDE (3). 

Consider a cubic domain ],[],[],[),,(
212121

ccbbaazyx  . Discretization is 

performed on a three-dimensional non-uniform girds points. The above 
intervals ],[],,[

2121
bbaa  and ],[

21
cc  are divide into subintervals  
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In x -direction, consider 
xN

aa

x
h 12 , the forward and backward step 

sizes are gives by  
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z
 can be find accordingly for y

and z directions. If ),,(1
bzfzbyfybxfxbxfx

hhhhhh  then the grids 

turn to be uniform. The approximate value of a  function ),,( zyxu  at the 

interior grids points ),,(
kji

zyx  is represented by 
0

u  and the approximate 

values of other twenty six (26) nearest grid points are determined by 
i

u

, 26,...,3,2,1i , as in Figure 1(b). 

Taylor series expansion is performed for appropriate description of 

sufficient smooth function ),,( zyxu  in the given domain at points 1 and 

3 are, 
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Multiplying equation (4) by 
bx

 and equation (5) by fx
 , then adding and 

solving for the second derivative which gives 
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in equation (6) )(5 24

xxxxx
  , hence the second order central 

difference operator along x direction is defined as 
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if 1
bxfx

 , equation (7) reduces to uniform grids of central difference

operator. Therefore, the second order derivative for x  direction is 
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the approximation of the second order derivative for the variables y  and 

z can be find accordingly. Therefore, the central difference scheme for 
Helmholtz equation can be discretized as
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Where 
0
  is the truncation error and is defined as? 
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1
H , 

2
H , 

3
H , 
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L , 

2
L , 

3
L and 

1
K , 
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K are defined as
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If 
0
  is dropped off from Equation (9), the central difference scheme 

(CDS) for non-uniform grids will be
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According to the definition of 
22 ,
yx

 and 
2

z
 the central difference 

scheme can be written as  
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In above Equation (12) only seven grids points are involved. From the 



Matrix Science Mathematic(MSMK) 1(2) (2017) 06-10 

Cite the article: Fazal Ghaffar, Noor Badshah, S. Islam (2017). Multigrid Solution For The Cauchy Problem Associated With Hel mholtz Type Equation On Non-Uniform Grids. 
Matrix Science Mathematic, 1(2) : 06-10. 

8 

definition of 
0
 , it is observed that when bxfx

hh  , byfy
hh  and

bzfz
hh  , then Equation (12) is of third order accuracy. In order to 

improve the order of accuracy we consider  

 (13) 
and 
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Through central difference schemes the first order and second order 
derivative in Equations (13) and (l4) can be approximated. Now 
combining equations (9) and (10) with equations (13) and (14), the 
nineteen point HOC scheme on non-uniform mesh points for the three-
dimensional Helmholtz Equation (1) can be written as  
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The coefficients on the LHS in Equation (15) are given as 

It is easier to know that this scheme has fourth order of accuracy from 

expansion of 
0
 . Under uniform grids distribution the scheme has four 

to fifth order accuracy as proposed by [25, 26, 18]. 

3. MULTIGRID METHOD 

Multigrid method is one of the most efficient and fastest method for 
solving PDEs. In multigrid method, the rate of convergence is 
independent of the mesh size. This method is more effective for solving 
large scale of sparse linear systems obtained from the discretization of 
elliptic PDEs [15, 27, 16, 28, 29]. The main principle of multigrid method 
is to smooth the error on coarse grid level using basic iterative methods 
such as Jacobi or Gauss-Seidel method, etc. Multigrid method consists of 
three important components that are relaxation, restriction and 
interpolation operators. These are applied as “a single iteration of 
multigrid cycle comprised of manipulating the error by the application of 
relaxation method, fixing the residuals on the coarse grid level, solving 
the error equation on the coarse grid and adjusting the correction of 
coarse grid up to the fine grid level”. 

