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ABSTRACT

The iota energy of an n-vertex digraph D is defined by Ec (𝐷) = ∑ |Im(𝑧 k)|𝑛
𝑘=1 , where z1, . . ., zn are eigenvalues of D and 

Im(zk) is the imaginary part of eigenvalue zk . The iota energy of an n-vertex sidigraph can be defined analogously. In 
this paper, we define a class Fn of n-vertex tricyclic digraphs containing five linear subdigraphs such that one of the 
directed cycles does not share any vertex with the other two directed cycles and the remaining two directed cycles are 
of same length sharing at least one vertex. We find the digraphs in Fn with minimal and maximal iota energy. We also 
consider a similar class of tricyclic sidigraphs and find extremal values of iota energy among the sidigraphs in this class. 

 KEYWORDS 

iota energy, digraphs, sidigraphs ,tricyclic, n-vertex. 

1. INTRODUCTION 

A directed graph (henceforth, digraph) D = (V, A) consists of disjoint finite 
sets V and A, where V is the set of vertices and A is the set of arcs. A signed 
digraph (henceforth, sidigraph) is an ordered pair S = (D, σ), where D = (V, 
A) is the underlying digraph of S and σ : A → {−1, 1} is called the signing 
function. The sets of positive and negative arcs of S are respectively 
denoted by A+ and A−. Thus, A = A+ ∪ A− is the set of signed arcs of S. A 
directed path Pn of length n − 1 (n ≥ 2) is a digraph whose set of vertices is 
{vk |k = 1, . . . , n} and set of arcs is {vkvk+1 | k = 1, . . . , n − 1}. A directed cycle 
Cn of length n (n ≥ 2) is a digraph with the vertex set {vk | k = 1, . . . , n} of n 
elements and arc set { vkvk+1| k = 1, . . . , n − 1} ∪ {vnv1} of n elements. The 
signed directed path and signed directed cycle are defined in an analogous 
way. The product of signs of the arcs of a sidigraph is called the sign of a 
sidigraph. A sidigraph is said to be positive (respectively, negative) if its 
sign is positive (respectively, negative). A sidigraph is all-positive 
(respectively, all-negative) if all its arcs are positive (respectively, 
negative). If each signed directed cycle of a sidigraph has positive sign, 
then S is said to be cycle-balanced; otherwise non cycle-balanced. A 
digraph D = (V, A) is unicyclic if |A| = |V| and there is a unique directed 
cycle. A digraph D = (V, A) is bicyclic if |A| = |V| + 1 and there are two 
directed cycles. A digraph D = (V, A) is tricyclic if |A| = |V| + 2 and there are 
three directed cycles. A sidigraph S = (D, σ) is unicyclic (respectively, 
bicyclic) if D is unicyclic (respectively, bicyclic). Similarly, a sidigraph S = 
(D, σ) is tricyclic if D is tricyclic. Two directed cycles that share at least one 
vertex are said to be joined directed cycles; otherwise disjoint directed 
cycles. Analogously, we can define joined (respectively, disjoint) signed 
directed cycles. 

The number of arcs entering in a vertex u of a digraph (respectively, 
sidigraph) is known as in-degree of u and the number of arcs leaving u is 
called out-degree of that vertex. The in-degree and out-degree of a vertex 
u in a digraph D (respectively, sidigraph S) are denoted by d−(u) and d+(u), 
respectively. A digraph (respectively, sidigraph) is said to be linear if each 
of its vertices has both in-degree and out-degree equal to one. 

The adjacency matrix of an n-vertex digraph D = (V, A) is an n × n matrix 

A(D) = [ajk] defined by: 

The adjacency matrix of a sidigraph S = (D, σ), where D = (V, A), is the n × 
n matrix A(S) = [sij], where 

The characteristic polynomial det (xI − A(D)) of the adjacency matrix A(D) 
of digraph D is called the characteristic polynomial of the digraph D and is 
denoted by ΦD(x). Analogously, we can define the characteristic 
polynomial of a sidigraph S which is denoted by φS(x). The eigenvalues of 
A(D) (respectively, A(S)) are called the eigenvalues of D (respectively, S). 
We observe that the adjacency matrices of both digraphs and sidigraphs 
are not necessarily symmetric matrices. Thus, the eigenvalues of both D 
and S may be complex numbers. 

