
Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 130-136

 130

SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss

© 2013 by IFSA
http://www.sensorsportal.com

Generating Combinatorial Test Suite with Solution Space
Tree for Configurations Testing of Sensors Networks

Ziyuan WANG, Qin YUAN

 School of computer, Nanjing University of Posts and Telecommunications,
Xinmofan Road 66, Gulou District, Nanjing, 210003, China

Tel.: +86-25-85866422, fax: +86-25-85866433
E-mail: wangziyuan@njupt.edu.cn

Received: 25 September 2013 /Accepted: 22 November 2013 /Published: 30 December 2013

Abstract: There are many results about generating pair-wise covering arrays with strength τ=2 have been
reported, but fewer results are published for high-strength covering arrays with a higher-strength τ>2. In
configuration testing of sensor networks, high-strength covering array is required to construct combinatorial test
cases. To generate combinatorial test suite with higher-strength, a backtracking algorithms, which is based on
solution space tree, is proposed in this paper by extending an existing pair-wise combinatorial test suite
generation algorithm. In solution space tree model, each test case is represented as a path from the root to a leaf
node in the tree. And proposed algorithm generates test cases one by one, by backtracking depth-first searching
in the solution space tree. Finally, to assess the efficiency of proposed algorithm, computational comparison
with other published methods is reported. Copyright © 2013 IFSA.

Keywords: Combinatorial testing, Test generation, Solution space tree, Configuration testing, Censor network.

1. Introduction

Sensor networks have been widely used in real
life. A complex sensor network may be affected by
many parameters or factors, such as configurations,
internal events, external inputs etc, where each
parameter may have numerous available options. For
a sensor network with complex configuration space, a
simple and intuitive configuration testing approach is
named as Each Choice, which requires each option of
each configuration parameter to be included in at
least one test case [10]. However, it is reported from
numerous case studies that many faults may be
involved in the combinations of options from
different parameters [8]. This phenomenon shows us
that, rather than the single parameter or factor, the
interaction of multiple configuration parameters may
also affect the work of sensor networks.

When testing interactions in configuration space,
combinatorial testing is considered as a practical
technique, since it uses a small test suite that cover all
needed parametric values and their combinations, to
detect the faults triggered by these single parameters
and even the interactions of them. E.g., for a
configuration space that has n parameters, it may be
unacceptable to cover all the n-tuple combinations of
parametric options or values, since the combinatorial
explosion. Meanwhile, combinatorial testing could
provide a tradeoff between the cost of testing and the
degree of combinatorial interaction coverage. E.g.,
pair-wise combinatorial testing requires covering all
the 2-tuple combinations of parametric values rather
than the n-tuples.

For instance, considering the configuration space
of an imaginary sensor network, in which there are
totally 4 configuration parameters, including sensor

Article number P_1590

Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 130-136

 131

nodes, connection, operation system, and database.
Each configuration parameter has 3 available options
(see Table 1). Exhaustive testing, which covers all
the possible 4-tuple combinations, requires 34=81 test
cases. Meanwhile, the pair-wise combinatorial testing
requires only 9 test cases to cover all possible pairs of
parametric values, which are shown Table 2.

Table 1. Configuration space.

Nodes OS Connection DB

Air Sensor
Speed Sensor

Pressure Sensor

Linux
Windows
Macintosh

LAN
ISDN

Modem

DB/2
Oracle
Access

Table 2. Pair-wise combinatorial test suite.

No. Nodes OS Connection DB

1
2
3
4
5
6
7
8
9

Air Sensor
Air Sensor
Air Sensor
Speed Sensor
Speed Sensor
Speed Sensor
Pressure Sensor
Pressure Sensor
Pressure Sensor

Linux
Windows
Macintosh
Linux
Windows
Macintosh
Linux
Windows
Macintosh

LAN
ISDN
Modem
ISDN
LAN
Modem
Modem
LAN
ISDN

DB/2
Oracle
Access
Access
Oracle
DB/2
Oracle
Access
DB/2

Because of the power of combinatorial testing,

many results about generating combinatorial test
suites have been reported in past years. Most of them
focus on the generation of pair-wise combinatorial
test suites (or combinatorial test suites with strength
2), but fewer results are published for high-strength
combinatorial test suites. It means that the problem of
generating high-strength combinatorial test suite is
still not well solved today. Therefore, in order to
generate high-strength combinatorial test suite, a
backtracking algorithms, which is based on solution
space tree, is proposed in this paper by extending an
existing pair-wise combinatorial test suite generation
algorithm. In solution space tree model, each test
case is represented as a path from the root to a leaf
node in the tree. And proposed algorithm generates
test cases one by one, by backtracking depth-first
searching in the solution space tree. We have
implemented this algorithm as a tool, and the result
shows that it has some good properties and merits,
and it can be a complement of the existed methods
and tools.