Some specific methods have been applied for the solution of 2D and 3D 
Helmholtz equation with HOC schemes on uniform grids [8, 18, 19, 12, 14, 
10, 17, 29]. A full weighting restriction operator and the standard bilinear 
interpolation operator are used as the inter grid transfer operators. But 
in case of non-uniform grids these restriction and interpolation operators 
are quite different 

4. NUMERICAL EXPERIMENTS 

In order to check the effectiveness of the present method, some problems 
are chosen. V-cycle multigrid method is used with zero initial guess and 
the process is stopped when the Euclidean norm of the residual vector is 

reduced by 
1010

 on the finest grid level. The effectiveness of multigrid 

method with HOC scheme and CD scheme (12) is presented. The reported 
errors are the maximum absolute errors between the computed solution 
and the exact solution on finest grid. The order of accuracy for a 
difference scheme is defined as, 
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N are maximum absolute errors 

approximated for two different grids with 1
1
N and 1

2
N points in 

both directions while 
1

N is half of 
2

N . 

Example 1. Consider the following elliptic PDE with the source term 
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the boundary conditions and the source function are given by the analytic 
solution, that is  
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The above problem has a steep boundary layer along 0x ; therefore, 

we are using non-uniform grids along x - axis which are accumulating 

near 0x  and uniform grids along zy, -axis with the following 

stretching function [29], 
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where   is a stretching parameter, and controlling the tightness of the 

grid points in x - direction? When 0 , then more grid points are 

accumulated to the boundary  0x  and the boundary 1x  for 0

. If 0 , then the grids reduce to be uniform. Also, when the grid points 

are 
232 and 8.0 , then the distribution of grids in xy -plane is

shown as in Figure 1(a). The estimated accuracy and maximum absolute 

error with different stretching parameter   is presented in Table 1. 

When 0 , then the results are very poor. More accurate solution and 

order of convergence is obtained from HOC schemes with decreasing 

stretching parameter   in non-uniform grids. We observed that when 

8.0 , the solution obtained with HOC schemes is more accurate, 

but when   is decreases continuously to 9.0 , then the accuracy does 

not further increase. This situation is not wondering because putting 
more grids in the boundary layer area that will necessarily cause lack of 
mesh points in the other regions in domain. Figure 2, indicates the 

configuration of solution in xy -plane with 5.0y , (a) shows the exact 

solution, (b) solution obtained from HOC scheme on uniform grids, (c) 
HOC scheme non-uniform grids, (d) computed solution with CDS scheme 
non-uniform grids. 

Table 1: Comparison of maximum absolute errors, CPU timing and order 
of accuracy of the two schemes for Example 1, 

128,64,32,16,10,
2

 Ne 

Example 2. Consider the PDE with a source term ),,( zyxf , 
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with the analytic solution is  
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The source function is given by the analytic solution with the boundary 

layers along 1x , 1y  and 1z . Hence a non-uniform grid along 

both directions with accumulation near 1x , 1y  and 1z  is used 

by the following stretching formula 
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When   is going closer to 1, more grids are accumulated near 1,1  yx

. When the grids size is 
232  and 8.0 , the distribution of grids is given 

as Figure 3. Table 2 indicates the maximum absolute errors CPU timing and 

order of accuracy for different stretching parameter  , for Example 2. The 

value of   changes from 0.0 to 0.9. We observed that in non-uniform grids 

with increasing the stretching parameter   , more and more grids are 

accumulating into the boundary layers, consequently more accurate results 
are obtained from two different methods. Also, the rate of convergence is 

continuously increases with the increase of  . We observed that when 

8.0 , then considerably most accurate solution is obtained with the 

HOC scheme, but when   is increased to 0.9, it leads to decrease in 

accuracy. Fig. 4, shows the depicts the contours of the exact solution in the

plane for 688.0y . (a) Exact solution (b) by HOC on uniform grids, (c)

computed solution by the CDS scheme on uniform grids, (d) solution by 

HOC on non-uniform grids with 8.0 . 