The energy of an n-vertex simple graph G was introduced by Gutman [9] 
which is defined 

eigenvalues of G. This concept of graph energy was extended to digraphs 
by Peña and Rada [14]. The energy of an n-vertex digraph D is defined by: 

where z1, . . . , zn are the eigenvalues of D and Re(zk) is the real part of the 
eigenvalue zk [14]. 
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Finding smallest and largest energy over a set of digraphs with a fixed 
order is the fundamental problem in the theory of digraph energy. The 
extremal values of energy in the class of unicyclic digraphs of fixed order 
are founded by Peña and Rada [14]. Khan et al. [12] considered a class of 
those digraphs which contain two vertex-disjoint directed cycles and 
computed minimal and maximal energy in this class. The extremal energy 
in the class of digraphs with two linear subdigraphs of equal length is 
computed by Farooq et al. [7]. Monsalve and Rada [13] found the maximal 
energy in the general class of bicyclic digraphs. Germina et al. [8] defined 
energy of a sigraph as the sum of absolute values of its eigenvalues. A 
generalization of the digraph energy to sidigraphs was proposed by 
Pirzada and Bhat [15]. Let z1, . . . , zn be the eigenvalues of an n-vertex 
sidigraph S. Then, the energy of S is defined by: 

where Re(zk) is the real part of the eigenvalue zk [15]. Bhat and Pirzada [3] 
gave some interesting results regarding spectra and energy of bipartite 
sidigraphs. Khan and Farooq [10] found sidigraphs with minimal and 
maximal energy among all n-vertex sidigraphs which contain two vertex-
disjoint signed directed cycles, n ≥ 4. 

Khan et al. [11] introduced the notion of iota energy of digraphs. Let z1, . . . 
, zn be the eigenvalues of a digraph D of order n. Then, the iota energy of D 
is defined as follows: 

where Im(zk) is the imaginary part of the eigen-value zk [11]. Khan et al. 
[11] found the digraphs with extremal iota energy among the class of all 
unicyclic digraphs of fixed order, n ≥ 2. Farooq et al. [5] studied the 
problem of finding the minimal and maximal iota energy among all n-
vertex digraphs with two vertex-disjoint directed cycles. Very recently, the 
concept of iota energy of digraphs was extended to sidigraphs by Farooq 
et al. [6]. For a sidigraph S of order n, the iota energy of S is defined by:

where z1, . . . , zn are eigenvalues of S and Im(zk) is the imaginary part of the 
eigenvalue zk [6]. 

Motivated by Farooq et al. [7], we take the class of those tricyclic digraphs 
of fixed order which have five linear subdigraphs such that one of the 
directed cycles does not share any vertex with the other two directed 
cycles and the remaining two directed cycles are of same length sharing at 
least one vertex. We find the digraphs in this class with smallest and 
largest iota energy. Furthermore, we consider a similar class of n-vertex 
tricyclic sidigraphs and find sidigraphs in this class with extremal iota 
energy. 

2. KNOWN RESULTS 

The following theorem gives the coefficients of the characteristic 
polynomial of digraphs. 

Theorem 2.1 (Cvetkovi´c et al. [4]). Let D be a digraph with characteristic 
polynomial 

for every k = 1, . . . , n, where L k is the set of all linear subdigraphs L of D 
with exactly k vertices, comp(L) denotes the number of components of L. 

The following is the coefficient theorem for sidigraphs. 

Theorem 2.2 (Acharya et al. [2]). If S is a sidigraph with characteristic 
polynomial 

for all i = 1, . . . , n, where Li is the set of all linear subdigraphs L of S of order 
i, p(L) denotes the number of components of L, c(L) denotes the set of all 
cycles of L and s(Z) the sign of cycle Z. 

The spectral criterion for cycle-balanced sidigraphs is given by the 
following result. 

Theorem 2.3 (Acharya [1]). A sidigraph S = (D, σ) is cycle-balanced if and 
only if S and D are cospectral. 

The following lemmas will be useful in proving a few results. 

Lemma 2.4. The function f defined by f (x) = 

Lemma 2.5. Consider the sequences < an > and < bn >, where an and bn are 
given by: 

Then {an} is strictly increasing for n ≥ 4 and {bn} is strictly increasing for n 
≥ 3. 

Lemma 2.6 (Farooq et al. [5]). For 𝑥 ∈  (0,
𝜋

2
 ], the following inequality 

holds: 

Lemma 2.7 (Khan et al. [12]). Let x, a, b be real numbers such that x ≥ a > 
0 and b > 0. Then 

It is known that for any real number x with 0 ≤ x ≤ 
𝜋

2
, the sine function 

satisfies the following inequality: 

3. IOTA ENERGY OF DIGRAPHS

For n ≥ 4, we define a set Fn which consists of n-vertex tricyclic digraphs 
containing five linear subdigraphs such that one of the directed cycles does 
not share any vertex with the other two directed cycles and the remaining 
two directed cycles are of same length sharing at least one vertex. Let 𝐷𝑝

𝑚

∈ Fn, where superscript m denotes the length of each joined directed cycle 
and subscript p denotes the length of disjoint directed cycle such that 2 ≤ 
m ≤ n − 2 and 2 ≤ p ≤ n − 2. From Theorem 2.1, the characteristic polynomial 
of 𝐷𝑝

𝑚 is given by: 

The eigenvalues of 𝐷𝑝
𝑚 are 0, √2 

𝑚
 𝑒𝑥𝑝 (

2𝑘 𝜋𝑖

𝑚
) and exp (

2𝑗𝜋𝑖

𝑝
), where k =0,1,. 
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. . , m − 1 and j = 0, 1, . . . , p − 1 and the multiplicity of eigenvalue 0 is n − m 
− p. Thus, the iota energy of 𝐷𝑝

𝑚 is given by: 

Figure 1: 𝐷3
6 ∈ F16 

Example 3.1. Consider 𝐷3
6∈ F16 shown in Figure 1. By (3.2), the iota energy 

of 𝐷3
6 is given by: 

It is shown in Khan et al. [11] that 

(3.3) 

Using (3.2) and (3.3), we get the following iota energy formulas for a 
digraph 𝐷𝑝

𝑚 ∈ Fn : 

Next, we find the minimal and maximal iota energy among the digraphs in 
Fn. The following lemma shows that the iota energy of digraphs in Fn 
increases monotonically with the increase in length of their disjoint 
directed cycles. 

