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Abstract: A magnetostrictive cantilever beam model is established by combining an energy-based constitutive 
magnetostrictive model with the classical Euler-Bernoulli beam theory constitutive relations that describe the 
material behavior are based on energy minimization techniques. We use the saturation magnetization, the 
magnetostrictive constant and the 4th and 6th order anisotropy constants to calculate the Zeeman, stress-induced 
anisotropy and magnetocrystalline anisotropy energies per unit volume. The stress of the magnetostrictive 
cantilever beam is solved by classical beam theory. Experiments and simulations are conducted to study 
performance of the cantilever. The results demonstrated the sensing is primarily due to the dominating effect of 
compression over tension. A critical bias magnetic field is required below which the magnetostrictive sensing 
cannot be observed under bending. Copyright © 2013 IFSA. 
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1. Introduction 
 

Iron–gallium alloys (galfenol) exhibit moderate 
magnetostriction (~350 ppm) under very low 
magnetic fields ~100 Oe (8000 A m-1), have very low 
hysteresis, and demonstrate high tensile strength  
(~500 MPa) and limited variation in 
magnetomechanical properties for temperatures 
between −20 and 80 C [1-5]. These materials are, in 
general, machinable, ductile and can be welded. 
Thus, they can be easily threaded, attached to 
existing structures and used as load bearing members. 
They have a high Curie temperature  (675 C) and are 
corrosion resistant. The raw materials used to 
produce FeGa alloys are relatively inexpensive. All 

these factors demonstrate that FeGa alloys have great 
promise as an engineering material for actuation and 
sensing applications [6-7]. 

Yoo designed a tuning fork-based gyro sensor 
which uses mm-size Galfenol patches as actuator and 
sensor material in bending [8]. Downey showed that 
mm-scale Galfenol rods can be used as a sensor in 
bending and the results of this work was used to 
conceptualize a nanowire-based broadband acoustic 
sensor [9]. Further work in this area led to the 
mechanical characterization of Galfenol nanowires 
which showed that although their Young’s modulus 
is similar to that of bulk material, they possess almost 
three times the tensile strength. Datta and Flatau 
showed that Galfenol could be adhered to a structural 
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material and used as strain sensor in bending [10]. 
Hale and Flatau and Parsons demonstrated the 
application of Galfenol in tactile sensing and torque 
sensing respectively. Ghodsi developed a positioning 
actuator for cryogenic environment. Ueno et al. 
developed linear actuator, wobbler and vibrator  
[11-13]. 

Such applications motivate the development of a 
modeling framework and performance analysis for 
active structures. Structural modeling of extensional 
magnetostrictive transducers has successfully been 
performed, while performance analysis of 
Magnetostrictive cantilever has been a challenge. 

Various non-linear models have also been 
developed to account for the magnetomechanical 
response of ferromagnetic materials over different 
operating conditions. Higher order series expansion 
of the free energy yielded the Landau model. 
Bergqvist and Engdahl combined the effects due to 
stress and magnetic field into an equivalent field term 
and incorporated this in the Preisach operator to 
model the effect of stress on magnetization. A stress-
induced field term was introduced into the Langevin 
term by Jiles to model the effect of stress on 
magnetization vs. field curves  as well as the effect of 
magnetic field on magnetization vs. stress curves . 
Ghosh and Gopalakrishnan  used a neural network 
technique to non-linearize the coupled constitutive 
equations and successfully predicted both the 
actuation and sensing characteristics of 
magnetostrictive materials. These models were 
limited to one-dimensional analysis and did not 
account for magnetocrystalline anisotropy which is 
required to capture the directional preference of 
magnetization orientation based on the crystal 
symmetry of different materials. 

Armstrong extended the Stoner-Wohlfarth model 
to cubic anisotropy and was able to come up with a 
three-dimensional model for magnetostrictive 
actuation [14]. This approach was adapted to model 
both the actuator and predict the sensor responses of 
single crystal and polycrystalline Galfenol subjected 
to collinear stress and magnetic fields. An extension 
to this approach was developed to add stress-
annealing effect by incorporating a uniaxial 
anisotropy. These models included Zeeman, stress-
induced anisotropy and magnetocrystalline 
anisotropy energy but excluded the exchange energy 
because it is non-zero only within the domain wall 
and hence forms a small fraction of the total energy 
of a bulk sample. Moreover, the preclusion of the 
magnetostatic energy incapacitates the ability of 
these models to account for demagnetization effects. 

