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Abstract: This paper investigates the influence of alcohol on brain complexity. Considering 
electroencephalogram (EEG) has the nonlinear dynamics characteristic of time-varying and non-stationary, the 
wavelet entropy (WE) analysis is introduced. The EEG data of drinkers' and normal people's is analyzed using 
the wavelet entropy. The results show that the EEG wavelet entropy of drinkers' is markedly greater than the 
EEG wavelet entropy of normal people's, The EEG complexity of drinkers' is higher and the brain of drinkers' is 
in a more chaotic state. Copyright © 2013 IFSA. 
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1. Introduction  

 

Drunk driving is the major reason for traffic 
accidents. The regularity of drinkers' brain function 
change is an interesting topic. Generally, dizziness, 
tinnitus and show response especially for emergency, 
are typical symptoms after drinking. Brain is 
composed of a huge amount of nerve cells and each 
nerve cell connects to other nerve cells, making brain 
a complex non-linear system. Complexity can reflect 
the regularity of dynamic systems. The behaviour of 
various systems is different, and thus the regularity of 
the behaviour from these systems is also different. 
Complexity is capable of describing these differences 
and then further discriminating these systems. 

Electroencephalogram (EEG) is a non-invasive, 
low-cost and effective technique for examining 
electrical activity of the brain and diagnosing brain 
diseases in clinical setting [1]. EEG is a type of non-
stationary time series signal. It's hard to analyze EEG 
by linear method, such as time domain analysis and 

frequency domain analysis because of the no-
regularity caused by nonlinear and nonlinear and 
non-stationary factors. Therefore non-linear analysis 
methods could better facilitate opening out the 
characteristics and mechanisms of EEG [2].  

With the rapid development of non-linearity 
theory, complexity analysis is becoming a popular 
field for studying nonlinear dynamics of EEG time 
series. Although different methods have provided 
indirect evidence for synchronization EEG processes 
[3, 8], a tool for a quantitative evaluation of the 
complex EEG signal synchronization and its 
temporal dynamics is still lacking. In information 
theory, 'entropy' represents the irregularity of 
systems, and many complexity concepts are related to 
entropy. Entropy is a concept handling predictability 
and randomness, with higher values of entropy 
always related to less system order and larger 
randomness [4]. Several recent studies measured 
entropy in drinkers' EEG time series. Approximate 
entropy (ApEn) was first put forward by Pincus et al. 
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[5]. In [6], an ApEn-based epileptic EEG detection 
system using artificial neural networks was studied. 
These methods are based on information theory, such 
as permutation entropy (PE), ApEn, and other ones 
based on chaos theory. SampEn was an improved 
algorithm based on approximate entropy (Richman et 
al. 2000) [7].  

PE and ApEn are better in distinguishing the EEG 
between drinkers and the control, but they can't be 
used for on-line analysis due to too much time-
consuming. ApEn's counting process adopts 
Heaviside function, which is very sensitive to the 
threshold value and phase space dimension, and 
vulnerable to noise interference. It lacks relative 
consistency and the result shows much dependence 
on data length. SampEn displays relative consistency 
and less dependence on data length. Nevertheless, the 
similarity definition of vectors in SampEn is based on 
Heaviside function as in ApEn. Due to the inherent 
flaws of Heaviside function, problems still exist in 
the validity of the entropy definition, especially when 
small parameters are involved. To overcome these 
limitations, Wavelet entropy (WE) [13] (Osvaldo A. 
Rosso et al. 2001), a new nonlinear dynamic analysis 
method, can be used for analyzing the short time 
signal. WE algorithm needn't consider any 
parameters during the process of calculation. It can 
reduce the influence of noise, reflect the signal's 
confusion degree of frequency components and 
provide the dynamics characteristics. And it is simple 
and possesses both time-frequency limitations and 
robustness.  

In this paper, we investigate the influence of 
alcohol on brain complexity based on wavelet 
entropy. The work is organized as follows. Section 2 
introduces wavelet entropy method. Section 3 WE 
performances to the nonlinear signals are discussed. 
In Section 4, by calculating the wavelet entropy of 
drinkers’ and normal people's EEG signal, we 
analyze the complexity of drinkers’ and normal 
people's EEG signal. Finally, Section 5 draws the 
conclusions. 