The remainder of this paper is organized as
follows: section 2 describes the definitions about
combinatorial testing. In section 3, we describe the
model of solution space tree, propose backtracking
algorithm for generating high-strength combinatorial
test suite, and discuss some properties. Section 4
reviews related works. Section 5 compares proposed
algorithm with some existed algorithms and tools.
Finally, conclusion remarks are given in section 6.

2. Definitions

Combinatorial test suite is designed based on the

covering array, which is special kind of mathematical
structure. Considering a configuration space that has
n configuration parameters c1, c2,…, cn. We suppose
each configuration parameter ci has ai discrete values
fi has ai parametric values (i=1, 2, …, n). Without
loss of generality, we use C={c1, c2,…, cn} to denote
the set of these n parameters, and Ti={1, 2,…, ai} to
denote the set of valid values for the parameter ci (i=1,
2, …, n). Here we can define a=max1≤i≤n{ai}. If the
cardinalities of all these value sets are equivalent
(a=a1=a2=…=an), we say it is a configuration space
with fixed-level factors, and these parameters could
be also denoted as C={an}. Otherwise, we say it is a
configuration space with mixed-level factors.

Definition 1. A n-tuple (v1, v2,…, vn) (v1∈T1,
v2∈T2,…, vn∈Tn) is a test case or test data for the
given configuration space.

Definition 2. Let t1 and t2 are test cases for a
configuration space, if there are b same values in the
b same positions of the two n-tuples, we call that the
overlap degree of the two test data is b.

For example, (2,1,3,2,1,3) and (3,1,2,2,1,1) are
two test cases and their overlap degree is 3. If the
overlap degree of the two test cases has the property
that b≥2, there are at least one value combination of
corresponding b parameters is covered by the both
two test cases. None of the combinations is covered
by both the test data when b≤1.

For the fixed-level systems, we have orthogonal
array and fixed-level covering array.

Definition 3. A τ-way orthogonal array OA(m;
τ, n, a) is an m×n array on totally a symbols with the
property that each m×τ sub-array contains all ordered
subsets from a symbols of size τ exactly times.

Definition 4. A τ-way fixed-level covering array
(or called fixed-level covering array with strength τ)
CA(m; τ, n, a) is an m×n array on totally a symbols
with the property that each m×τ sub-array contains all
ordered subsets from a symbols of size τ at least once.

Similarly, for the fixed-level systems, we have
mixed-level covering array.

Definition 5. A τ-way mixed-level covering array
(or called mixed-level covering array with strength τ)
CA (m; τ, (a1, a2, …, an)) is an m×n array on totally a
symbols, the j-th column contains only the elements
from the set Tj of size aj (1≤j≤n), and each m×τ sub-
array contains all τ-tuple combinations of values
from the τ columns at least once.

Definition 6. A τ-way fixed-level or mixed-level
covering array is a smallest τ-way fixed-level or
mixed-level covering array, if the number of rows is
as small as possible.

Both τ-way fixed-level covering array and τ-way
mixed-level covering array could be called as τ-way
covering array. A τ-way combinatorial test suite
could be obtained easily from a τ-way covering array,

Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 130-136

 132

where each row of covering array is a test case of
combinatorial test suite. Therefore, we assume that
the terms “combinatorial test suite” and “covering
array” are equivalent in this paper.

We can conclude from above definitions that an
orthogonal array with =1 is a kind of fixed-level
covering array, the reverse is not right. The size of
mixed-level covering array is usually smaller than the
size of orthogonal array with >1 [2]. E.g., for
100 parameters with two values each, a 2-way
orthogonal array requires 128 tests with =32, while
10 test cases are sufficient to cover all pairs in a
2-way covering array. In software testing or
configuration testing, it is only necessary to cover the
combinations of parameter values once and not
necessary to cover them with the same number of
times. So covering array, which can improve the
efficiency and decrease the cost of testing with the
smaller test suite, is much more practical than
orthogonal array.

