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Abstract: Optical Fiber Vibration pre-Warning System (OFVWS) is widely applied to pipeline transportation, 
defense boundary and military base. One of its key technologies is signal feature extraction and vibration source 
identification. However, some harmless vibration signals often affect the reliability of this identification process 
due to the false alarms. Therefore, it is very important to identify various harmless vibration signals effectively. 
In this paper, we analyze the energy distribution feature of nature raindrop vibration signal detected by optical 
fiber. Based on this analysis, we develop an energy information entropy model and an approach to identify the 
harmless raindrop vibration signal. Study shows that the nature raindrop vibration signal can be detected and 
identified automatically by extracting the energy information entropy value and combining with the statistical 
detection method. The field tests result also showed that this approach based on energy information entropy 
model is able to effectively identify harmless raindrop vibration signal. Its identification probability is high and 
its false alarm and false recognition probability is low, hence the working performance of the OFVWS can be 
improved by using the presented approach. Copyright © 2013 IFSA. 
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1. Introduction 

 

With the rapid development of pipeline 
transportation, some constructions often happen 
along the pipeline and will threaten the security of 
pipeline seriously. It needs some active means of 
defense to ensure the safety of pipe. The OFVWS 
uses the optical fiber cable laid along the pipeline as 
distribution sensors to detecting various vibration 
signal [1-3]. Fig. 1 shows a schematic diagram of the 
OFVWS. The optical cable lain along the pipeline 
can obtain vibration signal by using distributed 
vibration signal sensor [4-7]. When a vibration 
source appears, it produces mechanical vibration 
signal, which is transmitted by the optical fiber to a 

photodetector sensor, and then to the computer after 
the photoelectric conversion and analog-to-digital 
conversion. The computer analyzes these vibration 
signals. In this way, the OFVWS can realize real-
time monitoring and alarming. Sampling frequency 
of photodetector is 25 kHz. A 800-order FIR band-
pass filter is often used to filter and process the 
sample data. It can overcome signal interference 
produced by other low-frequency and high-frequency 
signal during signal transmission process. Its 
passband range is 100 Hz to 3 kHz. 

In the pipeline running, there are various vibration 
signals. Some of these are harmful and they might be 
produced by electrical drills, broken road machines, 
human destroying optic fiber cable, large-scale 
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construction machines, and so on. Some are harmless 
and might be produced by human knocking the well 
covers, rain dropping into the well, train, car, and so 
on. These harmless vibration sources will not 
threaten the safety of the pipeline, but their vibration 
signals produced by these sources will interfere with 
the identification performance for the harmful source 
because they will cause badly false alarm. Therefore, 
it is very important to accurately identify these 
harmless vibration sources. It is one of the keys for 
the OFVWS [8].  

 
 

 
Fig. 1. Schematic diagram of OFVWS. 

 
 

The current methods to identifying the vibration 
signal of optical fiber include linear classifiers, neural 
network methods, analysis of variance, chaos 
analysis, SVM-based recognition method [9-15]. But 
these methods have in a common feature, that is, they 
need a large number of samples for learning and 
training, hence the computation load is heavy, and 
there is still convergence issue in its practical 
application. 

In this paper, we present an approach to identify 
raindrop vibration signal detected by optical fiber 
based on an energy information entropy model and a 
variation coefficient. This approach can extract the 
main signal features of raindrop (uniform signal 
energy and stable energy probability), hence it can 
identify a raindrop vibration signal effectively. In 
addition, it does not need a training process, hence its 
computation load is very small. 

 
 

2. Pre-analysis of Typical Vibration 
Signals 

 
2.1. Spectrum Analysis 

 
In an actual pipe running, vibration signal is often 

generated by some typical sources, such as raindrop, 
electrical drill, broken road machine, human 
knocking a well cover or optic fiber cable, large-scale 
construction machine, train and so on. The 
conventional method to processing the vibration 
signals is to use the spectrum analysis, which 
transfers complex vibration signals from the time 
domain into the spectrum domain, so as to extract 
some expectant features for source identification.   

