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Abstract: In this paper, an insole plantar pressure device based on 3-D forces piezoelectric sensor, integrated into 
a shoe, was developed for monitoring plantar pressure under real-life conditions. The device consisted of an insole 
with eight measure points composed of piezoelectric sensor, a wireless data transmission and embedded computer. 
The piezoelectric sensor with ceramic was embedded into the insole assembled by three different directions (3D) 
of X, Y and Z. The piezoelectric sensors mathematical model was built, and the layout of these sensors in insole 
was investigated. Based on the FFT algorithm, the eight measurement points data were collected and analyzed 
taken by frequency. The plantar changes of the left and right foot in 3D direction were measured, respectively. The  
results were displayed on the software interface, it showed that the insole system can be used to monitor  
plantar pressure during daily living and is expected to be useful in various clinical applications.  
Copyright © 2012 IFSA. 
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1. Instruction 

 

Insole pressure measurement systems have been 
widely used in clinical and research environments. 
Many studies have focused on plantar pressure 
measurements in healthy and hemiparetic adults or in 
healthy children, which can provide data that will 
optimize patient assessments and evaluate the 
treatment outcomes [1, 2]. To date, a number of 
devices have been developed to measure plantar 
pressure. However, there are significant variations in 
the data acquisition systems, such as the type of 
pressure sensors and the number and arrangement of 
the sensors used in the pressure measurement systems. 
Pressure measurement systems are commonly found 
in two different formats: an insole based or a platform 

based assessment system. An insole based pressure 
measurement systems compared with a platform 
based assessment system have some advantages, such 
as simple, convenience, real-time and so on. 
Therefore, they become good way and alternatives to 
evaluate plantar pressure real-time.  

The F-Scan mobile system (Tekscan, Inc., Boston, 
USA) is one of the most commonly used in-sole 
pressure measurement system for gait analysis. 
Several studies have evaluated the accuracy and 
reliability of force and pressure measurements using 
the F-Scan®system and reached different conclusions. 
While the F-Scan system is less superior in 
comparison to another commercial product-the Pedar 
system, its accuracy and precision can be greatly 
improved by using appropriate pressure for 

Article number P_1576



Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 49-54 

 50 

calibration [12]. Pedar mobile system is a relatively 
new product among the insole pressure measuring 
devices. Although these devices have contributed to 
the basic analysis of human gait, some limitations 
have been noted from a therapeutic viewpiont. In 
particular, they are not designed for daily, real-time, 
and feedback use in therapy-directed research.  

For piezoelectric sensors ceramic materials are 
used. The piezoelectric effect is found in 
non-conducting materials (e.g. quartz, ceramics, lead 
zirconate titanate) and in thin flexible PVDF films 
(polyviny lidenefluoride). The electronic dipoles in 
the material react under the influence of an external 
load with a displacement of charges on a molecular 
level generating electrical charges at the sensor 
surface. Charge amplifiers can be used to convert 
these charges to voltages. Kärki et al., have developed 
a new piezoelectric sensor prototype for plantar 
pressure measurements during gait. The mechanical 
stress at the plantar surface has two components, 
pressure acting normal to the surface and shear stress 
acting tangential to the surface [26]. Gross et al., have 
designed a system suitable for non-invasive 
measurement of discrete in-shoe vertical plantar stress 
during dynamic activities. In the system, eight 
transducers were constructed, with small piezoelectric 
ceramic squares (4.83 × 4.83 × 1.3 mm) used to 
generate a charge output proportional to vertical 
plantar stress [27].  

Piezoelectric sensors (with the exception of PVDF) 
are highly elastic, show little material deformation 
and exhibit low hysteresis effects. Therefore, they are 
suitable for recording of high-frequency loading 
events. On the other hand PVDF and most 
piezoceramic materials are temperature sensitive so 
that the environmental conditions should be 
controlled and kept as constant as possible. 

In this study, we developed an insole plantar 
measurement system. The piezoelectric sensors were 
distributed according to human anatomy characteristic. 
There were 8 measurement points in the insole. Each 
measurement point had three sensors assembled in 3D 
directions. Compared with previously literature 
reported plantar pressure measurement device, this 
insole device is smaller and lighter (the measurement 
unit was 10 mm×20 mm×8 mm in size, with a mass of 
10 g, excluding the power source). Therefore, the 
pressure sensors can be fixed into the shoe insole, the 
device can be inserted into the subject’s own shoes. 
Thus, the user wears one’s own shoe, which is 
comfortable and does not interfere with the natural 
gait. The piezoelectric sensors mathematical model 
was built, and the layout of these sensors in insole was 
investigated. Based on the FFT algorithm, the eight 
measurement points data were collected and analyzed 
taken by frequency. The plantar changes of the left 
and right foot in 3D direction were measured, 
respectively. The results showed that this insole 
plantar pressure measurement system can be used to 
monitor plantar pressure during daily living.  

 

2. Device Design  
 

2.1. Piezoelectric Sensors Mathematical 
Model 

 

As shown in Fig. 1, pressure sensor can be viewed 
as a mechanical system, and it is a quality-spring- 
damper system, belonging to the second sensor. 

 
 

 
 

Fig. 1. Piezoelectric sensors mathematical model 
 
 
Its differential equation is: 
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It can be rewritten as： 
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where m is the portion of its mass during system 
movement, c is the damping coefficient of this system, 
k is the stiffness of the spring, ωn is the natural 
frequency of this system, and here, mkn / .  is 

the damping ratio of this system. 
Equation 1 can be expressed with the second of 

differential equation, which is following: 
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where k=b0/a0 is the static sensitivity; ωn 

20 aa is 

the undamped natural frequency: 
201 2 aaa  is the 

damping ratio, D is differential operator. a1, a2, a0, b0 
are the system constant, usually, we take a0＝b0＝1. 