Lemma 3.2. Let n ≥ 7, m = 2 and 4 ≤ p < n − 2. Take 𝐷𝑝
2, 𝐷𝑝+1

2  ∈ Fn. Then 

Proof. Let p ≡ 0(mod2), that is, p + 1 ≡ 1(mod2). Then by formula (3.4) 
and Lemma 2.5, we find 

Next, let p ≡ 1(mod2). In this case, p ≥ 5 and p + 1 ≡ 0(mod2). Using 
formula (3.4) and Lemma 2.5, we obtain: 

From (3.5) and (3.6), we have 

This gives the required result. 

An easy consequence of Lemma 3.2 is given below: 

Corollary 3.3. Let n ≥ 7, m = 2 and 4 ≤ p2 ≤ p1 ≤ n − 2. Take  𝐷𝑝1

2 , 𝐷𝑝2

2  ∈ Fn. 

Then 

Next lemma illustrates that the iota energy of digraphs in Fn increases 
monotonically with the increase in length of their joined directed cycles 
when m ≡ 0(mod2). 

Lemma 3.4. Let n ≥ 7, p = 2, 4 ≤ m < n – 2 and m ≡ 0(mod2). Take 𝐷2
𝑚, 𝐷2

𝑚+1

∈ Fn. Then 

Proof. As m ≡ 0(mod2), we have m + 1 ≡ 1(mod2). Then by formula (3.4), 
we obtain: 

Using Lemma 2.4, we have: 

This proves the assertion. 

The iota energy of digraphs in Fn also increases monotonically with the 
increase in length of their joined directed cycles when m ≡ 1(mod2). 

Lemma 3.5. Let n ≥ 7, p = 2, 4 ≤ m ≤ n − 2 and m ≡ 1(mod2). Take 𝐷2
𝑚−1, 

𝐷2
𝑚 ∈ Fn, where m ≥ 5. Then: 

Proof. As m ≡ 1(mod2), it holds that m − 1 ≡ 0(mod2). Using formula (3.4), 
we obtain 

Rest of the proof follows from the proof of Lemma 3.4. 
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The following is a consequence of Lemmas 3.4 and 3.5. 

Corollary 3.6. Let n ≥ 7, p = 2 and 4 ≤ m2 ≤ m1 ≤ n − 2. Take 𝐷2
𝑚1, 𝐷2

𝑚2 𝜖 Fn. 
Then, 

The following lemma is useful in proving our main result. 

Lemma 3.7. Let n ≥ 7 and 𝐷2
𝑘 , 𝐷𝑘

2 ∈ Fn, where 4 ≤ k ≤ n − 2. Then we have 
the following: 

Proof. By formula (3.4), we obtain: 

Also, formula (3.4) gives: 

As √2
𝑘

 > 1, formulas (3.7) and (3.8) clearly show that the following 
inequality holds: 

This gives the required result. 

Using Corollary 3.3, one can easily see that the following inequality holds: 

where 4 ≤ p ≤ n − 2. From Corollary 3.6, the following inequality is easily 
seen: 

where 4 ≤ m ≤ n − 2. By (3.9), (3.10) and Lemma 3.7, we find 

The following theorem gives the digraphs in Fn with minimal and maximal 
iota energy. 

Theorem 3.8. Let n ≥ 4 and 𝐷𝑝
𝑚 ∈ Fn, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 2. 

Then 𝐷𝑝
𝑚 has minimal iota energy when m = p = 2 and maximal iota energy 

when m = n − 2 and p = 2 among all digraphs of Fn. 

Proof. It can easily be seen from formula (3.4) that: 

Let [m = 2 and p ≥ 5] or [p = 2 and m ≥ 4]. Then from formula (3.4) and 
inequalities (3.9) − (3.11), we obtain: 

It is clear from (3.12) and (3.13) that Ec  (𝐷𝑝
𝑚) is minimal when m = 2 and 

p = 2. Furthermore, from (3.13) it is evident that Ec (𝐷𝑝
𝑚)is maximal when 

m = n − 2 and p = 2. 

(a)   (b) 

Figure 2: (a) The digraph with minimal iota energy in F9, (b) The digraph 
with maximal iota energy in F9. 

Example 3.9. The digraphs with minimal and maximal iota energy in F9 
are shown in Figure 2. 