3. Algorithm

We used to proposed a backtracking algorithm,
which is based on solution space tree, for generating
pair-wise combinatorial test suite previously [9]. In
the following section, we will extend that algorithm
for high-strength combinatorial test generation, and
improve the process of backtracking search for the
efficiency of test generation.

3.1. Solution Space Tree Model

For a configuration space which has n parameters
and each parameter ci has ai values where we can let
a1≥a2≥…≥an without loss of generality, each test case
can be represented as a path from the root to a leaf
node in the tree. All the usable test case forms a tree
as follows: The root of the tree has a1 child branches
which represent a1 values of parameter c1
respectively; each root in the second level of the tree
has a2 child branches which represent a2 values of
parameter c2 respectively; …; each root in the n-th
level of the tree has an child branches which represent
an values of parameter cn respectively. For example,
when n=3 and a1=a2=a3=3, all the usable test case

forms a solution space tree as Fig. 1.
Combinatorial test suite generation is to find out a

subset of paths from the solution space tree. For
example, the 9 paths: 1-1-1, 1-2-2, 1-3-3, 2-1-2, 2-2-
3, 2-3-1, 3-1-3, 3-2-1 and 3-3-2 form a test suite with
9 test cases: {(1,1,1), (1,2,2), (1,3,3), (2,1,2), (2,2,3),
(2,3,1), (3,1,3), (3,2,1), (3,3,2)}, which satisfies the
requirement of pair-wise covering array and is the
smallest pair-wise covering array.

3.2. Backtracking Algorithm to Generate
High-strength Combinatorial Test Cases

The backtracking algorithm for generating high-

strength combinatorial test cases in solution space
tree consists of four steps:

Step 1: Assign some seed test cases into a test set
TS. The seed test case could be: the ones that are
taken care of by testers; the ones that are assumed to
be failure-trigger test cases; the ones that generated
by other testing techniques; etc. If people don’t
assign any seed test cases, then TS= .

Step 2: Backtracking search using the depth-first
strategy in the solution space tree to select test cases
one by one until the searching process is end. The
selected test cases, whose overlap degree with all the
existing test cases in the set TS is no more than τ-1,
will be put into TS. The detail procedure can be
found in Algorithm 1 and 2. At the beginning of test
generation, procedure BackTrack (1) should be called.

Step 3: Check whether all the test cases in the set
TS could cover all the required τ-tuple combinations
of parametric values in configuration space. If it is
true, then algorithm ends; else, we list all the τ-tuple
combinations of parametric values that have not been
covered by test cases in TS. It will take running time
of O(n2) to do this step.

Step 4: Construct test cases with one-test-at-a-time
algorithm to cover left τ-tuple combinations. The
process of one-test-at-a-time strategy is described in
Algorithm 3. The concrete algorithms based on that
strategy include AETG [3], Density Algorithm [11],
TCG [12], etc. All these concrete algorithm could be
adopted in this step.

1

1

1

2

2

3

3

2

1

2

2

3

3

1

3

1

3

2 3

1 2

Fig. 1. The solution space tree when n=3,a1=a2=a3=3.

Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 130-136

 133

Algorithm 1. Backtracking Searching
on Solution Space Tree.

Procedure BackTrack(i)
Begin

If (i = n+1) then
/* values of all n factors have been fixed */
Add current_test into test suite

Else
Insert all ai values (1, 2, …, ai) of factor fi
into node_vector as a given order
For j = 1 to ai

current_test[j]= node_vector[j]
/* IsFit check whether the overlap
between current test and others is less
than the given upper bound τ-1*/
If (IsFit(current_test, i)) then

BackTrack(i+1)
End If

End For
End If

End

Algorithm 2. Check Overlap Degree
Procedure IsFit(current_test, deep)
Begin

For each test in test suite
overlap=0
For i = 1 to deep

If (current_test[i]=test[i]) then
overlap++

End If
If (overlap > upper_bound) then

Return false
End If

End For
End For
Return True

End

Algorithm 3. One-test-at-a-time Strategy
Input: CombSet: a set of required τ-tuple

combinations
Output: a test suite
Begin

UncovCombSet:=CombSet

While (UncovCombSet≠)
Generate one test case current_test to cover
τ-tuples combinations in UncovCombSet as
more as possible
Add the current_test into test suite, modify
UncovCombSet by removing τ-tuples that
covered by current_test