 
 

2 Wavelet Entropy 
 

2.1. Wavelet Transform 
 

Wavelet analysis [9, 10-12, 14] is a signal 
processing method, which relies on the introduction 
of an appropriate basis and a characterization of the 
signal by the distribution of amplitude in the basis. If 
the wavelet is required to form a proper orthogonal 
basis, it has the advantage that an arbitrary function 
can be uniquely decomposed and the decomposition 
can be inverted (Mallat, 1989). The wavelet is a 
smooth and quickly vanishing oscillating function 
with good localization in both frequency and time. A 

wavelet family ( ), ta b is the set of elementary 

functions generated by dilations and translations of a 
unique admissible mother wavelet ( )t : 

 1/2
( ) ( ), , 0,,

t b
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 
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where a, b are the scale and translation parameters, 
respectively, and t is time. As the scale parameter 
increases, the wavelet becomes wider. Thus, one has 
a unique analytic pattern and its replications at 
different scales and with variable time localization. 
The continuous wavelet transform of a signal 

2( ) ( )S t L R  (the space of real square summable 

functions) is defined as the correlation between the 
function ( )S t  with the family wavelet ( ), ta b  for 

each a and b: 
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For a special election of the mother wavelet function 

( )t  and for the discrete set of parameters, 
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constitutes an orthonormal basis of the Hilbert space 

2 ( )L R consisting of finite-energy signals. The 

correlated decimated discrete wavelet transform 
provides a non-redundant representation of the signal 
and its values constitute the coefficients in a wavelet 
series. These wavelet coefficients provide full 
information in a simple way and a direct estimation 
of local energies at different scales. More-over, the 
information can be organized in a hierarchical 
scheme of nested subspaces called multi-resolution 

analysis in 2 ( )L R . In the present work, orthogonal 

cubic spline functions are employed as mother 
wavelets. Among several alternatives, cubic spline 
functions are in a suitable proportion with 
smoothness and numerical advantages and they have 
become a recommended tool for representing natural 
signals. 

In the following, the signal is assumed to be 
given by the sampled values 

{ ( ), 1, , }0S s n n M   , corresponding to a 

uniform time grid with sampling time ts. For 
simplicity the sampling rate is taken as ts = 1. If the 
decomposition is carried out over all resolutions 

levels, N  log M2 , the wavelet expansion will be: 
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where wavelet coefficients  C kj can be interpreted 

as local residual errors between successive signal 
approximations at scales j and j + 1, while ( )tj is 

the residual signal at scale j. It contains information 
of the signal S(t) corresponding to frequencies 

1
2 2

j j
s s     . 

 
 
2.2. Wavelet Energy 

 
Since the family { ( )}, tj k is an orthonormal 

basic for 2 ( )L R , the concept of energy is linked with 

the usual notions derived from Fourier theory. Then, 
wavelet coefficient are given by 

( ) , ( ),C k S tj j k , and the energy of a signal at 

each scale 1, 2, ,j N    , will be 

 
 2 2

( )E C kj j jk
  , (5) 

 
The energy at each sampled time k will be 
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In consequence, the total energy can be  

obtained by 
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For the jth scale, the wavelet energy ratio is 

considered as a normalized value 
 

 E j
p j Etot

 , (8) 

 

The wavelet energy ratio vector { }p j  represents 

energy distribution in a time-scale, which gives a 
suitable tool for detecting and characterizing singular 
features of a signal in time-frequency domain. 

Clearly, 11
N pjj

   . 

 
 
2.3. Wavelet Entropy 
 

Entropy gives a useful criterion for analyzing and 
comparing a probability distribution. It provides a 
measure of information of any distribution. 
According to the entropy theory and wavelet energy 
ratio defined above, wavelet entropy is defined as 

 
 ( ) . ln [ ]

0
S S p p pj jW T W T j

   


, (9) 

 
To some extent, wavelet entropy can represent 

the degree of order/disorder of the signal, so it can 
provide useful information about the underlying 
dynamical process associated with measured signals. 
A signal generated by a totally random process can 
be taken as representing a very disordered behavior. 
This kind of signal will have a wavelet representation 
with significant contributions from all frequency 
bands. In addition, it is expected that all contributions 
will be of the same order. Consequently, the relative 
wavelet energy will be almost equal for all resolution 
levels and the wavelet entropy will take the 
maximum value.  