Figure 2: (a) Exact solution. (b) Computed solution from HOC scheme on 
uniform grids. (c) HOC scheme non-uniform grids. (d) CDS scheme with 

non-uniform grids. The error vector 
ijijij

vue  and 32N are the 

number of nodes and 10k  and 8.0 , for Example 1. 

Figure 3: Non-uniform grids distribution in xy -plane, 
323 , 8.0 . 

Table 2: Comparison of maximum absolute errors, CPU timing and order 
of accuracy of the two schemes for Example 2, 

128,64,32,16,10,
2

 Ne 
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Figure 4: (a) Exact solution. (b) Computed solution from HOC scheme on 
uniform grids. (c) CDS scheme uniform grids. (d) HOC scheme on non-

uniform grids, 
323 , 8.0 .

5. CONCLUSION 

We have studied the Cauchy problem for Helmholtz type equation in two 
and three-dimensional cases. To deal with the instabilities of the solution 
of concerned problem a multigrid method is applied. The main advantage 
of multigrid method is that it provides accurate, stable, convergent 
numerical solution to the Cauchy type problem associated with Helmholtz 

equation 2kl   for k  aid Ck . We have used special multigrid 

methods which solve the resulting system efficiently. It is observed that 
multigrid method with the Gauss-Seidel relaxation work very well in 
solving the high-order scheme discretized 3D Helmholtz equation. The HOC 
scheme has three to fourth order accuracy and is more efficient than CDS 
scheme. It is also observed that on uniform grids the HOC and CDS schemes 
can attain its maximum accuracy. But in case of boundary layer problems 
with suitable grid stretching ratios, the HOC scheme has the desired 
accuracy. Therefore, it is reveal that grid distributions have much more 
significant effect on calculated accuracy for boundary layers problems. 
Numerical results show that multigrid method with HOC has the required 
accuracy by the accumulating many more grid points into the boundary 
layer and faster than the CDS scheme. 

REFERENCES 

[1] Beskos, D. 1997. Boundary element method in dynamic analysis, Part II 
(1986–1996). Applied Mechanics Reviews ASME, 50, 149-197. 

[2] Harari, I., Barbone, P.E., Slavutin, M., Shalom, R. 1998. Boundary infinite 
elements for the Helmholtz equation in exterior domains. International 
Journal for Numerical Methods in Engineering, 41, 1105-1131. 

[3] Hall, W.S., Mao, X.Q. 1995. A boundary element investigation of irregular 
frequencies in electromagnetic scattering. Engineering Analysis with 
Boundary Elements, 16, 245-252. 

[4] Kern, D.Q., Kraus, A.D. 1972. Extended surface heat transfer. New York: 
McGraw-Hill. 

[5] Manzoor, M., Ingham, D.B., Heggs. P.J. 1983. The one-dimensional 
analysis of fin assembly heat transfer. Journal of Heat Transfer ASME DC, 
105, 646-451. 

[6] Wood, A., Tupholme, G.E., Bhatti, M.I.H., Heggs, P.J. 1995. Steady-state 
heat transfers through extended plane surfaces. International 
Communications in Heat and Mass Transfer, 22, 99-109. 

[7] Hadamard, J. 1923. Lectures on Cauchy problem in linear partial 
differential equations. London: University Press. 

[8] Boisvert, R. F. 1987. A fourth-order accurate Fourier method for the 
Helmholtz equation in three dimensions. ACM Transactions on 
Mathematical Software, 13, 221-234. 

[9] Sutmann, G. 1987. Compact finite difference scheme of sixth order for 
the Helmholtz equation. Journal of Computational and Applied 
Mathematics, 293, 15-31. 

[10] Singer, I., Turkel, E. 1998. High-order _nite difference method for the 
Helmholtz equation. Computer Methods in Applied Mechanics and 
Engineering, 163, 343-358. 

[11] Harari, I., and Turkel, E. 1995. Accurate _nite difference methods for 
time-harmonic wave propagation. Journal of Computational Physics, 119, 
252-270. 

