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Abstract: There are many results about generating pair-wise covering arrays with strength τ=2 have been 
reported, but fewer results are published for high-strength covering arrays with a higher-strength τ>2. In 
configuration testing of sensor networks, high-strength covering array is required to construct combinatorial test 
cases. To generate combinatorial test suite with higher-strength, a backtracking algorithms, which is based on 
solution space tree, is proposed in this paper by extending an existing pair-wise combinatorial test suite 
generation algorithm. In solution space tree model, each test case is represented as a path from the root to a leaf 
node in the tree. And proposed algorithm generates test cases one by one, by backtracking depth-first searching 
in the solution space tree. Finally, to assess the efficiency of proposed algorithm, computational comparison 
with other published methods is reported. Copyright © 2013 IFSA. 
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1. Introduction 
 

Sensor networks have been widely used in real 
life. A complex sensor network may be affected by 
many parameters or factors, such as configurations, 
internal events, external inputs etc, where each 
parameter may have numerous available options. For 
a sensor network with complex configuration space, a 
simple and intuitive configuration testing approach is 
named as Each Choice, which requires each option of 
each configuration parameter to be included in at 
least one test case [10]. However, it is reported from 
numerous case studies that many faults may be 
involved in the combinations of options from 
different parameters [8]. This phenomenon shows us 
that, rather than the single parameter or factor, the 
interaction of multiple configuration parameters may 
also affect the work of sensor networks.  

When testing interactions in configuration space, 
combinatorial testing is considered as a practical 
technique, since it uses a small test suite that cover all 
needed parametric values and their combinations, to 
detect the faults triggered by these single parameters 
and even the interactions of them. E.g., for a 
configuration space that has n parameters, it may be 
unacceptable to cover all the n-tuple combinations of 
parametric options or values, since the combinatorial 
explosion. Meanwhile, combinatorial testing could 
provide a tradeoff between the cost of testing and the 
degree of combinatorial interaction coverage. E.g., 
pair-wise combinatorial testing requires covering all 
the 2-tuple combinations of parametric values rather 
than the n-tuples.  

For instance, considering the configuration space 
of an imaginary sensor network, in which there are 
totally 4 configuration parameters, including sensor 
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nodes, connection, operation system, and database. 
Each configuration parameter has 3 available options 
(see Table 1). Exhaustive testing, which covers all 
the possible 4-tuple combinations, requires 34=81 test 
cases. Meanwhile, the pair-wise combinatorial testing 
requires only 9 test cases to cover all possible pairs of 
parametric values, which are shown Table 2.  

 
 

Table 1. Configuration space. 
 

Nodes OS Connection DB 

Air Sensor 
Speed Sensor 

Pressure Sensor 

Linux 
Windows 
Macintosh 

LAN 
ISDN 

Modem 

DB/2 
Oracle 
Access

 
 

Table 2. Pair-wise combinatorial test suite. 
 

No. Nodes OS Connection DB 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Air Sensor 
Air Sensor 
Air Sensor 
Speed Sensor 
Speed Sensor 
Speed Sensor 
Pressure Sensor 
Pressure Sensor 
Pressure Sensor 

Linux 
Windows 
Macintosh 
Linux 
Windows 
Macintosh 
Linux 
Windows 
Macintosh 

LAN 
ISDN 
Modem 
ISDN 
LAN 
Modem 
Modem 
LAN 
ISDN 

DB/2 
Oracle 
Access 
Access 
Oracle 
DB/2 
Oracle 
Access 
DB/2 

 
 
Because of the power of combinatorial testing, 

many results about generating combinatorial test 
suites have been reported in past years. Most of them 
focus on the generation of pair-wise combinatorial 
test suites (or combinatorial test suites with strength 
2), but fewer results are published for high-strength 
combinatorial test suites. It means that the problem of 
generating high-strength combinatorial test suite is 
still not well solved today. Therefore, in order to 
generate high-strength combinatorial test suite, a 
backtracking algorithms, which is based on solution 
space tree, is proposed in this paper by extending an 
existing pair-wise combinatorial test suite generation 
algorithm. In solution space tree model, each test 
case is represented as a path from the root to a leaf 
node in the tree. And proposed algorithm generates 
test cases one by one, by backtracking depth-first 
searching in the solution space tree. We have 
implemented this algorithm as a tool, and the result 
shows that it has some good properties and merits, 
and it can be a complement of the existed methods 
and tools. 