In this section, we analyze some vibration signals 
monitored by the OFVWS from some oil pipelines of 

the China Petroleum Pipeline Corporation by using 
the spectrum analysis method. Fig. 2 shows the 
spectrum analysis results of vibration signals 
generated by raindrop, broken road machine, large-
scale construction machine, human knocking well 
cover or optical fiber cable. 
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Fig. 2. Spectrum analysis results of typical  
vibration signals. 
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From Fig. 2 we can observe that: their frequency 
band is similar in spectrum domain, hence it is 
difficult to distinguish between the harmless raindrop 
vibration signal and the other harm vibration signals. 
This will cause false alarm and reduce the working 
reliability of the OFVWS. Therefore, it is impossible 
to identify a raindrop signal by using the spectrum 
analysis. It needs to develop the other method to 
extract the features of raindrop signal.  
 
 
2.2. Signal Energy Analysis 
 

In this section, we analyze the features of the 
above vibration signals by using signal energy 
analysis method. Based on this, we will develop an 
approach to identify harmless raindrop vibration 
source.   

The signal energy per frame (1024 sampling data 
in 40 ms) can be calculated with Eq. (1): 

                      
 1024

2
10

1

10 logj i
i

w x


   
 
 , (1) 

 
where jw  is the signal energy in the jth frame, dB; ix  

is the amplitude of ith detected vibration signal.  
Fig. 3 shows signal energy scatter plots produced 

by a raindrop, a broken road machine, a large-scale 
construction machine, human knocking well cover 
and optical fiber cable, respectively. In this Fig., the 
abscissa is the number of time sequence frame, and 
the ordinate is the signal energy per frame, 

jw . 

The signal energy is divided into 10 intervals 
from -20 dB to 10 dB, and then the frequency of 
signal energy per frame can be statistically calculated 
in per interval. In this way, we can obtain the discrete 
probability density function of signal energy, as 
shown in Fig. 4. 

From Fig. 3~4, we can observe that:  
1) The vibration signal energy of nature raindrop 

has three typical features, that is, uniform signal 
energy, stable energy probability distribution, and 
vibration existing stable for a long time.  

2) The other signals did not have these three 
features in the same time. 

It is easy to extract the third feature (vibration 
existing stable for a long time), hence we just focus 
on developing a statistical model to extract the other 
two features of raindrop vibration signal. 
 
 

3. Energy Information Entropy Model 
 

In this section, in order to identify the harmless 
raindrop vibration source, we will develop an energy 
information entropy model and use this model to 
extract the two vibration signal features, uniform 
signal energy and stable energy probability 
distribution.  
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Fig. 3. Signal energy scatter plots. 
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Fig. 4. Discrete probability density function  
of signal energy. 

  
 

3.1. Information Entropy 
 

In information theory, entropy is used to measure 
an expectation of a random variable appearing. It 
represents the amount of loss information in the 
transmission process before it is received. It is also 
known as information entropy or Shannon entropy. 
The information entropy H of a random variable, 

 
max1, , ,m mx x x , can be defined in Eq. (2): 

 
 

     
max

2
1

log
m

m m
m

H X p x p x


   (2) 

 
where p  is the probability density function of 

 
max1, , ,m mx x x ; mmax is the number of the first 

dimension.  
For a two dimensional case ( m n ), the 

information entropy of   
max max1,1 , ,, , ,m n m nx x x  can be 

calculated with Eq. (3) [16]:  
                                                     

 max max

, 2 ,
1 1

( ) [ log ( )]
n m

m n m n
n m

H X p p
 

   (3) 

 
where nmax is the number of the second dimension. 

The magnitude of information entropy is closely 
related to its probability density function. If its 
probability density is uniform distribution, then its 
information entropy will reach the maximum value. 

 
 

3.2. Energy Information Entropy Model  
for Vibration Signal 

 
Base on the concept of information entropy, energy 

information entropy model for vibration signal 
detected by the OFVWS can be developed further, as 
shown in Eq. (4). 
 

 max max

, 2 ,
1 1

[ log ( )]
n m

k
W m n m n

n m

H p p
 

   (4) 

 

where k
WH  is the energy information entropy of 

vibration signal in the kth minute; ,m np  is the 

probability density function of 
jw . 

