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Abstract: This paper considers the fault detection problem of wireless network control system with time delay 
and uncertainties. For a class of model which has bounded disturbance and unknown fault, a sliding mode 
observer is designed for the situation that all the states of the system can be measured and no missing 
measurement occurs.  We convert the design of fault detection observer to the design of reaching motion and 
sliding motion, by the use of Lyapunov function, a sufficient condition for sliding motion with time delay 
independent and uncertainties is acquired through linear matrix inequality, while the nonlinear item in observer 
is also designed. Finally, the effectiveness of proposed method is demonstrated by simulation results.  
Copyright © 2013 IFSA. 
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1. Introduction 
 

With the development of network technology, 
research and application of wireless network control 
system attracted more and more attention from 
scholars [1–5]. Communication using wireless 
network can save a large number of connections, 
saving system construction and maintenance costs, 
and enhance the flexibility of the system components 
[6]. However, as the system is growing highly 
modular and complex, system failure probability is 
also growing, faults can bring disastrous damage to 
the entire network control system, therefore, fault 
detection on wireless network control system  
is essential. 

Fault detection based on sliding mode observer 
has achieved fruitful results in recent years. Qun 
Zong etc. [7] considered the fault detection problem 
of distributed networked control system with time 
delay, for states which are not available for 
measurement, they designed a transformation matrix 
to separate measurable states and unknown states, 
and developed sliding mode observer for fault 
detection. Christopher Edwards etc. [8] concerned 
with the use of sliding mode for fault reconstruction 
and provided a simple way for fault tolerant control 
scheme. Ming Liu etc. [9] proposed a kind of sliding 
mode observer, in which a derivative gain and a 
proportional gain were introduced to provide more 
design freedom, and the effects of sensor faults were 
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eliminated by a discontinuous input term. So sliding 
mode observer is in widely use. 

In this paper, we take time delay and system 
uncertainties into account, aim to design a sliding 
mode observer for fault detection. We transform the 
fault detection problem into the design of reaching 
motion and sliding motion, propose a sufficient 
condition based on Lyapunov function, and 
numerical example is given to show the effectiveness 
of proposed method. 

 
 

2. Problem Formulation 
 
Considering a type of WNCS as shown in Fig. 1, 

information flow is transmitted among all network 
sensors. However, as sensor nodes may be in 
dynamic motion, gather information we need 
everywhere, the structure may not maintain fixed, so 
connection between sensor nodes maybe interrupted 
or established as time goes on, this uncertain factor 
results in the uncertainties in WNCS. As shown in 
the figure, the solid line denotes fixed connection and 
dashed line denotes uncertain connection which will 
be established or vanished. Information changes 
between sensor nodes are also time consuming, 
which is reflected as time delay in system, and 
system model can be described as below: 
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(1) 

 

where ( ) xnx k R  denotes system state, 

( 1) xnx k R   denotes the state delay of the system, 

( ) unu k R  denotes the system input, ( ) dnd k R  

denotes the unknown disturbance, ( ) fnf k R  is 

the fault of the system, ( ) yny k R  denotes system 

output, A  and dA  are internal perturbation 

arising from uncertain factors, A , dA , B , dE , fE  
and C  are constant matrices with appropriate 
dimensions. 

For system shown in (1), we make the following 
assumption.  
Assumption 1. Perturbation parameter of the system 
satisfies: 

 
 [ ] ( )[ ]d dA A GD k H H     

 
Respectively, G , H  and dH  are known constant 

matrix, ( )D k  is time delay uncertain matrix, yet 

Lebesgue-measurable, and ( ) ( )TD k D k I . 

WNCS

 
 

Fig. 1. WNCS with unfixed structure  
and transmission delay. 

 
 

Assumption 2. System disturbance has an upper 
bound, which satisfies ( )d k d .  

Assumption 3. All the states of the system can be 
measured and no missing measurement occurs. 

Assumption 4. TC C  is full rank.  
In order to generate a residual signal, we design a 

sliding mode observer for model (1) as follows: 
 

 

1

ˆ ˆ( 1) ( ) ( ) (

ˆ) ( )+ ( )

ˆ[ ( ) ( )] ( )

ˆ ˆ( ) ( )

N

d
i

d

x k A A x k A

A x k i Bu k

L y k y k w k

y k Cx k




    

   
   




 

(2) 

 
where ˆ( )x k  and ˆ( )y k  are observed value of states 

and outputs, L  is the gain of observer , ( )w k  is 

nonlinear item which needs to be designed, states 
error and residual can be written as: 
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So the system error model is: 
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(3) 

 
We define the sliding surface ( )s k  and residual 

of the system ( )k  as: 

 
 ( ) ( )

( ) ( )

y

y

s k e k

k e k


 

  



Sensors & Transducers, Vol. 160, Issue 12, December 2013, pp. 202-208 

 204

If there is no fault, the system residual is zero. In 
order to detect system fault, we set up residual 
evaluation function J  and fault threshold thJ  as: 
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So system fault can be detected by comparing J  and 

thJ .  
 

 
th

th

J J No fault happens

J J Fault happens


 

  

 
The method for fault detection is to design a sliding 
mode observer, which satisfies the two conditions 
[10]: 

1) System error model is asymptotically stable 
when ( 1) ( ) 0s k s k     

2) Sliding mode manifold satisfies 
( 1) ( )s k s k   
Condition (1) means that states motion in sliding 

motion is stable, while condition (2) guarantees all 
states will be driven onto the sliding surface within 
finite time. 