Smith developed a homogenized energy model 
which included magnetostatic, stress-induced 
anisotropy, magnetocrystalline anisotropy and 
exchange energy terms [11]. The exchange 
interaction was phenomenologically incorporated 
using Boltzmann statistics which ironically considers 
only noninteracting particles. Moreover the use of 
Boltzmann statistics is only applicable to a large 
number of particles and may not be a valid 

assumption near saturation when the material is 
almost in a single domain state. Using Armstrong’s 
energy formulation and Smith’s  framework of 
homogenized energy model, Dapino developed a 
magnetomechanical model which takes into account 
six possible directions of magnetization orientation 
instead of two directions in Smith’s work [1]. These 
approaches introduce dynamic effects into the 
constitutive model using thermal relaxation 
techniques and are particularly useful for obtaining 
closed minor loops when operating an actuator or 
sensor with DC bias magnetic field and stress 
respectively. 

This article investigates the performance analysis 
of Galfenol-driven  cantilever beam considering the 
effect of the  magnetic induction and stress. In order 
to motivate a modeling technique in the frame, a 
magnetostrictive cantilever beam model is 
established, constitutive relations that describe the 
material behavior are based on energy minimization 
techniques. We use the saturation magnetization 

(Ms), the magnetostrictive constant ( 100 ) and the 4th 

and 6th order anisotropy constants ( 1K and 

2K respectively) to calculate the Zeeman, stress-

induced anisotropy and magnetocrystalline 
anisotropy energies per unit volume. We adopt the 
Euler-Bernoulli assumptions of the Classical Beam 
Theory to solve stress of the magnetostrictive 
cantilever beam. Experiments and simulations are 
conducted to study performance of the cantilever. 
The experiments and results are presented next, 
followed by concluding remarks. 

 
 

2. Fundamental Relations  
in Magnetostriction 
 
The magnetocrystalline anisotropy energy per 

unit volume is expressed using phenomenological 
expressions which are suitable to account for the 
symmetry. For a cubic crystal, this energy can be 
approximated using equation (1): 
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Here 1 2sin cos , sin sin       and 

 cos3   are the direction cosines of the 

magnetization ( sMM  ) with respect to the 

three cube edges and K1 and K2 are the 4th and 6th 
order anisotropy constants respectively. Based on a 
spherical coordinate system,  0 and 

 20  . 
The dipole-dipole interaction energy between the 

atoms shown in Fig. 1 can be modeled using 
Equation (2) where r is the bond length, 

 321 ,,   are the magnetization direction cosines 
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as defined in Equation (1) and  321 ,,  are the 

direction cosines of the bond direction. 
 
 

 
 

Fig. 1. A one-dimensional representation of interaction 
between neighboring dipoles with magnetic moment m 

separated by bond length r. 
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When the crystal is strained, the bond length and 

consequently the interaction energy change. The sum 
of the change in the interaction energy for the nearest 
neighbor pairs can be expressed as Equation (3) 

where the tensor  123123222211 ,,,,,   

describes the strain in the crystal. The term magelE is 

the magnetoelastic energy. 
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The coefficients 1b and 2b are known as 

magnetoelastic coupling coefficients. They depend 
on the number of nearest neighbor pairs, unstrained 

bond length, the function  rl  and its spatial 

gradient. The spontaneous magnetostriction or 
equilibrium strain in a domain in the absence of any 
external stress or magnetic field can be obtained by 
minimizing the sum of magnetoelastic and elastic 
energy with respect to each of the strain components. 
The expression for elastic energy in a cubic crystal is 

shown in Equation (4) where 11c , 12c and 44c  are 

the elastic constants. 
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The magnetostriction tensor 
~

 
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are shown in Equation (5). 
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The strain along the direction cosines 