In order to obtain energy information entropy of 
vibration signal per minute, k

WH , we will calculate 

the probability density function of jw , ,m np : 

According to the distribution of the signal energy, 
we set intervals on the energy axis, which is divided 
into mmax intervals from -20 dB to 0 dB, here let  
mmax =10. On the frame axis, it is divided into nmax 
intervals with a fixed frame step, here let  
nmax =60 frame. In this way, a two-dimensional space, 
energy-frame, can be divided into max maxm n  grids, 

as shown in Fig. 5. We can account the number of 
energy data in every grid, and obtain the probability, 

,m np , in every grid. If there is no energy data in a 

grid, then it represents this grid interval has no 
contribution to the calculation of energy information 
entropy, hence , 2 ,log ( ) 0m n m np p   
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Fig. 5. Divided energy-frame space for one minute. 
 
 

After obtaining the probability distribution, the 
energy information entropy per minute, k

WH , can be 

calculated with Eq. (4). 
The maximum entropy value will appear when all 

probabilities in all grids are same:  
 

max max

,max , 2 , 2 max max
1 1

[ log ( )] log ( )
n m

W m n m n
n m

H p p m n
 

    (5) 

 

In order to compare the results, we will normalize 
the energy information entropy per minute by divided 
by 

max,WH : 

          

 

max,W

k
Wk

W H

H
H   

(6) 

 
 

3.3. Stability of Energy Information Entropy 
 

We can adopt two methods to assess the stability 
of energy information entropy. 
1) Average distance of k

WH  
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We can use a conception of average distance, D, 
to reflect the stability of energy information entropy. 
D is defined as follows: 

 
  






ll

lk

ref
W

k
W HHD

2  (7) 

 
where D is the average distance of 
{ ,.., ,.., }l k l l

W W WH H H   to a reference value, ref
WH  in 

time interval [ , ]l l l  ; ref
WH  is the reference value 

and is a statistical average value of a prior chosen 
segment of raindrop vibration signals.    

It is important to choose a reasonable value of 
ref

WH . By analyzing our prior known raindrop 

vibration signals, we let ref
WH =0.94. 

2) Variation coefficient of k
WH  

We can also adopt a variation coefficient to 
reflect the stability of energy information entropy. 
The variation coefficient (CV) is a normalized 
measure of dispersion of a probability distribution. 
The absolute value of CV is sometimes known as 
relative standard deviation, which is expressed as a 
percentage. CV is defined as the ratio of the standard 
deviation to the mean: 
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where l
VC  is the variation coefficient of 

{ ,.., ,.., }l k l l
W W WH H H   in time interval [l, l+Δl]; l

H  is 

the mean, 
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deviation,  
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The smaller l
VC  is, the smaller the variation 

degree of { ,.., ,.., }l k l l
W W WH H H   will be, and the more 

stable this variable will be.   
 
 

4. Approach to Identifying Raindrop 
Vibration Source 

 

4.1. Identification Process 
 

The normalized energy information entropy of 
vibration signal ( k

WH ) , the average distance (Dl) and 

the variation coefficient ( l
VC ) are able to reflect the 

two features, the uniform signal energy and the stable 
energy probability distribution. We can use Eq. (4), 
(7) and (8) to extract these two features of raindrop 
vibration signal detected by optical fiber. We will 

develop an identification approach to obtain these 
parameters.  This approach will be explained with an 
example, in which the identification time is  
16 minutes, as shown in Fig. 6. The approach is 
realized as following: 

1) Every 40 s, the OFVWS samples a vibration 
signal, ix . 

2) In one frame (40ms), there will be 1024 signal 
vibration data. A signal data set, },...,,...,{ 10241 xxx i , 

can be formed in every 40 ms. Correspondingly, we 
can calculate the signal energy, jw , in this frame 

with Eq. (1).  
3) In one minute, there will be 1500 frames, 

hence there will be 1500 signal data sets and their 
corresponding signal energy set, 

},...,,...,{ 15001 www j
.    