Besides, a frequently used and important lemma 
is listed below. 

Lemma 1. For any , nx y R , 0  , the 

following equation holds. 
 

 1
2 T T Tx y x x y y  


  

 
 
3. Main Results 
 

In this section, sliding mode observer will be 
designed in two steps for fault detection. First, we are 
going to proof that states can reach the sliding motion 
within finite time. 

Theorem 1. For system error model (3) which 
meets assumption 1, 2, 3 and 4, and 

1 2( ) ( ) ( )w k w k w k  , where 1( ) dw k E d , 

2
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    , then system states 

will be driven onto the sliding surface within finite 

time if there exists a general matrix x yn n
L R

  
making (4) holds. 

 
 3( )

0
T T TC C A GH LC C C

I

   
 

  
 (4) 
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According to Lemma 1 and we set TC C  , we 

have  
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Substituting (6), (7), (8) into (5), we have 
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we make 1( ) dw k E d , 
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By Schur complement, equation (10) is equivalent to 
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The proof of Theorem 1 is complete. Next, we will 
proof the system error model is asymptotically stable 
when in sliding motion. 
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 ( ) ( ) ( )T
xV k e k Pe k  (12) 

 
Make forward difference of ( )V k  we have 
 
 

1

1 1

1

( 1) ( )

( )[( ) (

) ] ( ) 2 ( )(

) ( ) ( 1)

( 1) ( ) (

) ( 1) 2 ( ) (

) [ ( ) ( )]

2 ( )( ) [ ( )

( )] [

T T
x

T
x x

N
T

d d x
i

N N
T T
x d d d

i i

N
T

d x x d
i

T
d d

T T
x d

V k V k

e k A A LC P A A

LC P e k e k A A

LC P A A e k

e k A A P A

A e k e k A

A P E d k w k

e k A A LC P E d k

w k



 



 

     

    

   

   

   

  

   
 



 



( )

( )] [ ( ) ( )]

d

T
d

E d k

w k P E d k w k 

 

(13) 

 
According to Lemma 1 and we set P  , we have  
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Substituting (14), (15), (16) into (13), we have 
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 ( 1) ( )

( )[3( ) (

) ] ( )

( )[3( ) (

) ] ( )

0

T T
x

x

T T
x

x

V k V k

e k A A LC P A

A LC P e k

e k A GH LC P A

GH LC P e k

 

   
   

  

  


 
(18) 

 

By Schur complement, equation (18) is equivalent to 
 
 3( )

0
TP A GH LC P

P

   
 

  
  

 
The proof of Theorem 2 is complete. 
 
 
4. Equations 
 

In this section, simulations are given for testing 
the theorems developed in this paper. Consider the 
system model (1), where 
 

 0.412 0.4 0.6

0.376 0.367 0.91

0.198 0 0.22

A

 
   
  

  

   
 0.232 0.01 0

0.019 0.062 0.032

0.037 0.078 0.149
dA

 
   
  

  

   
0.184 0.112 0.23

0.097 0.16 0.156

0.277 0.069 0.152

H

 
    
    

0.073

0.045

0.069

B

 
   
  

 

 
0.8sin(0.7 ) 0 0

( ) 0 0.8sin(0.7 ) 0

0 0 0.8sin(0.7 )

k

D k k

k

 
   
  

 

 
0.1 0.2 0.1

0 0.23 0.76

0.87 0.5 0.32

G

 
   
  

0.021

0.12

0.08
dE

 
   
  

 

 

0.27

0.19

0.34
fE

 
   
  

1.92 0.7365 0.01

0.873 0.512 0.013

0.063 0.021 0.72

C

 
   
  

 

 

( ) sin(0.2 )u k k  ( ) 1.2cos(0.1 )d k k  
 

1

1

2

3

( ) 1.2 200

( ) 1.2 300

( ) 1.2 200 300

( ) 4 200 300

f k k

f k k

f k k

f k k

 


  


  


  

 

 

Parameters can be acquired based on Theorem 1 
and Theorem 2, with N = 2, we have 

 

 
 

15.162 26.5702 3.3753

10.1818 17.0192 2.4713

5.7506 9.3551 4.4224

L

  
   
  
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 239.7 185 744.9

185 142.7 574.8

744.9 574.8 231.48

P

 
   
  

  

 
Simulation results are shown in Fig. 2, blue solid 

curve denotes real value, and red dashed one denotes 
estimate value, which tracks the blue one very well. 
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Fig. 2. States estimation. 
 
 
When fault occurs in the system, residuals are 

shown in Fig. 3, dashed line denotes threshold value. 
From figures we can clearly see that when a fault 
occurs, residual quickly rise above the threshold 
value, which indicates the fault happens. 
 
 
5. Conclusion 

 
This paper considers the fault detection problem 

in wireless network control system. For a class of 
uncertain model with time delay and disturbance, 
sliding mode observer is designed for fault detection 
of the system. We divide the designing process into 
reachable and stable problems. By the use of 
Lyapunov function, we acquire the sufficient 
condition for observer design, and get the gain of 
observer. Simulation results demonstrate the 
effectiveness of proposed method. 
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Fig. 3. Residual of states when a fault happens. 
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