End While
End

We analyze the time complexity of proposed
algorithm. The number of candidate paths in solution
space tree is 1≤i≤nai<an When check overlap degree
for a given path, at most n nodes should be checked.
And for each node, values of correspond parameters
in at most aτ test cases should be compared.
Therefore, the worst time complexity of generating a
τ-way combinatorial test suite is O(n×an+τ). In
practical, the time performance is much better than
the worst value, since the number of nodes that
should be checked is much smaller.

3.3. An Improved Searching Algorithm

The time performance of backtracking algorithm

could be improved again. It can be concluded that,
after the procedure BackTrack(n) is called and a test
case is selected, the BackTrack(n-1) will be called to
search in another path. But the BackTrack(n-1) can
not find any test cases, because the overlap between
current path and the last selected test case is n-1>τ-1.
So after finding a test case, we should call BackTrack(τ)
instead of BackTrack(n-1). The improved algorithm
named BackTrackE is described in Algorithm 4.

Algorithm 4. Improved Backtracking Searching
on Solution Space Tree

flag = False
Procedure BackTrackE(i)
Begin

If (i = n+1) then
/* values of all n factors have been fixed */
Add current_test into test suite
flag = True

Else
Insert all ai values (1, 2, …, ai) of factor fi
into node_vector as a given order
For j = 1 to ai

/* if a test has been selected, the deep
must fall back to 1+upper_bound */
If ((flag = True) then

If (i>1+upper_bound)) then
Break

Else
flag = False

End If
End If
current_test[j]= node_vector[j]
/* IsFit check whether the overlap
between current test and others is less
than the given upper bound τ-1 */
If (IsFit(current_test, i)) then

BackTrack(i+1)
End If

End For
End If

End

Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 130-136

 134

It is clear that, the worst time complexity of the
procedure BackTrackE is equal to that of procedure
BackTrack. But in actual, the former is efficient than
the latter, since it check less nodes in solution
space tree.

3.4. Properties of Algorithm

In the algorithm model there is a one-to-one

correspondence between all the paths in the solution
space tree and all the usable test data for SUT. The
test data generation for pair-wise testing is to search a
subset of paths from the solution space tree. The
algorithm has the following properties:

Proposition 1 The heuristic algorithm base on the
solution space tree model can generate test suite for
pair-wise testing on the basis of an assigned test data
set by the testers. Such that the generated test suite
not only satisfy the intention of testers, but also
satisfy the requirement of pair-wise testing.

Proposition 2 For a configuration space, assume
TS= , if a1=a2=…=an=a=p (or pm), n≤p+1 (or
pm+1), where p is a prime, then the test suit generated
by Algorithm 1 and 4 is orthogonal array OA1(aτ; τ,
n, a) with =1.

Proof: By the construction theory of orthogonal
array [1], when a1=a2=…=an=a (a=p or a=pm),
n≤p+1(pm+1), where p is a prime, there exists an
orthogonal array. It is a aτ×n matrix and every row of
it is a test data, so the overlap degree between any
two of the test data in covering array is no more than
τ-1, otherwise, there must exists two test data, the
overlap degree is equal to τ or more, then the two test
data cover a τ-tuple combination twice. Since there
are aτ distinct τ-tuple combination between any τ
parameters, there should be also at least aτ test data to
cover them. So there must exist a pair uncovered by
the test suite generated from orthogonal array.

Corresponding to the solution space tree, there
exist r2 paths that their overlap degree to each other is
no more than 1. Algorithm 1 is used to search all the
paths with the overlap degree of no more than 1 to
each other. So the test suite generated by algorithm 1
is an orthogonal array OA1(aτ; τ, n, a).

4. Related Works

Since we like to minimize the testing cost as

much as possible, we are interested in generating the
least test suite for pair-wise testing, known as the
smallest pair-wise covering array. However, the
problem of finding the smallest pair-wise covering
array is NP-complete. There are two main pragmatic
approaches towards the problem. One is the algebraic
approach. Various algebraic have been proposed for
finding the smallest pair-wise covering array.