 
3. WE Performances for the Nonlinear 

Signals 
 
In order to study the wavelet entropy's 

performance of mutation detection and sequence 
complexity measuring about the nonlinear time 
series, we construct the following ideal nonlinear 
time series.  

 
 (1 ), [0,1]1y uy y yn nn    , (10) 
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Fig. 1. Curve of nonlinear time series with Gaussian white noise. 
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Fig. 2. Entropy curves of nonlinear noised time series. MP-ApEn curve: (a) Sliding window length L=50, step 1;  
(b) L=200.  Time-WE curve: (c) Time evolution window length L=50, step 1; (d) L=200. 

 
 

In the equation (10), y0=0.8, u=3.8. we introduce 
the Gaussian white noise into nonlinear ideal time 
series in the foundation of equation (10). The 
Gaussian white noise with noise ratio for 2 db, and 
the amplitude for 0.2. 

To study the performance of wavelet entropy for 
measuring the complexity of nonlinear time series 
with Gaussian white noise, we calculate MP-ApEn 
and Time-WE of the noised nonlinear time series. 
The MP-ApEn and Time-WE curves are shown in 
Fig. 2. In order to test the efficiency of wavelet 
entropy algorithm in the complexity analysis of time 
series, we select the length of ApEn sliding window 
and WE time evolution window is 200, and 
separately calculate the average entropy value when 
the data of the series are at 1 1000t   and 

1000 2000t  . Meanwhile, we count the average 
computing time. The parameters of ApEn, m=2, 
r=0.26*std (y). Results are shown in Table 1, 
ATApEn means the average computing time of 
ApEn, and ATWE means the average computing 
time of WE. ApEns1 or WEs1 means 1 1000t   
paragraph sequence entropy, and ApEns2 or WEs2 
means 1000 2000t   paragraph sequence entropy. As 
shown in Table 1, the entropy of 1 1000t   is 
smaller than1000 2000t  .Comparing the average 
computing time of WE and ApEn used in the 
operation of the series, the WE calculation time is 
significantly faster than the ApEn at the same 
conditions.  

  
 

Table 1. The entropy and calculating time of nonlinear series. 
 

 ApEns1 ApEns2 ATApEn/s WEs1 WEs2 ATWE/s 
Nonlinear 0.3997 1.5563 9.673 0.3416 0.5948 2.196 

  
 

4. Application  
 
4.1. Experiment Data 

 
The experimental data were taken from a public 

EEG database. The experiments were performed on 
122 subjects. The tested people are made experiments 
120 times respectively [15] (Zhu Guohun et al., 
2011). In the experiment, the tested people's heads 
are placed with 64 conductive poles, the sampling 
frequency is 256 Hz and recording data period is 
1 second in every experiment. Because the data of 
EEG in data concentration is incomplete, some 
experiment data are not in the database, therefore, 
with the requirements of examples analysis and in 
order to ensure the comparability of analysis results, 

30 drinkers' and 30 normal people's EEG completely 
data are random selected in the dataset, as two data 
sets of this research analysis. Firstly, we calculate the 
sampling data of 64 conductive poles that are got in 
single at the 40th stimulation experiment, and 
analyze the results. Then, we choose drinkers 
numbered co2a0000364 and normal people numbered 
co2c0000337 in the same 10 times irritant 
experiments. We calculate WE and analyze EEG data 
of FP2 conductive pole. FP2 electrodes were located 
at the upper part of the eyes. 
 
 

4.2. Experiment Results 
 

The EEG data was selected from the 60 tested 
people. Among the 60 tested people, there are 30 
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drinkers and 30 normal people. We calculate all 64 
electrodes' wavelet entropy to get the average value, 
draw drinkers' and normal people's average wavelet 
entropy curve of 64 conductive poles shown in Fig. 3.  

As shown in Fig. 3, including 64 conductive 
poles, the drinkers' EEG wavelet entropy is widely 
greater than normal people's. The wavelet entropy of 
every conductive pole of drinkers’ or normal people's 
is Inconsistent. The different degree of EEG wavelet 
entropy between drinkers and normal people is also 
clear at the same conductive pole. 