The remainder of this paper is organized as 
follows: section 2 describes the definitions about 
combinatorial testing. In section 3, we describe the 
model of solution space tree, propose backtracking 
algorithm for generating high-strength combinatorial 
test suite, and discuss some properties. Section 4 
reviews related works. Section 5 compares proposed 
algorithm with some existed algorithms and tools. 
Finally, conclusion remarks are given in section 6. 

2. Definitions 
 
Combinatorial test suite is designed based on the 

covering array, which is special kind of mathematical 
structure. Considering a configuration space that has 
n configuration parameters c1, c2,…, cn. We suppose 
each configuration parameter ci has ai discrete values 
fi has ai parametric values (i=1, 2, …, n). Without 
loss of generality, we use C={c1, c2,…, cn} to denote 
the set of these n parameters, and Ti={1, 2,…, ai} to 
denote the set of valid values for the parameter ci (i=1, 
2, …, n). Here we can define a=max1≤i≤n{ai}. If the 
cardinalities of all these value sets are equivalent 
(a=a1=a2=…=an), we say it is a configuration space 
with fixed-level factors, and these parameters could 
be also denoted as C={an}. Otherwise, we say it is a 
configuration space with mixed-level factors.  

Definition 1. A n-tuple (v1, v2,…, vn) (v1∈T1,  
v2∈T2,…, vn∈Tn) is a test case or test data for the 
given configuration space. 

Definition 2. Let t1 and t2 are test cases for a 
configuration space, if there are b same values in the 
b same positions of the two n-tuples, we call that the 
overlap degree of the two test data is b.  

For example, (2,1,3,2,1,3) and (3,1,2,2,1,1) are 
two test cases and their overlap degree is 3. If the 
overlap degree of the two test cases has the property 
that b≥2, there are at least one value combination of 
corresponding b parameters is covered by the both 
two test cases. None of the combinations is covered 
by both the test data when b≤1. 

For the fixed-level systems, we have orthogonal 
array and fixed-level covering array.  

Definition 3. A τ-way orthogonal array OA(m; 
τ, n, a) is an m×n array on totally a symbols with the 
property that each m×τ sub-array contains all ordered 
subsets from a symbols of size τ exactly  times.   

Definition 4. A τ-way fixed-level covering array 
(or called fixed-level covering array with strength τ) 
CA(m; τ, n, a) is an m×n array on totally a symbols 
with the property that each m×τ sub-array contains all 
ordered subsets from a symbols of size τ at least once.  

Similarly, for the fixed-level systems, we have 
mixed-level covering array.  

Definition 5. A τ-way mixed-level covering array 
(or called mixed-level covering array with strength τ) 
CA (m; τ, (a1, a2, …, an)) is an m×n array on totally a 
symbols, the j-th column contains only the elements 
from the set Tj of size aj (1≤j≤n), and each m×τ sub-
array contains all τ-tuple combinations of values 
from the τ columns at least once.  

Definition 6. A τ-way fixed-level or mixed-level 
covering array is a smallest τ-way fixed-level or 
mixed-level covering array, if the number of rows is 
as small as possible.  

Both τ-way fixed-level covering array and τ-way 
mixed-level covering array could be called as τ-way 
covering array. A τ-way combinatorial test suite 
could be obtained easily from a τ-way covering array, 
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where each row of covering array is a test case of 
combinatorial test suite. Therefore, we assume that 
the terms “combinatorial test suite” and “covering 
array” are equivalent in this paper.  

We can conclude from above definitions that an 
orthogonal array with =1 is a kind of fixed-level 
covering array, the reverse is not right. The size of 
mixed-level covering array is usually smaller than the 
size of orthogonal array with >1 [2]. E.g., for  
100 parameters with two values each, a 2-way 
orthogonal array requires 128 tests with =32, while 
10 test cases are sufficient to cover all pairs in a  
2-way covering array. In software testing or 
configuration testing, it is only necessary to cover the 
combinations of parameter values once and not 
necessary to cover them with the same number of 
times. So covering array, which can improve the 
efficiency and decrease the cost of testing with the 
smaller test suite, is much more practical than 
orthogonal array.  
 
 

3. Algorithm 
 

We used to proposed a backtracking algorithm, 
which is based on solution space tree, for generating 
pair-wise combinatorial test suite previously [9]. In 
the following section, we will extend that algorithm 
for high-strength combinatorial test generation, and 
improve the process of backtracking search for the 
efficiency of test generation.  