 321 ,,   can be expressed by Equation (6) 
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The magnetostriction along [100] which is shown 

in Equation (7) can be obtained by substituting 
111    and 03322   in Equations 

(5) and (6). 
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Similarly the magnetostriction along  which is 

shown in Equation (8) can be obtained by 

substituting 31332211    in 

Equations (4) and (6). 
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Combining Equations (5)-(8), the 

magnetostriction along any arbitrary direction 

 321 ,,  can be expressed using Equation (9) 

when the magnetization direction is along 

 321 ,, 
. 
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If the equilibrium strains from Equation (5) are 

substituted back in Equations (4) and (3), the sum of 
the magnetoelastic and elastic energies would 
translate into an equivalent 4th order 
magnetostrictive anisotropy energy which can be 
expressed by Equation (10). The coefficient is 
following. 
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Hence the effective magnetocrystalline anisotropy 
is given by the sum of Equations (1) and (10). It 

should be noted that measured values of 1K include 

the value 1K  as the magnetostrictive anisotropy 

( 1K ) cannot be experimentally distinguished from 

the pure magnetocrystalline anisotropy ( 1K ). 

 
 
3. Modeling of Constitutive Behavior 
 

Constitutive relations that describe the material 
behavior are usually based on energy minimization 
techniques. The first part of such a technique 
involves the formulation of an energy functional 
which includes or precludes certain terms based on 
assumptions appropriate for the purpose of the 
model. The second part involves the use of 
mathematical techniques to extract the information 
about a required physical response of the material 
under the influence of force fields that perturb the 
energy. 

The simplest model for magnetoelastic material is 
the coupled linear constitutive equations. Considering 
both strain and magnetic induction in the material as 
functions of stress and magnetic field, a first order 
truncated Taylor series expansion about a given 

operating point  00 ,H  can be written as 

Equations (11) and (12). Note that stress and 
magnetic field are assumed to be independent inputs 
to the material. 
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The following Gibb’s free energy formulation can 

be used to couple Equations (11) and (12) and also to 
provide physical interpretations of the differential 
quantities. The total work done ( dW ) on a unit 
volume of ferromagnetic material by a stress and 
magnetic field due to infinitesimal change in strain 
and magnetic induction can be expressed by Equation 
(13). Note that dW is not an exact differential. 
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For a reversible process, the change in internal 

energy (dU) can be expressed using Equation (14) 
which can be obtained by substituting Equation (13) 
in the 1st Law of Thermodynamics. Here S and T 
denote entropy and temperature respectively. 

 
 TdSHdBddU   , (14) 

 

The Gibb’s free energy of the system is given by 
Equation (15)              
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The change in Gibb’s free energy in an isothermal 

reversible process can be expressed by Equation (16). 
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Combining Equations (14) and (16), the change in 

Gibb’s free energy can be written as shown in 
Equation (17). 
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Equation (17) can be used to interpret the 

differential quantities in Equations (11) and (12) as 
follows. The mechanical compliance of the material 
in a process where the magnetic field (H0) is 
maintained constant while the stress is quasistatically 

perturbed about a given stress 0 is expressed by 

Equation (18). 
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Similarly, magnetic permeability of the material 

in a process where the stress 0  is maintained 

constant while the magnetic field is quasi-statically 
perturbed about a given field (H0) is expressed by 
Equation (19). 
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The strain coefficient ( Hd   ) and stress 

sensitivity (  Bd * ) which couple the effects 

of magnetic field and mechanical stress are expressed 
by Equations (20) and (21) respectively and are 
identical to each other as evident from their relation 
to the 2nd derivative of the Gibb’s free energy. 
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We use the saturation magnetization (Ms), the 

magnetostrictive constant ( 100 ) and the 4th and 6th 
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order anisotropy constants ( 1K and 2K respectively) 

to calculate the Zeeman, stress-induced anisotropy 
and magnetocrystalline anisotropy energies per unit 
volume due to a stress ( ) and a magnetic field (H) 
applied along the [100] direction as shown in 
Equations (22), (23) and (24) respectively. 
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The free energy ( TOTE ) of the system 

corresponding to different orientations in 
3D space can be expressed in terms of their 

direction cosines (
321 ,,  ) as shown in 

Equation (25). 
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In order to develop an expression for the bulk 
magnetization and magnetostriction, it is necessary to 
understand the following probabilistic approach. Let 
us assume that a bulk magnetic material is composed 
of a number of noninteracting magnetization units. 