In order to analyze WE's obvious differences of 
two groups of EEG data on the same electrode, we 
choose alcoholic numbered co2a0000364 and normal 

people numbered co2c0000337. Let them stay in the 
same experiments 10 times to get the FP2 electrode's 
EEG data, and calculate WE of drinker and normal 
people at FP2 electrode in every experiment, then get 
the wavelet entropy that listed in Tab.2. WE of the jth 
experiment is denoted WEj, 0,1, 2, , 9j   . 

As in Table 2, the WE of drinker's EEG data on 
FP2 electrode is markedly greater than normal 
people's. The corresponding entropy curve is shown 
in Fig. 4. We can find that entropy curves become 
more and more stable with more experiments. 
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Fig. 3. WE curves of 64 conductive poles of drinkers' and normal people.   
 

Table 2. WE of FP2 electrode. 
 

Brain 
state  

WE0 WE1 WE2 WE3 WE4 WE5 WE6 WE7 WE8 WE9 

Normal 0.5076 0.4316 0.2012 0.4271 0.3629 0.1429 0.4310 0.3885 0.3890 0.4293 
Alcoholic 0.6952 0.6199 0.5215 0.4798 0.5872 0.4948 0.6003 0.5888 0.5609 0.5820 

  
 
4.3. Results Analysis 

 

Through the comparison and analysis of EEG 
complexity by wavelet entropy on drinkers and 
normal people, we verify that the feasibility of the 
wavelet entropy in measuring the complexity of 
living examples. Analyzing the two figures, we can 
get that the EEG wavelet entropy of drinkers is 
markedly greater than the EEG wavelet entropy of 
normal people. Compared with normal brain, the 
drinkers' will be with highly complexity and neuronal 
activity is increased because of stimulation of 
alcohol. All results can properly reflect the dynamics 
nature and changes of brain signals. For the changes 
between drinker's and normal people's EEG wavelet 
entropy at the same electrode point, from Fig. 9, at 
CP1, CP5 and CP6 electrode points, the increasing 
trend of WE is obvious larger. So these parts are 
more sensitive to alcohol.  

The method, using WE to analyze the complexity 
of EEG signal, makes a contribution to detect 
drunken driving and help hospitals with alcoholism. 
However, the EEG reference data is incomplete, we 
should try our best to choose the part of data which is 

much more complete to compute and analyze. 
Observing Fig. 4, under the case of fewer 
experiments, the fluctuation of WE curve is larger. 
With more and more experiments carried out, more 
and more objects chosen, wavelet entropy trends to 
be stable. It shows that when wavelet entropy is used 
on object in practice, because of limits of experiment 
times and less random data got, the fluctuation of 
wavelet entropy is strongly, and then leading the 
accuracy of experiment to reduce. The problems need 
to be solved in the future. 
 
 
5. Conclusions 

 
In this paper, we introduced the wavelet entropy 

to analyze and measure the EEG complexity of 
drinkers’ and normal people.  

1) Wavelet decomposition can reduce the 
influences of noise. WE model dimension m and 
threshold value r, have no influence on the result. WE 
can accurately measure the chaos of linear and 
nonlinear time series.  



Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 184-189 

 189

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experiment Number

W
E

 

 
Normal

Alcoholic

 
 

Fig. 4. WE curve of FP2 electrode of drinkers' and normal people. 
 
 

2) Comparing and analyzing drinkers' (or 
alcoholics') and normal people's EEG, the WE of 
drinkers' is widely larger than that of normal people's. 
In other words, the complexity of drinkers' brains is 
higher than that of normal people's. This makes a 
contribution to studying the states and complexity of 
drinkers' brains. 

3) Considering that drinkers' intoxication levels 
and sensitive degree for alcohol are all different, we 
will introduce fuzzy analysis method, such as fuzzy 
entropy, based on quantitative WE analysis in future 
works. We will do systematic fuzzy classification of 
the drunken degree and alcohol sensitive degree of 
drinkers', and reveal the changing rules of drinkers' 
EEG complexity with more details.      
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