We divide the 2-dimentional space of energy-
frame by letting 2w  dB and 25frame frame. 
The energy-frame space is divided into 10×60 grids 
(mmax=10 and nmax=60), as shown in Fig. 5. The 
probability distribution of energy per minute, 

},...,,...,{ 60,10,1,1 ppp nm
, can be obtained. Hence we 

can calculate the energy information entropy of 

vibration signal per minute, 1
WH , with Eq. (4) and its 

normalized value, 1
WH . 

4) From 1 to 10 minutes (let Δl=10min), there 
will produce 10 energy information entropies of 
vibration signal, },...,,...,{ 101

W
k

WW HHH , then we 

calculate one average distance, D1, by using ref
WH . 

We can also calculate one variation coefficient, 1
VC . 

In this way, we obtain the other lD  and l
VC  in every 

10 minute interval.  
5) At last, a normalized energy information 

entropy set, },...,,...,{ 161
W

k
WW HHH , an average distance 

set, },...,,...,{ 71 DDD l
 and a variation coefficient set, 

},...,,...,{ 71
V

l
VV CCC , are formed. 

We set two thresholds, D0 and CV0, to judge if the 
vibration signal detected by the OFVWS is produced 
by a raindrop source or not. The criterion is as shown 
in Eq. (8):  

 
 

0

0

l
l
V V

D D

C C


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 (9) 

 
If the vibration signal satisfies Eq. (9), then it is 

produced by a harmless raindrop source and it does 
not need alarm; otherwise, it is produced by other 
vibration source. 
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Fig. 6. Process to extracting k
WH , lD  and l

VC . 

 
 
 

 
4.2. Vibration Source Identification Result 

 
We still use those vibration signals monitored by 

the OFVWS from some oil pipelines of the China 
Petroleum Pipeline Corporation for extracting their 

k
WH , lD  and l

VC . The results are as shown in  

Figs. 7-9. We use a logarithmic y-axis in Fig. 9 in 
order to show the difference clearly.  

 
 

 
 

Fig. 7. Extracting result of k
WH . 
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Fig. 8. Extracting result of lD . 

 
 

 
 

Fig. 9. Extracting result of l
VC . 

 
 

Let D0=0.1 and CV0=0.003. From Figs. 7-9, we 
can observe that: the priori known raindrop vibration 
signal satisfies criterion very well, hence the 
harmless raindrop vibration source can be identified 
and distinguished from other vibration sources 
evidently. In addition, Fig. 8 shows the feature of the 
stability of energy information entropy for raindrop 
vibration signals very well. Therefore, this 
identification approach based on the energy 
information entropy and its variation coefficient can 
help to improve the working reliability of the 
OFVMS by reducing the probability of false alarm.   

 
 

5. Conclusions 
 

In order to improve the working reliability of the 
OFVWS, the key way is to develop an effective 
approach to identifying harmless vibration signals 
and to reduce the probability of false alarm. In this 
paper, an approach based on energy information 
entropy was presented to identify raindrop vibration 
signal detected by the OFVWS. This approach is able 
to extract two obvious features of raindrop vibration 
signal, uniform signal energy and stable energy 
probability distribution, by using the normalized 
energy information entropy of vibration signal ( k

WH ), 

the average distance (
lD ) and the variation 

coefficient ( l
VC ). Combined with their thresholds, the 

harmless raindrop vibration signal can be identified 
from the other detected signals finally.  

In order to investigate the performance of the 
presented approach, field data were used. The 
analysis results show that: the obvious features of 
raindrop signal can be extracted very well by 
calculating k

WH , 
lD  and l

VC , hence the raindrop 

vibration source can be distinguished from the other 
vibration sources evidently. 

This presented approach based on energy 
information entropy can identify the harmless 
raindrop vibration source accurately and help to 
improve its working reliability by reducing this 
probability of false alarm. 
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