[12] Harari, I., and Hughes, T. J. R. 1991. Finite element methods for the 
Helmholtz equation in an exterior domain model problem. Computer 
Methods in Applied Mechanics and Engineering, 87, 59-96. 

[13] Mehdizadeh, O., Paraschiviou, M. 2003. Investigation of a two-
dimensional spectral method for Helmholtz equation. Journal of 
Computational Physics, 189, 111-129. 

[14] Nabavi, M., Siddique, M. K., Dargahi, J. 2007. Sixth-order accurate 
compact finite-difference method for the Helmholtz equation. Journal of 
Sound and Vibration, 307, 972-982. 

[15] Brandt, A. 1977. Multi-level adaptive solution to boundary value 
problems technique. Mathematics of Computation, 31, 333-390. 

[16] Gupta, M. M., Kouatchou, J., and Zhang, J. 1997. Comparision of second 
and fourth order discretizations for multigrid Poisson solver. Journal of 
Computational Physics, 132, 226-232. 

[17] Ghaffar, F., Islam, S., and Badshah, N. 2015. Multigrid method based on 
transformation free higher order scheme for solving 3D Helmholtz 
equation on nonuniform grids. Journal of Applied Environmental and 
Biological Sciences, 5, 85-97. 

[18] Ghaffar, F., Badshah, N., and Islam, S. 2014. Multigrid Method for 
Solution of 3D Helmholtz Equation Based on HOC Schemes. Abstract and 
Applied Analysis, 1-15. 

[19] Ghaffar, F., Badshah, N., Khan, M. A., and Islam, S. 2014. Multigrid 
method for 2D Helmholtz equation using higher order finite diffence 
scheme accelerated by Krylove subspace. Journal of Applied Environmental 
and Biological Sciences, 4, 169-179. 

[20] Gupta, M. M., Kouatchou, J., and Zhang, J. 1997. A compact multigrid 
solver for convection-diffusion equation. Journal of Computational Physics, 
132, 123-129. 

[21] Ge, Y. and Cao, F. 2011. Multigrid method based on the transformation-
free HOC scheme on non-uniform grids for 2D convection diffusion 
problems. Journal of Computational Physics, 230, 4051-4070. 
[22] Kalnay De Rivas, E. 1972. On the use of nonuniform grids in finite-
difference equations. Journal of Computational Physics, 10, 202-210. 
[23] Teilgland, R., Eliassen, J. K. 2001. A multilevel mesh refinement 
procedure for CFD computations. International Journal for Numerical 
Methods in Fluids, 36, 519--538. 

[24] Zhang, J., Sun, H., and Zhao, J. J. 2002. High order compact scheme with 
multigrid local mesh refinement procedure for convection-diffusion 
problems. Computer Methods in Applied Mechanics and Engineering, 191, 
4661-4674. 

[25] Ge, Y., and Cao, F. 2013. A transformation-free HOC scheme and 
multigrid method for solving the 3D Poisson equation on nonuniform grids. 
Journal of Computational Physics, 234, 199-216. 

[26] Gryazin, Y. 2014. Preconditioned Krylov subspace methods for sixth 
order compact approximations of the Helmholtz equation, ISRN.
Computers and Mathematics with Applications, 1, 1-15. 

[27] Ge, Y. 2010. Multigrid method and fourth-order compact difference 
discretization scheme with unequal meshsizes for 3D Poisson equation. 
Journal of Computational Physics, 229, 6381-6391. 

[28] Zhang, J. 1998. Fast and high accuracy multigrid solution for 3D 
Poisson equation. Journal of Computational Physics, 143, 449-461. 

[29] Ghaffar, F., Badshah, N., Islam, S.  and Khan, M. A. 2016. Multigrid 
method based on transformation-free high-order scheme for solving 2D 
Helmholtz equation on nonuniform grids. Advances in Difference 
Equations, (DOI 10.1186/s13662-016-0745-2), 1-16. 