4. IOTA ENERGY OF SIDIGRAPHS 

For n ≥ 4, we define a set Jn which consists of n-vertex tricyclic sidigraphs 
containing five linear subdigraphs such that one of the signed directed 
cycles does not share any vertex with the other two signed directed cycles 
and the remaining two signed directed cycles are of same length sharing 
at least one vertex. We denote a sidigraph in Jn by 𝑆𝑝

𝑚, where m is the length 

of those signed directed cycles which share at least one vertex and p is the 
length of the signed directed cycle which does not share any vertex with 
the other two signed directed cycles such that 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 
2. 

Let Jn+++ ⊂ Jn be the subset of all those sidigraphs whose all three signed 
directed cycles are positive. Also, let Jn++− ⊂ Jn be the subset of all those 
sidigraphs whose joined signed directed cycles are positive and disjoint 
signed directed cycle is negative. Let Jn−−+ ⊂ Jn be the subset of all those 
sidigraphs whose joined signed directed cycles are negative and disjoint 
signed directed cycle is positive. Similarly, let Jn+−+ ⊂ Jn be the subset of all 
those sidigraphs whose one of the joined signed directed cycles is positive 
and the other is negative whereas the disjoint signed directed cycle is 
positive. Also, let Jn+−− ⊂ Jn be the subset of all those sidigraphs whose one 
of the joined signed directed cycles is positive and the other is negative 
whereas the disjoint signed directed cycle is negative. Lastly, let Jn

−−− ⊂ Jn 
be the subset of all those sidigraphs whose all three signed directed cycles 
are negative. There are following six possible cases: 

Case 1 

If 𝑆𝑝
𝑚 ∈ Jn+++ then by Theorem 2.3, we have the following result which is 

analogue of Theorem 3.8.  

Theorem 4.1. Let n ≥ 4 and 𝑆𝑝
𝑚 ∈ Jn

+++, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 

2. Then 𝑆𝑝
𝑚 has minimal iota energy when m = p = 2 and maximal iota 

energy when m = n − 2 and p = 2 among all sidigraphs of Jn+++. 

Case 2 

If 𝑆𝑝
𝑚 ∈ Jn++− then from Theorem 2.2, the characteristic polynomial of 𝑆𝑝

𝑚 is 

given by  

The eigenvalues of 𝑆𝑝
𝑚 are 0, √2 

𝑚
 𝑒𝑥𝑝 (

2𝑘 𝜋𝑖

𝑚
)  and exp (

(2𝑗+1) 𝜋𝑖

𝑝
) , where k = 

0, 1, . . . , m – 1 and j = 0, 1, . . . , p − 1 and the multiplicity of eigenvalue 0 is 
n − m − p. Thus, the iota energy of 𝑆𝑝

𝑚 is given by:

It is shown in Farooq et al. [6] that: 

43



Matriks Sains Matematik (MSMK) 2(2) (2018) 40-49 

Cite The Article: Fareeha Jamal, Mehtab Khan (2018). Extremal Iota Energy Of A Subclass Of Tricyclic Digraphs And Si digraphs. 
Matriks Sains Matematik, 2(2) : 40-49. 

Using (3.3), (4.14) and (4.15), the iota energy formulas for 𝑆𝑝
𝑚 ∈ Jn

++− are 

given by: 

We find the minimal and maximal iota energy among the sidigraphs in Jn++−. 
The following lemma shows that the iota energy of sidigraphs in Jn

++− 
increases monotonically with the increase in length of their disjoint signed 
directed cycles. 

Lemma 4.2. Let n ≥ 7, m = 2 and 4 ≤ p < n − 2. Take 𝑆𝑝
2, 𝑆𝑝+1

2  ∈ Jn
++−. Then: 

Proof. Let p ≡ 0(mod2), that is, p + 1 ≡ 1(mod2). Then by formula (4.16) 
and Lemma 2.5, we find 

Next, let p ≡ 1(mod2). In this case, p ≥ 5 and p + 1 ≡ 0(mod2). Using 
formula (4.16) and Lemma 2.5, we obtain: 

From (4.17) and (4.18), we have 

This gives the required result. 

An easy consequence of Lemma 4.2 is the following. 

Corollary 4.3. Let n ≥ 7, m = 2 and 4 ≤ p2 ≤ p1 ≤ n − 2. Take 𝑆𝑝1

2 ,𝑆𝑝2

2  ∈ Jn++−. 

Then 

Next lemma illustrates that the iota energy of sidigraphs in Jn++− increases 
monotonically with the increase in length of their joined signed directed 
cycles when m ≡ 0(mod2).  

Lemma 4.4. Let n ≥ 7, p = 2, 4 ≤ m < n – 2 and m ≡ 0(mod2). Take 𝑆2
𝑚, 𝑆2

𝑚+1

∈ Jn++−. Then: 

Proof. As m ≡ 0(mod2), we have m + 1 ≡ 1(mod2). Then by formula (4.16), 
we obtain: 

Rest of the proof follows from the proof of Lemma 3.4. 