 
 

3.1. Solution Space Tree Model 
 

For a configuration space which has n parameters 
and each parameter ci has ai values where we can let 
a1≥a2≥…≥an without loss of generality, each test case 
can be represented as a path from the root to a leaf 
node in the tree. All the usable test case forms a tree 
as follows: The root of the tree has a1 child branches 
which represent a1 values of parameter c1 
respectively; each root in the second level of the tree 
has a2 child branches which represent a2 values of 
parameter c2 respectively; …; each root in the n-th 
level of the tree has an child branches which represent 
an values of parameter cn respectively. For example, 
when n=3 and a1=a2=a3=3, all the usable test case 

forms a solution space tree as Fig. 1. 
Combinatorial test suite generation is to find out a 

subset of paths from the solution space tree. For 
example, the 9 paths: 1-1-1, 1-2-2, 1-3-3, 2-1-2, 2-2-
3, 2-3-1, 3-1-3, 3-2-1 and 3-3-2 form a test suite with 
9 test cases: {(1,1,1), (1,2,2), (1,3,3), (2,1,2), (2,2,3), 
(2,3,1), (3,1,3), (3,2,1), (3,3,2)}, which satisfies the 
requirement of pair-wise covering array and is the 
smallest pair-wise covering array. 

 
 

3.2. Backtracking Algorithm to Generate 
High-strength Combinatorial Test Cases 

 
The backtracking algorithm for generating high-

strength combinatorial test cases in solution space 
tree consists of four steps:  

Step 1: Assign some seed test cases into a test set 
TS. The seed test case could be: the ones that are 
taken care of by testers; the ones that are assumed to 
be failure-trigger test cases; the ones that generated 
by other testing techniques; etc. If people don’t 
assign any seed test cases, then TS= . 

Step 2: Backtracking search using the depth-first 
strategy in the solution space tree to select test cases 
one by one until the searching process is end. The 
selected test cases, whose overlap degree with all the 
existing test cases in the set TS is no more than τ-1, 
will be put into TS. The detail procedure can be 
found in Algorithm 1 and 2. At the beginning of test 
generation, procedure BackTrack (1) should be called.  

Step 3: Check whether all the test cases in the set 
TS could cover all the required τ-tuple combinations 
of parametric values in configuration space. If it is 
true, then algorithm ends; else, we list all the τ-tuple 
combinations of parametric values that have not been 
covered by test cases in TS. It will take running time 
of O(n2) to do this step. 

Step 4: Construct test cases with one-test-at-a-time 
algorithm to cover left τ-tuple combinations. The 
process of one-test-at-a-time strategy is described in 
Algorithm 3. The concrete algorithms based on that 
strategy include AETG [3], Density Algorithm [11], 
TCG [12], etc. All these concrete algorithm could be 
adopted in this step.  
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Fig. 1. The solution space tree when n=3,a1=a2=a3=3. 
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Algorithm 1. Backtracking Searching  
on Solution Space Tree. 

Procedure BackTrack(i) 
Begin 

If (i = n+1) then 
/* values of all n factors have been fixed */ 
Add current_test into test suite 

Else 
Insert all ai values (1, 2, …, ai) of factor fi 
into node_vector as a given order 
For j = 1 to ai 

current_test[j]= node_vector[j] 
/* IsFit check whether the overlap 
between current test and others is less 
than the given upper bound τ-1*/ 
If (IsFit(current_test, i)) then 

BackTrack(i+1) 
End If 

End For 
End If 

End 
 

Algorithm 2. Check Overlap Degree 
Procedure IsFit(current_test, deep) 
Begin 

For each test in test suite 
overlap=0 
For i = 1 to deep 

If (current_test[i]=test[i]) then 
overlap++ 

End If 
If (overlap > upper_bound) then 

Return false 
End If 

End For 
End For 
Return True 

End 
 

Algorithm 3. One-test-at-a-time Strategy 
Input: CombSet: a set of required τ-tuple 

combinations 
Output: a test suite 
Begin 

UncovCombSet:=CombSet  

While (UncovCombSet≠) 
Generate one test case current_test to cover 
τ-tuples combinations in UncovCombSet as 
more as possible 
Add the current_test into test suite, modify 
UncovCombSet by removing τ-tuples that 
covered by current_test 

End While 
End 

We analyze the time complexity of proposed 
algorithm. The number of candidate paths in solution 
space tree is 1≤i≤nai<an When check overlap degree 
for a given path, at most n nodes should be checked. 
And for each node, values of correspond parameters 
in at most aτ test cases should be compared. 
Therefore, the worst time complexity of generating a 
τ-way combinatorial test suite is O(n×an+τ). In 
practical, the time performance is much better than 
the worst value, since the number of nodes that 
should be checked is much smaller.  