The original approach is to use orthogonal arrays
[1], but orthogonal arrays have a balance requirement
that every pair is covered the same number of times,
and this requirement make it impractical for software
testing. A. W. Williams presented a construction
method based on some basic blocks, and developed a
new, fast, deterministic algorithm for achieving pair-
wise interaction coverage [6]. Noritaka Kobayashi et
al. also propose a new algebraic construction and
give an upper bound on the size of test set generated.
The results show that the proposed construction can
generate very small 2-factor covering designs [5].
Although these algebraic constructions are very
effective when all parameters have the same number
of values, they cannot well deal with the case where
parameters have different numbers of values.

Another approach is to use the heuristics method.
D. M. Cohen et al. proposed a heuristic search-based
approach, which has been implemented as a test
generation system, called AETG [3]. TCG [12] and
DDA [11] are similar to the AETG. K. C. Tai and Y.
Lei proposed a new test generation strategy, called
in-parameter-order (or IPO), for pair-wise testing,
and they have also implemented it as a tool, called
PairTest [4]. Generally test sets generated by these
approaches tend to be larger than those generated by
the algebraic methods, and they cannot guarantee
bounds on the size of resulting test sets.

And besides the algebraic methods and heuristics
methods, another types of methods are meta-heuristic
algorithms, including generic algorithm, simulated
annealing, ant colony algorithm, etc [14]. These
algorithms could generate small combinatorial test
suites, but require massive execution time.

5. Experimental Results

To assess the efficiency of proposed algorithms,

we compare them to some existed algorithms and
tools. In experiment, we compare proposed algorithm
to some other algorithms and tools, including DDA
[11], TCG [12], GREEDY [7], TVG [16], PICT [13],
AETG [3], GA [14], ACA [14], GA-N [15], IPO [4],
and Jenny [17]. Note that our proposed algorithms
BackTrack and BackTrackE will output the same
covering array, so we only illustrate one result for
each input (see “SST” in Table 3).

As displayed in such a table, we find out ACA
and GA generates the smallest test suite for almost all
inputs. The reason is that ACA and GA are both
meta-heuristic algorithms. By ignoring the data about
ACA and GA, both SST and GREEDY generate the
smallest test suites for 4 of all 8 inputs. Therefore, it
could be concluded from experimental result that, the
test suites generated by our proposed algorithms are
much smaller than that generated by most heuristic
algorithms, hough their performances are worse than
that of ACA and GA that belongs to meta-heuristic.

Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 130-136

 135

Table 3. Sizes of generated 3-way combinatorial test suites.

 SST DDA TCG GREEDY TVG PICT AETG GA ACA GA-N IPO Jenny

S1 37 47 53 43 48 48 38 33 33 52 48 51

S2 64 64 106 64 120 111 77 64 64 85 64 112

S3 125 211 225 184 239 215 194 125 125 223 200 215

S4 332 359 363 325 409 369 330 331 330 389 366 373

S5 1462 1587 1624 1474 1949 1622 1473 1501 1496 1769 1678 1572

S6 223 237 225 220 269 241 218 218 218 336 239 236

S7 109 116 108 106 133 119 114 108 106 120 120 130

S8 363 369 377 388 429 368 377 360 361 373 464 397

 (S1: 36; S2: 45; S3: 56; S4: 66; S5: 106; S6: 57; S7: 524232; S8: 101624331)

6. Conclusions

Exhaustive testing is impractical and impossible

since the combinatorial explosion of configuration
space of high-configuration systems, e.g. sensor
networks. So it is a key issue to select the minimal
test suite for the effective configuration testing. The
reduced test suite with good quality can improve the
efficiency and decrease the cost. In this paper, we
proposed two extending algorithm, which is based on
the model of solution space tree, to generating high-
strength combinatorial test suite for configuration
testing. These algorithms can generate good covering
array as the approximation of the least high-strength
covering array. The better approximation still needs
the further research on the better algorithm.

There have been many results on combinatorial
testing, but some problems are still necessary to be
studied in the future. For example, new test
generation techniques are required. Corresponding
techniques for test prioritization, value constraint,
fault location, and regression testing are also very
necessary to be studied.