The iota energy of sidigraphs in Jn++− also increases monotonically with the 
increase in length of their joined signed directed cycles when m ≡ 
1(mod2). 

Lemma 4.5. Let n ≥ 7, p = 2, 4 ≤ m ≤ n − 2 and m ≡ 1(mod2). Take 𝑆2
𝑚−1, 𝑆2

𝑚∈ 
Jn

++−, where m ≥ 5. Then: 

Proof. As m ≡ 1(mod2), it holds that m − 1 ≡ 0(mod2). Using formula 
(4.16), we obtain: 

The rest of the proof follows from the proof of Lemma 3.4.  

The following corollary is an easy consequence of Lemmas 4.4 and 4.5. 

Corollary 4.6. Let n ≥ 7, p = 2 and 4 ≤ m2 ≤ m1 ≤ n − 2. Take 𝑆2
𝑚1, 𝑆2

𝑚2 ∈ Jn++−.

Then: 

The following lemma is useful in proving our main result. 

Lemma 4.7. Let n ≥ 7 and 𝑆2
𝑘 , 𝑆𝑘

2∈ Jn
++−, where 4 ≤ k ≤ n − 2. Then we have 

the following: 

Proof. By formula (4.16), we obtain: 

Also, formula (4.16) gives: 

Let k ≡ 0(mod2). Note that √2
𝑘

> 1. This along with (4.19) and (4.20) 
imply: 

Let ak = cot 
𝜋

𝑘
+ 1 and bk = csc 

𝜋

𝑘
 . Then by Lemma 2.6, we find: 

As k ≥ 4, we have −0.429
𝜋

𝑘
≥ −0.429 

𝜋

4
. Thus, 

Also, using inequality (2.1) and Lemma 2.7, we obtain: 
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From (4.22) − (4.24), we obtain: 

Using (4.21) − (4.25), we obtain: 

Next, let k ≡ 1(mod2). From (4.19) and (4.20), one can easily see that the 
following inequality holds: 

From (4.26) and (4.27), we obtain the required result.  

Using Corollary 4.3, one can easily see that the following inequality holds: 

where 4 ≤ p ≤ n − 2. From Corollary 4.6, the following inequality is easily 
seen: 

where 4 ≤ m ≤ n − 2. By (4.28), (4.29) and Lemma 4.7, we find: 

The following theorem gives the sidigraphs in Jn++− with minimal and 
maximal iota energy. 

Theorem 4.8. Let n ≥ 4 and 𝑆𝑝
𝑚 ∈ Jn++−, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 2. 

Then 𝑆𝑝
𝑚 has minimal iota energy when m = 2 and p = 3 and maximal iota 

energy when m = n − 2 and p = 2 among all sidigraphs of Jn++−. 

Proof. Let 𝑆𝑝
𝑚 ∈ Jn++−, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 2. Then, it can 

easily be seen from formula (4.16) that: 

Let [m = 2 and p ≥ 7] or [p = 2 and m ≥ 4]. Also, let 𝑆2
𝑛−2 ∈ Jn++−. Then from 

formula (4.16) and inequalities (4.28) − (4.30), we obtain: 

It is clear from (4.31) and (4.32) that Ec (𝑆𝑝
𝑚) is minimal when m = 2 and p 

= 3. Furthermore, from (4.32) it is evident that Ec (𝑆𝑝
𝑚) is maximal when m 

= n − 2 and p = 2. 

Case 3 

If 𝑆𝑝
𝑚 ∈ Jn

−−+ then from Theorem 2.2, the characteristic polynomial of 𝑆𝑝
𝑚 is 

given by: 

The eigenvalues of 𝑆𝑝
𝑚are 0, √2

𝑚
 𝑒𝑥𝑝 (

(2𝑘+1)𝜋𝑖

𝑚
) and exp (

2𝑗𝜋𝑖

𝑝
), where 𝑘 = 

0,1 . . . , m – 1 and j = 0,1, . . . , p – 1 and the multiplicity of eigenvalue 0 is n 
– m – p. Thus, the iota energy of 𝑆𝑝

𝑚 is given by:

Using (3.3), (4.15) and (4.33), the iota energy formulas for 𝑆𝑝
𝑚 ∈ Jn

--+ are

given by: 

Next, we find the minimal and maximal iota energy among the sidigraphs 
in Jn−−+. The following lemma shows that the iota energy of sidigraphs in 
Jn−−+ increases monotonically with the increase in length of their disjoint 
signed directed cycles. 

Lemma 4.9. Let n ≥ 7, m = 2 and 4 ≤ p < n − 2. Take 𝑆𝑝
2, 𝑆𝑝+1

2  ∈ Jn
−−+. Then: 

Proof. Let p ≡ 0(mod2), that is, p + 1 ≡ 1(mod2). Then by formula (4.34) 
and Lemma 2.5, we find: 

Next, let p ≡ 1(mod2). In this case, p ≥ 5 and p + 1 ≡ 0(mod2). Using 
formula (4.34) and Lemma 2.5, we obtain: 

From (4.35) and (4.36), we have: 

This gives the required result. 