Therefore, the transfer function of the second 
system is following: 
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Let a0/a2＝
2
n ,  a1/a0＝2ζ/ωn 

Therefore, the transfer function changed into:  
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where 
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n   and 
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2
  are viewed as two 

major parameters in the piezoelectric sensor.  
The frequency response function of frequency 

characteristics of the second order system is 
following:  
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Amplitude frequency characteristic is the following:  
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Phase frequency characteristic is the following: 
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As above mentioned, after the known transfer 

function, we can easily find out the characteristics of 
the system parameters ωn and ζ , the frequency 
response function, the amplitude frequency and phase 
frequency characteristics can be gained. Therefore, 
we can analyze the difference between output and 
input to reduce the dynamic error. Therefore, we can 
select the suitable vale of ζ and 

n




  to ascertain the 

scope of frequency.  
Usually, ζ ≤0.04, 

n
  is in the flat section of the 

amplitude frequency curve.  
 
 
2.2. Pressure Sensor’s Layout in an Insole 

 
Feet, as the body’s base of support, often endure 

ground reaction forces during daily activities. As 
shown in Fig. 2, anatomical structure of foot: HL, 
heel lateral (1,3); HM, heel medial (2); M5, 
metatarsal 5 (4); M4 metatarsal 4 (5); M3, metatarsal 
3 (6); M2, metatarsal 2 (7); M1, metatarsal 1 (8). The 
purpose of assessing peak plantar pressures during 
dynamic gait was to quantify the highest pressures 

applied to each region of the plantar surface of the 
subject’s feet as they occur at any point during foot 
contact in typical activities of daily living. The entire 
sensors are inserted into two insoles equally. Each 
insole has 8 measurement points, its distribution was 
shown in Fig. 2. 
 
 

 
 
Fig. 2. Measurement points distribution on foot according 
to anatomical structure of foot: HL, heel lateral (1,3); HM, 
heel medial (2); M5, metatarsal 5 (4); M4 metatarsal 4 (5); 

M3, metatarsal 3 (6); M2, metatarsal 2 (7); M1,  
metatarsal 1 (8). 

 
 
2.3. Eight Measurement Points Data 

Collection 
 

Based on the FFT algorithm, the eight 
measurement points data were collected and analyzed 
taken by frequency. The FFT algorithm was shown in 
Fig. 3.  

The 8 measurement points data were shown on 
the software interface (Fig. 4). The user can observe 
each measurement point onsite by the software 
interface.  
 
 

 
 

Fig. 3. Eight measurement points data collection  
based on the FFT algorithm. 

 
 
3. Materials and Methods  
 
3.1. Subjects 
 

Three healthy young subjects (male, 20 years old, 
body weight: 65 kg) participated in this experiment. 
All subjects participated in plantar measurement after 
providing informed consent for experimental 
procedures. 
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Fig. 4. The software interface of the plantar pressure 
measurement system. 

 
 

3.2. Experimental Protocol 
 

Each subject wore the device and performed 
stand and straight walking trial at a comfortable speed 
for 10 m. The plantar pressure during stand and 
straight walking were measured continuously. The 
pressure data during transitional gait (i.e., the first  

4 steps and the last 4 steps) were excluded from 
analysis, so only data obtained during steady gait were 
analyzed during straight walking.  

 
 

4. Results and Discussion  
 

Based on the FFT algorithm, the eight 
measurement points data were collected and analyzed 
taken by frequency. Table 1 and Table 2 were the 
plantar measurement data about right foot and left foot 
during the subjects were standing posture, the results 
showed that the pressure of Z direction were the 
maximum and the pressure of X direction were the 
minimum at left and right foot plantar pressure same 
measurement point, The forefoot fifth and third 
metatarsal head region of pressure were the maximum 
pressure. The measurement data were conducted in 
accordance with the previous literature reported 
conclusions [22-23]. The results also showed that the 
proposed plantar pressure measurement system based 
on the 3D piezoelectric sensor can satisfy the actual 
plantar pressure measurement during daily human 
activity.  

 
 

 
 
 

5. Conclusion  
 
In the present study, we developed an insole 

plantar pressure device based on 3-D forces 
piezoelectric sensor, integrated into a shoe for 
monitoring plantar pressure under real-life conditions. 
The device consisted of an insole with eight measure 
points composed of piezoelectric sensor, a wireless 
data transmission and embedded computer. The 
piezoelectric sensors were distributed according to 
human anatomy characteristic. There were 8 
measurement points in the insole. Each measurement 
point had three sensors assembled in 3D directions. 
Because pressure sensors are fixed into the shoe insole, 
the device can be inserted into the subject’s own shoes. 
Thus, the user wears one’s own shoe, which is 
comfortable and does not interfere with the natural 
gait. The insole device is small and light (the 

measurement unit was 10 mm×20 mm×8 mm in size, 
with a mass of 10 g, excluding the power source). The 
piezoelectric sensors mathematical model was built. 
Based on the FFT algorithm, the eight measurement 
points data were collected and analyzed taken by 
frequency. The plantar changes of the left and right 
foot in 3D direction were measured, respectively. The 
results showed that the insole system can be used to 
monitor plantar pressure during daily living and is 
expected to be useful in various clinical applications. 
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