 
 

3.3. An Improved Searching Algorithm 
 
The time performance of backtracking algorithm 

could be improved again. It can be concluded that, 
after the procedure BackTrack(n) is called and a test 
case is selected, the BackTrack(n-1) will be called to 
search in another path. But the BackTrack(n-1) can 
not find any test cases, because the overlap between 
current path and the last selected test case is n-1>τ-1. 
So after finding a test case, we should call BackTrack(τ) 
instead of BackTrack(n-1). The improved algorithm 
named BackTrackE is described in Algorithm 4.  

 

Algorithm 4. Improved Backtracking Searching  
on Solution Space Tree 

flag = False 
Procedure BackTrackE(i) 
Begin 

If (i = n+1) then 
/* values of all n factors have been fixed */ 
Add current_test into test suite 
flag = True 

Else 
Insert all ai values (1, 2, …, ai) of factor fi 
into node_vector as a given order 
For j = 1 to ai 

/* if a test has been selected, the deep 
must fall back to 1+upper_bound */ 
If ((flag = True) then 

If (i>1+upper_bound)) then 
Break 

Else 
flag = False 

End If 
End If 
current_test[j]= node_vector[j] 
/* IsFit check whether the overlap 
between current test and others is less 
than the given upper bound τ-1 */ 
If (IsFit(current_test, i)) then 

BackTrack(i+1) 
End If 

End For 
End If 

End 
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It is clear that, the worst time complexity of the 
procedure BackTrackE is equal to that of procedure 
BackTrack. But in actual, the former is efficient than 
the latter, since it check less nodes in solution  
space tree.  

 
 

3.4. Properties of Algorithm 
 
In the algorithm model there is a one-to-one 

correspondence between all the paths in the solution 
space tree and all the usable test data for SUT. The 
test data generation for pair-wise testing is to search a 
subset of paths from the solution space tree. The 
algorithm has the following properties: 

Proposition 1 The heuristic algorithm base on the 
solution space tree model can generate test suite for 
pair-wise testing on the basis of an assigned test data 
set by the testers. Such that the generated test suite 
not only satisfy the intention of testers, but also 
satisfy the requirement of pair-wise testing. 

Proposition 2 For a configuration space, assume 
TS=  , if a1=a2=…=an=a=p (or pm), n≤p+1 (or 
pm+1), where p is a prime, then the test suit generated 
by Algorithm 1 and 4  is orthogonal array OA1(aτ; τ, 
n, a) with =1. 

Proof: By the construction theory of orthogonal 
array [1], when a1=a2=…=an=a (a=p or a=pm), 
n≤p+1(pm+1), where p is a prime, there exists an 
orthogonal array. It is a aτ×n matrix and every row of 
it is a test data, so the overlap degree between any 
two of the test data in covering array is no more than 
τ-1, otherwise, there must exists two test data, the 
overlap degree is equal to τ or more, then the two test 
data cover a τ-tuple combination twice. Since there 
are aτ distinct τ-tuple combination between any τ 
parameters, there should be also at least aτ test data to 
cover them. So there must exist a pair uncovered by 
the test suite generated from orthogonal array.   

Corresponding to the solution space tree, there 
exist r2 paths that their overlap degree to each other is 
no more than 1. Algorithm 1 is used to search all the 
paths with the overlap degree of no more than 1 to 
each other. So the test suite generated by algorithm 1 
is an orthogonal array OA1(aτ; τ, n, a). 

 
 

4. Related Works 
 
Since we like to minimize the testing cost as 

much as possible, we are interested in generating the 
least test suite for pair-wise testing, known as the 
smallest pair-wise covering array. However, the 
problem of finding the smallest pair-wise covering 
array is NP-complete. There are two main pragmatic 
approaches towards the problem. One is the algebraic 
approach. Various algebraic have been proposed for 
finding the smallest pair-wise covering array. 