The following result is an easy consequence of Lemma 4.9. 

Corollary 4.10. Let n ≥ 7, m = 2 and 4 ≤ p2 ≤ p1 ≤ n − 2. Take 𝑆𝑝1

2 , 𝑆𝑝2

2  ∈ Jn−−+. 

Then 
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Next lemma illustrates that the iota energy of sidigraphs in Jn
−−+ increases 

monotonically with the increase in length of their joined signed directed 
cycles when m ≡ 0(mod2). 

Lemma 4.11. Let n ≥ 7, p = 2, 4 ≤ m ≤ n − 2 and m ≡ 0(mod2). Take 𝑆2
𝑚−1, 

𝑆2
𝑚∈ Jn

−−+, where m ≥ 5. Then: 

Proof. As m ≡ 0(mod2), we have m − 1 ≡ 1(mod2). Then by formula (4.34), 
we obtain: 

By Lemma 2.4, we have 

where 4 ≤ m ≤ n − 2. Also, we know that √2 
𝑚

 tan
𝜋

2𝑚
> 0 for 4 ≤ m ≤ n − 2. 

Thus: 

This proves the assertion. 

The iota energy of sidigraphs in Jn−−+ also increases monotonically with the 
increase in length of their joined signed directed cycles when m ≡ 
1(mod2). 

Lemma 4.12. Let n ≥ 7, p = 2, 4 ≤ m < n – 2 and m ≡ 1(mod2). Take 𝑆2
𝑚, 𝑆2

𝑚+1

∈ Jn
−−+. Then: 

Proof. As m ≡ 1(mod2), it holds that m + 1 ≡ 0(mod2). Using formula 
(4.34), we obtain: 

The rest of the proof follows from the proof of Lemma 4.11. 

The following corollary is an easy consequence of Lemmas 4.11 and 4.12. 

Corollary 4.13. Let n ≥ 7, p = 2 and 4 ≤ m2 ≤ m1 ≤ n − 2. Take 𝑆2
𝑚1, 𝑆2

𝑚2∈ Jn−−+. 
Then 

The following lemma is useful in proving our main result. 

Lemma 4.14. Let n ≥ 7 and 𝑆2
𝑘 , 𝑆𝑘

2 ∈ Jn−−+, where 4 ≤ k ≤ n − 2. Then we have 
the following: 

Proof. By formula (4.34), we obtain: 

Also, formula (4.34) gives 

One can easily see from formulas (4.37) and (4.38) that the following 
inequality holds: 

This gives the required result. 

Using Corollary 4.10, one can easily see that the following inequality holds: 

where 4 ≤ p ≤ n − 2. From Corollary 4.13, the following inequality is easily 
seen: 

where 4 ≤ m ≤ n − 2. By (4.39), (4.40) and Lemma 4.14, we find: 

The following theorem gives the sidigraphs in Jn
−−+ with minimal and 

maximal iota energy. 

Theorem 4.15. Let n ≥ 4 and 𝑆𝑝
𝑚 ∈ Jn−−+, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 

2. Then 𝑆𝑝
𝑚 has minimal iota energy when m = 3 and p = 2 and maximal iota 

energy when m = 2 and p = n − 2 among all sidigraphs of Jn
−−+ 

Proof. It can easily be seen from formula (4.34) that: 

Let [p = 2 and m ≥ 7] or [m = 2 and p ≥ 4]. Also, let 𝑆𝑛−2
2  ∈ Jn−−+. Then from 

formula (4.34) and inequalities (4.39) − (4.41), we obtain: 

It is clear from (4.42) and (4.43) that Ec (𝑆𝑝
𝑚) is minimal when m = 3 and p 

= 2. Furthermore, from (4.43) it is evident that Ec (𝑆𝑝
𝑚) is maximal when m

= 2 and p = n − 2. 

Case 4 

If 𝑆𝑝
𝑚 ∈ Jn+−+ then from Theorem 2.2, the characteristic polynomial of 𝑆𝑝

𝑚 is 

given by: 
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The eigenvalues of 𝑆𝑝
𝑚 are 0 and exp (

2𝑗𝜋𝔦

𝑝
), where 𝑗 = 0, 1, . . . , p − 1 and the

multiplicity of eigenvalue 0 is n − p. Thus, the iota energy of 𝑆𝑝
𝑚 is given by:

Using (3.3) and (4.44), the iota energy formulas for 𝑆𝑝
𝑚 ∈ Jn+−+ are given by: 

The following theorem gives the sidigraphs in Jn+−+ with minimal and 
maximal iota energy.  

Theorem 4.16. Let n ≥ 4 and 𝑆𝑝
𝑚 ∈ Jn

+−+, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 

2. Then 𝑆𝑝
𝑚 has minimal iota energy when p = 2 and maximal iota energy 

when p = n − 2 among all sidigraphs of Jn+−+. 