Acknowledgements

The works described in this paper were supported

by the National NSF of China (61003020,
61300054); NSF of Jiangsu Province (BK2011190,
BK20130879); NSF for College & University in
Jiangsu Province (13KJB520018); Foundation of
NJUPT (NY212023); Open Foundation of Guangxi
Key Lab of Trustworthy Software (KX201328).

References

[1]. A. S. Hedayat et al., Orthogonal Arrays: Theory and

Applications, Springer-Verlag, USA, 1999.
[2]. I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L.

Mallows, A. Iannino. Applying design of
experiments to software testing: experience report, in
Proceedings of the 19th International Conference on

Software Engineering, Boston, Massachusetts, United
States, Vol. 5, 1997, 205-215.

[3]. D. M. Cohen et al., The AETG System: An Approach
to Testing Based on Combinatorial Design, IEEE
Transactions on Software Engineering, Vol. 23,
Issue 7, July 1997, pp. 437-444.

[4]. Y. Lei, K. C. Tai, In_Parameter_Oder: A Test
Generation Strategy for Pair-wise Testing, Technical
Report TR-2001-03. Dept. of Computer Science,
North Carolina State Univ., Raleigh, North Carolina,
Mar. 2001.

[5]. N. Kobayashi, T. Tsuchiya, T. Kikuno, A New
Method for Constructing Pair-wise Covering Designs
for Software Testing, Information Processing Letters,
Vol. 81, Issue 2, 2002, pp. 85-91.

[6]. A. W. Williams, Software component interaction
testing: coverage measurement and generation of
configurations, PhD Thesis, Ottawa-Carleton Institute
for Computer Science, School of Information
Technology and Engineering, University of Ottawa,
Canada, 2002.

[7]. P. J. Schroeder, B. Korel, Black-box test reduction
using input-output analysis, in Proceedings of the
ISSTA’00, Portland, Oregon, 2000, pp. 173-177.

[8]. D. R. Kuhn, A. M. Gallo, Software Fault Interactions
and Implications for Software Testing, IEEE
Transaction on Software Engineering, Vol. 30, Issue
6, June 2004, pp. 1-4.

[9]. N. Changhai, X. Baowen, S. Liang, W. Ziyuan, A
new heuristic for test suite generation for pair-wise
testing, in Proceedings of International Conference
on Software Engineering and Knowledge
Engineering (SEKE'06), 2006.

[10]. M. Grindal, B. Lindstrom, J. Offutt, S. F. Andler, An
Evaluation of Combination Strategies for Test Case
Selection, Empirical Software Engineering, Vol. 11,
2006, pp. 583-611.

[11]. R. C. Bryce, C. J. Colbourn, A Density-Based Greedy
Algorithm for Higher Strength Covering Arrays,
Software Testing, Verification and Reliability,
Vol. 19, Issue 1, 2009, pp. 37-53.

[12]. Y. Tung, W. S. Aldiwan, Automating Test Case
Generation for the New Generation Mission Software
System, in Proceedings of the IEEE Aerospace
Conference, Big Sky, Montana, USA, 2000,
pp. 431-437.

[13]. J. Czerwonka, Pairwise Testing in Real World:
Practical Extensions to Test Case Generator, in
Proceedings of the 24th Pacific Northwest Software

Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 130-136

 136

Quality Conference, October 9-11, 2006,
pp. 419-430.

[14]. T. Shiba, T. Tsuchiya, T. Kikuno, Using Artificial
Life Techniques to Generate Test Cases for
Combinatorial Testing, in Proceedings of 28th Annual
International Computer Software and Applications
Conference (COMPSAC' 04), Hong Kong, China,
Vol. 1, September, 2004, pp. 72-78.

[15]. C. Nie, B. Xu, L. Shi, G. Dong, Automatic Test
Generation for N-way Combinatorial Testing, Quality
of Software Architectures and Software Quality,
Lecture Notes in Computer Science, Vol. 3712, 2005,
pp. 203-211.

[16]. http://sourceforge.net/projects/tvg/
[17]. http://burtleburtle.net/bob/math/jenny.html

2013 Copyright ©, International Frequency Sensor Association (IFSA). All rights reserved.
(http://www.sensorsportal.com)