The fraction of these units at a state  ji, , which is 

defined by the orientation  ji  ,  of these units, 

may be denoted by ijp . From the physics of 

ferromagnetism, we know that a larger number of 
magnetic moments would align along a direction of 

lower energy. Since ijp is proportional to the number 

of magnetic moments and inversely proportional to 

 jiTOTE  , , a probability density function given 

by Equation (26) can be used to express ijp  as a 

function of  jiTOTE  , . The choice of an 

exponential distribution in Equation (26) is made to 

avoid a singularity at TOTE =0. 
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where mN  is the normalizing factor which can be 

calculated from Equation (27) from the definition of 
a probability density function and  is an empirical 
scaling factor. It is assumed that the energy is 
distributed in a sphere of unit radius. 
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Let us assume  ,Q is a distributed physical 

quantity. The expected value Q can be obtained 

from Equation (28). 
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In order to calculate the magnetization along 

[100], we substitute  ,Q with 

  )( 1100 sMM  in Equation (28) and convert the 

definite integrals to finite summations which give us 
Equation (29). An optimum value of 05      

is used for all cases to get converged solutions in 
reasonable computation time. 
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The magnetic induction is calculated using 

Equation (30). 
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The same hypothesis can be extended to calculate 

the magnetostriction along [100] using Equation (31). 
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The total strain can be described by Equation (32) 

where ES is the purely mechanical Young’s modulus 
of the material and is also known as the modulus at 
magnetic saturation. This is the modulus measured 
when all the magnetic moments are oriented either 
parallel or anti-parallel. 

 
 

 
sE , 

(32) 

 
 

4. Classical Beam Theory 
 
Structural members subjected to transverse loads 

and operating in flexural mode are known as beams. 
The Euler-Bernoulli assumptions of the Classical 
Beam Theory are as follows. 

1. The cross-section of the beam has a 
longitudinal plane of symmetry known as the neutral 
plane. 
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2. The resultant of the transversely applied loads 
lies in the longitudinal plane of symmetry. 

3. Plane sections originally perpendicular to the 
longitudinal axis of the beam remain plane and 
perpendicular to the longitudinal axis after bending. 

4. In the deformed beam, the planes of cross-
sections have a common intersection, that is, any line 
originally parallel to the longitudinal axis of the beam 
becomes an arc of a circle described by the radius of 
curvature. 

These assumptions are applicable to a beam 
whose length is 8-10 times more than both its width 
and its thickness. 

Let us assume a beam with length (L) along the x-
direction and thickness (t) along the z-direction as 
shown in Fig. 2, is subjected to a bending force. If the 
transverse displacement (w) along the z-direction 
after the bending deformation is much smaller than 
the beam thickness, then the axial displacement (u) 
along the xdirection can be expressed using  
Equation (33). 

 
 

 
 

Fig. 2. An Euler-Bernoulli beam in a Cartesian 
coordinate system. 

 
 

 

dx

dw
zu 

, 
(33) 

 
The axial strain ( x ) can be expressed using 

Equation (34): 
 

 
2

2

dx

wd
z

dx

du
x 

, 
(34) 

 
Using Equation (34) along with the constitutive 

equation ( xx E  ) for elastic material (where E 

is the Young’s modulus of the beam material), a 
moment balance about the y-axis would yield 
Equation (35) which describes the relationship 
between bending moment (M), stress and beam 
dimensions. 

 
 

I

M
zx 

, 
(35) 

 
In Equation (35), I is the 2nd moment of area 

which can be calculated from Equation (36) for a 
beam with a uniform rectangular cross-section as 
shown in Fig. 2. 
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The question posed at the end of the previous 

section motivates the study of the distribution of 
stress and magnetic induction along the thickness of a 
magnetostrictive beam which is fixed at x = 0 and 
free at x = L. A beam with these boundary conditions 
is also known as a cantilevered beam. Cantilevered 
beams are often used for bending characterization. 

The stress at a given point in a cantilevered beam 
subjected to a transverse tip loading (F) can be 
described using Equation (37) which can be obtained 
by substituting  xLFM   in Equation (35). 
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2
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5. Experiment Result and Discussion 
 

Fig. 3 shows the stress distribution along the span 
and thickness of a  cantilevered beam calculated 
using Equation (37). The simulation results are 
expressed in terms of non-dimensionalized length 
(x/L) and thickness (z/t). The parameters used in this 
calculation are F = 2 N, L = 25 mm, b = t = 1.6 mm.  
 