Proof. It can easily be seen from formula (4.45) that: 

Let p ≥ 4 and 𝑆𝑟
𝑚 ∈ Jn+−+ is a sidigraph with length of the disjoint signed 

directed cycle r, where r ≥ p. Then from formula (4.45) and Lemma 2.5, we 
obtain: 

It is clear from (4.46) and (4.47) that Ec( 𝑆𝑝
𝑚) is minimal when p = 2. 

Furthermore, Jn
+−+ contains a sidigraph with disjoint signed directed cycle 

of maximum length n − 2. Therefore, from (4.47) it is evident that Ec (𝑆𝑝
𝑚)

is maximal when p = n − 2. 

Case 5 

If 𝑆𝑝
𝑚 ∈ Jn+−− then from Theorem 2.2, the characteristic polynomial of 𝑆𝑝

𝑚is 

given by: 

The eigenvalues of 𝑆𝑝
𝑚 are 0 and exp (

(2𝑗+1)𝜋𝜄

𝑝
) , where j = 0, 1, . . . , p − 1 and 

the multiplicity of eigenvalue 0 is n − p. Thus, the iota energy of 𝑆𝑝
𝑚 is given 

by:  

Using (4.15) and (4.48), the iota energy formulas for 𝑆𝑝
𝑚 ∈ Jn+−− are given 

by: 

Next theorem gives the sidigraphs in Jn+−− with minimal and maximal iota 
energy. 

Theorem 4.17. Let n ≥ 4 and 𝑆𝑝
𝑚 ∈ Jn+−−, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 

2. Then 𝑆𝑝
𝑚 has minimal iota energy when p = 3 and maximal iota energy 

when p = n − 2 among all sidigraphs of Jn+−− 

Proof. Let 𝑆𝑝
𝑚 ∈ Jn+−−, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 2. Then, it can 

easily be seen from formula (4.49) that: 

Let p ≥ 4 and 𝑆𝑟
𝑚∈ Jn

+−−, where r ≥ p. Then from formula (4.49) and Lemma 
2.5, we obtain: 

It is clear from (4.50) and (4.51) that Ec(𝑆𝑝
𝑚) is minimal when p = 3. 

Furthermore, Jn
+−− contains a sidigraph with disjoint signed directed cycle 

of maximum length n − 2. Therefore, from (4.51) it is evident that Ec(𝑆𝑝
𝑚) is 

maximal when p = n − 2. 

Case 6 

If 𝑆𝑝
𝑚 ∈ Jn−−− then from Theorem 2.2, the characteristic polynomial of 𝑆𝑝

𝑚 is 

given by: 

The eigenvalues of 𝑆𝑝
𝑚 are 0, √2

𝑚
 exp (

(2𝑘+1)𝜋𝜄

𝑚
) and exp (

(2𝑗+1)𝜋𝚤

𝑝
), where 𝑘 

= 0, 1, . . . , m – 1 and j = 0, 1, . . . , p − 1 and the multiplicity of eigenvalue 0 
is n − m − p. Thus, the iota energy of 𝑆𝑝

𝑚 is given by: 

Using (4.15) and (4.52), the iota energy formulas for 𝑆𝑝
𝑚 ∈ Jn−−− are given 

by: 

We find the minimal and maximal iota energy among the sidigraphs in Jn−−−. 
The following lemma shows that the iota energy of sidigraphs in Jn−−− 
increases monotonically with the increase in length of their disjoint signed 
directed cycles. 

Lemma 4.18. Let n ≥ 7, m = 2 and 4 ≤ p < n − 2. Take 𝑆𝑝
2, 𝑆𝑝+1

2  ∈ Jn−−−. Then: 

Proof. Let p ≡ 0(mod2), that is, p + 1 ≡ 1(mod2). Then by formula (4.53) 
and Lemma 2.5, we find: 

Next, let p ≡ 1(mod2). In this case, p ≥ 5 and p + 1 ≡ 0(mod2). Using 
formula (4.53) and Lemma 2.5, we obtain: 
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From (4.54) and (4.55), we have 

This gives the required result. 

The following result is an easy consequence of Lemma 4.18. 

Corollary 4.19. Let n ≥ 7, m = 2 and 4 ≤ p2 ≤ p1 ≤ n − 2. Take 𝑆𝑝1

2  , 𝑆𝑝 2

2  ∈ Jn
−−−. 

Then: 

Next lemma illustrates that the iota energy of sidigraphs in Jn−−− increases 
monotonically with the increase in length of their joined signed directed 
cycles when m ≡ 0(mod2).  

Lemma 4.20. Let n ≥ 7, p = 2, 4 ≤ m ≤ n − 2 and m ≡ 0(mod2). Take 𝑆2
𝑚−1, 

𝑆2
𝑚 ∈ Jn

−−−, where m ≥ 5. Then: 

Proof. As m ≡ 0(mod2), we have m − 1 ≡ 1(mod2). Then by formula (4.53), 
we obtain: 

The rest of the proof follows from the proof of Lemma 4.11. 

The iota energy of sidigraphs in Jn
−−− also increases monotonically with the 

increase in length of their joined signed directed cycles when m ≡ 
1(mod2). 