The original approach is to use orthogonal arrays 
[1], but orthogonal arrays have a balance requirement 
that every pair is covered the same number of times, 
and this requirement make it impractical for software 
testing. A. W. Williams presented a construction 
method based on some basic blocks, and developed a 
new, fast, deterministic algorithm for achieving pair-
wise interaction coverage [6]. Noritaka Kobayashi et 
al. also propose a new algebraic construction and 
give an upper bound on the size of test set generated. 
The results show that the proposed construction can 
generate very small 2-factor covering designs [5]. 
Although these algebraic constructions are very 
effective when all parameters have the same number 
of values, they cannot well deal with the case where 
parameters have different numbers of values. 

Another approach is to use the heuristics method. 
D. M. Cohen et al. proposed a heuristic search-based 
approach, which has been implemented as a test 
generation system, called AETG [3]. TCG [12] and 
DDA [11] are similar to the AETG. K. C. Tai and Y. 
Lei proposed a new test generation strategy, called 
in-parameter-order (or IPO), for pair-wise testing, 
and they have also implemented it as a tool, called 
PairTest [4]. Generally test sets generated by these 
approaches tend to be larger than those generated by 
the algebraic methods, and they cannot guarantee 
bounds on the size of resulting test sets. 

And besides the algebraic methods and heuristics 
methods, another types of methods are meta-heuristic 
algorithms, including generic algorithm, simulated 
annealing, ant colony algorithm, etc [14]. These 
algorithms could generate small combinatorial test 
suites, but require massive execution time.  

 
 

5. Experimental Results 
 
To assess the efficiency of proposed algorithms, 

we compare them to some existed algorithms and 
tools. In experiment, we compare proposed algorithm 
to some other algorithms and tools, including DDA 
[11], TCG [12], GREEDY [7], TVG [16], PICT [13], 
AETG [3], GA [14], ACA [14], GA-N [15], IPO [4], 
and Jenny [17]. Note that our proposed algorithms 
BackTrack and BackTrackE will output the same 
covering array, so we only illustrate one result for 
each input (see “SST” in Table 3). 

As displayed in such a table, we find out ACA 
and GA generates the smallest test suite for almost all 
inputs. The reason is that ACA and GA are both 
meta-heuristic algorithms. By ignoring the data about 
ACA and GA, both SST and GREEDY generate the 
smallest test suites for 4 of all 8 inputs. Therefore, it 
could be concluded from experimental result that, the 
test suites generated by our proposed algorithms are 
much smaller than that generated by most heuristic 
algorithms, hough their performances are worse than 
that of ACA and GA that belongs to meta-heuristic.  
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Table 3. Sizes of generated 3-way combinatorial test suites. 
 

 SST DDA TCG GREEDY TVG PICT AETG GA ACA GA-N IPO Jenny 

S1 37 47 53 43 48 48 38 33 33 52 48 51 

S2 64 64 106 64 120 111 77 64 64 85 64 112 

S3 125 211 225 184 239 215 194 125 125 223 200 215 

S4 332 359 363 325 409 369 330 331 330 389 366 373 

S5 1462 1587 1624 1474 1949 1622 1473 1501 1496 1769 1678 1572 

S6 223 237 225 220 269 241 218 218 218 336 239 236 

S7 109 116 108 106 133 119 114 108 106 120 120 130 

S8 363 369 377 388 429 368 377 360 361 373 464 397 

 (S1: 36; S2: 45; S3: 56; S4: 66; S5: 106; S6: 57; S7: 524232; S8: 101624331) 
 
 

6. Conclusions 
 
Exhaustive testing is impractical and impossible 

since the combinatorial explosion of configuration 
space of high-configuration systems, e.g. sensor 
networks. So it is a key issue to select the minimal 
test suite for the effective configuration testing. The 
reduced test suite with good quality can improve the 
efficiency and decrease the cost. In this paper, we 
proposed two extending algorithm, which is based on 
the model of solution space tree, to generating high-
strength combinatorial test suite for configuration 
testing. These algorithms can generate good covering 
array as the approximation of the least high-strength 
covering array. The better approximation still needs 
the further research on the better algorithm. 

There have been many results on combinatorial 
testing, but some problems are still necessary to be 
studied in the future. For example, new test 
generation techniques are required. Corresponding 
techniques for test prioritization, value constraint, 
fault location, and regression testing are also very 
necessary to be studied. 
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