 

 
 

Fig. 3.  Stress  distribution in a cantilevered beam. 
 
 

Using this stress the magnetic induction 
distribution in a Galfenol beam can be simulated as 
shown in Fig. 4. Note that B varies significantly 
along the span as well as thickness of the beam. A 
GMR or Hall-effect sensor placed on the surface of 
the beam would measure a value proportional to B at 
the location of the sensor. A pick-up coil wrapped 
around the beam would measure a thickness-
averaged B. 

Fig. 5 shows the simulation results of thickness-
averaged B along the span of the same cantilevered 
beam subjected to a 2 N tip loading, for different bias 
magnetic fields. For the purpose of these simulations, 
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we assumed that the bias field is uniform inside the 
beam. These simulation results show that the 
thickness-averaged B measured by a pick-up coil 
may vary significantly along the beam span and 
hence the measurement of B will be affected by the 
length and position of the pick-up coil. 

The thickness-averaged B can be deduced using 
the principle of superposition. The net B measured by 
the pick-up coil can be assumed to be the average of 
the B below the neutral axis of the Galfenol beam 
which is in tension and the B above the neutral axis 
of the beam which is in compression. The B below 
and above the neutral axis will be proportional to the 
volume fraction of magnetic moments and their 

orientation in these regions respectively. This 
information can be qualitatively deduced from the 
energy maps shown in Fig. 6. 

Note that the magnetic fields used for simulation 
are internal magnetic fields in Galfenol and not the 
applied magnetic field. Moreover, a lumped 
parameter approach is used in demarcating regions 
with compressive and tensile stresses in the beam 
instead of using a detailed profile of the stress 
variation along the beam thickness. These 
assumptions are acceptable as we are only interested 
in understanding the physics of the behavior 
qualitatively. 

 
 

 
Fig. 4. Magnetic induction distribution in a cantilevered 

beam for a bias magnetic field of 0.5 kA/m. 
 

Fig. 5. Thickness-averaged magnetic induction along 
the span of a cantilevered beam. 

 
 

 
(a) in a demagnetized and un-stressed sample. 

 
(b) after applying a high bias magnetic field. 

 

 

(c) in the region above neutral axis after bending. (d) in the region below neutral axis after bending.
 

Fig. 6. Total energy distribution in the azimuthal plane. 
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Fig. 6 (a) shows the four equal energy minima in 
Galfenol in the absence of stress and magnetic field 
owing to its cubic magnetocrystalline anisotropy.  
Fig. 6 (b) shows that when a large bias magnetic field 
is applied along 0, most of the magnetic moments 
which were earlier oriented along 90°, 180° and 270° 
rotate towards 0°. When the Galfenol sample 
undergoes bending in presence of the large bias field, 
the parts of it which are in compression and tension 
have the energy distribution as shown in Fig. 6(c) and 
Fig. 6(d) respectively. The compressive stress rotates 
some of the magnetic moments lying above the 
neutral axis of the beam from 0° toward 90° and 
270°. The tensile stress can rotate the magnetic 
moments lying below the neutral axis of the beam to 
either 0°. Since most of the magnetic moments are 
already oriented along 0° under the influence of a 
large bias field, the tensile stress has no effect. As a 
result, the effect of compressive stress in the upper 
half of the beam dominates over the effect of tensile 
stress in the beam’s lower half, and a net change in 
thickness-averaged B is observed before and after 
bending in the presence of a large bias magnetic 
field. 

 
 

6. Conclusions 
 

This article investigates the performance analysis 
of Galfenol-driven cantilever beam. A 
magnetostrictive cantilever beam model is 
established, constitutive relations that describe the 
material behavior are based on energy minimization 
techniques. The Euler-Bernoulli assumptions of the 
Classical Beam Theory is used to solve stress of the 
magnetostrictive beam. Experiments and simulations 
are conducted to study performance of the cantilever. 
The sensing is primarily due to the dominating effect 
of compression overtension. 
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