Lemma 4.21. Let n ≥ 7, p = 2, 4 ≤ m < n – 2 and m ≡ 1(mod2). Take 𝑆2
𝑚, 

𝑆2
𝑚+1∈ Jn

−−−. Then: 

Proof. As m ≡ 1(mod2), it holds that m + 1 ≡ 0(mod2). Using formula 
(4.53), we obtain: 

Rest of the proof follows from the proof of Lemma 4.11. 

The following corollary is an easy consequence of Lemmas 4.20 and 4.21. 

Corollary 4.22. Let n ≥ 7, p = 2 and 4 ≤ m2 ≤ m1 ≤ n − 2. Take 𝑆2
𝑚1, 𝑆2

𝑚2∈ Jn−−−. 
Then 

The following lemma is useful in proving our main result. 
Lemma 4.23. Let n ≥ 7 and 𝑆2

𝑘 , 𝑆𝑘
2 ∈ Jn−−−, where 4 ≤ k ≤ n − 2. Then we have 

the following: 

Proof. By formula (4.53), we obtain: 

Also, formula (4.53) gives 

One can easily see from formulas (4.56) and (4.57) that the following 
inequality holds: 

This gives the required result. 

Using Corollary 4.19, one can easily see that the following inequality holds: 

where 4 ≤ p ≤ n − 2. From Corollary 4.22, the following inequality is easily 
seen: 

where 4 ≤ m ≤ n − 2. By (4.58), (4.59) and Lemma 4.23, we find 

The following theorem gives the sidigraphs in Jn−−− with minimal and 
maximal iota energy. 

Theorem 4.24. Let n ≥ 4 and 𝑆𝑝
𝑚 ∈ Jn

−−−, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 

2. Then 𝑆𝑝
𝑚 has minimal iota energy when m = 3 and p = 2 and maximal iota 

energy when m = 2 and p = n − 2 among all sidigraphs of Jn−−−. 

Proof. It can easily be seen from formula (4.53) that: 

Let [m = 2 and p ≥ 4] or [p = 2 and m ≥ 4]. Also, let 𝑆𝑛−2
2  ∈ Jn−−−. Then from 

formula (4.53) and inequalities (4.58) − (4.60), we obtain: 

It is clear from (4.61) and (4.62) that Ec(𝑆𝑝
𝑚) is minimal when m = 3 and p 

= 2. Furthermore, from (4.62) it is evident that Ec(𝑆𝑝
𝑚) is maximal when m 

= 2 and p = n − 2. 

We know that sin x < x < tan x for each x ∈ (0,
𝜋

2
). This gives: 

for each x ∈ (0,
𝜋

2
). The next theorem follows from formulas (4.16), (4.34), 

(4.45), (4.49),(4.53), inequality (4.63), Theorems 4.1, 4.8, 4.15 − 4.17 and 
4.24. 

Theorem 4.25. Let n ≥ 4 and 𝑆𝑝
𝑚 ∈ Jn, where 2 ≤ m ≤ n − 2 and 2 ≤ p ≤ n − 2.

Then: 

(1) 𝑆𝑝
𝑚 has minimal iota energy when: 

(i) 𝑆𝑝
𝑚 ∈ Jn+++ and m = p = 2, or 

(ii) 𝑆𝑝
𝑚 ∈ Jn+−+ and p = 2. 

48



Matriks Sains Matematik (MSMK) 2(2) (2018) 40-49 

Cite The Article: Fareeha Jamal, Mehtab Khan (2018). Extremal Iota Energy Of A Subclass Of Tricyclic Digraphs And Si digraphs. 
Matriks Sains Matematik, 2(2) : 40-49. 

(2) 𝑆𝑝
𝑚 has maximal iota energy when m = 2 and p = n − 2 such that:

(i) 𝑆𝑝
𝑚 ∈ Jn−−− and p ≡ 0(mod2), or 

(ii) [𝑆𝑝
𝑚 ∈ Jn−−+ or 𝑆𝑝

𝑚 ∈ Jn−−−] and p ≡ 1(mod2).

Example 4.26. The sidigraphs with minimal and maximal iota energy in J9 
are shown in Figure 3. 

5. CONCLUSION 
In this paper, we introduced a new class Fn of n-vertex tricyclic digraphs

containing five linear subdigraphs such that one of the directed cycles does 
not share any vertex with the other two directed cycles and the remaining 
two directed cycles are of same length sharing at least one vertex. We 
found digraphs in Fn with smallest and largest iota energy. We have also 
introduced a similar class Jn of n-vertex tricyclic sidigraphs. We found 
sidigraphs in Jn with smallest and largest iota energy. It will be interesting 
to find digraphs (respectively, sidigraphs) with extremal iota energy 
among the general class of tricyclic digraphs (respectively, sidigraphs) of 
fixed order. 

Figure 3: (a) The sidigraphs with minimal iota energy in J9. (b) The sidigraphs with maximal iota energy in J9. 
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