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Abstract
Since Ronald Konopka and Seymour Benzer’s discovery of the gene Period
in the 1970s, the circadian rhythm field has diligently investigated regulatory
mechanisms and intracellular transcriptional and translation feedback loops
involving  , and these investigations culminated in a 2017 Nobel PrizePeriod
in Physiology or Medicine for Michael W. Young, Michael Rosbash, and
Jeffrey C. Hall. Although research on 24-hour behavior rhythms started with

, a series of discoveries in the past decade have shown us thatPeriod
post-transcriptional regulation and protein modification, such as
phosphorylation and oxidation, are alternatives ways to building a ticking
clock.
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Introduction
The time-keeping mechanisms of circadian rhythms can be  
regulated by multiple layers of different cellular networks,  
including transcription-translation feedback loops (TTFLs) and 
post-translation oscillators (PTOs)1. Circadian TTFLs gener-
ate oscillations in gene expression through delayed negative  
feedback whereby expression of a transcription factor nega-
tively regulates its own transcription2. The core of this genetic  
network in mammals is the expression of a heterodimer of  
BMAL1 (also called ARNTL) with either CLOCK or NPAS2, 
which binds at promoter cis-elements called E-boxes to drive  
expression of genes encoding period (PER1-3), cryptochrome 
(CRY1-2), and nuclear receptor subfamily (NR1D1-2) proteins, 
which then repress Bmal1 expression by a series of separate 
and interconnected feedback loops3,4. In contrast to behaviors 
driven by cyclic differences in gene expression, PTOs generate  
rhythms independent of transcription and translation through bio-
chemical processes, such as phosphorylation, protein–protein 
interactions, and other post-translational modifications. These 
post-translational processes also alter TTFLs as well as post-
transcriptional modification of transcripts involved in TTFLs5,6. 
The most well-known PTO is the cyanobacteria KaiABC sys-
tem, which consists of only three proteins and ATP7, but novel 
PTOs may also exist in red blood cells (RBCs)8–14, which lack a 
nucleus and the molecular machinery to drive TTFL rhythms. 
In addition, a series of new and old observations of 24-hour  
rhythms in biological contexts where classic TTFLs are absent 
or diminished (Figure 1)15–23 continue to puzzle researchers and  
demonstrate that there are multiple ways to build a clock.

One of the first modern uses of the term “circadian” was to  
describe 24-hour endogenous oscillators that alter Drosophila 
fly behavior rhythms24, and the persistence of oscillations 
at various temperatures was viewed as a defining feature of  
circadian rhythms25,26. The first genetic component of circadian 
rhythms was discovered in the 1970s when Ronald Konopka 

in Seymour Benzer’s lab used chemical mutagenesis of  
Drosophila to discover three alleles of the Period gene27. In the 
1980s, rhythmicity of Period mutants was shown to be restored 
by gene transfer28,29, confirming that Period both is necessary  
and can restore rhythmic behaviors, such as eclosion and  
locomotor activity, in flies. In 1990, Hardin et al. proposed that 
PER protein altered the levels of Period mRNA in a negative  
feedback loop30, but at the time it was unclear whether PER  
directly suppressed Period transcription or whether the negative 
feedback occurred through an indirect route. A few years later, 
researchers discovered that this negative feedback was direct in 
the bread mold Neurospora crassa model of circadian rhythms  
because the frequency (FRQ) directly repressed its own  
transcription31. In addition to Neurospora32 and Drosophila33,  
TTFL models of circadian rhythms from plants34 to mammals35 
have been elucidated and reviewed extensively.

Post-translational oscillators and post-translational 
modifications: breaking the transcription-translation 
feedback loop mold
The modern idea that TTFLs were necessary for 24-hour  
rhythms was shattered in 2005 when Nakajima et al. reconstituted 
rhythmic 24-hour oscillations in protein phosphorylation with 
just a small number of cyanobacterial proteins36. This seminal  
moment in the circadian rhythm field spurred investigators to 
examine other non-canonical rhythm-generating mechanisms and 
to unearth forgotten studies of PTOs. For example, in the 1960s, 
it was shown that the unicellular alga Acetabularia undergoes  
diurnal rhythms of photosynthesis, which persist even after the 
nucleus has been artificially removed21.

There are a few more recent examples of organisms that have 
circadian rhythms in the absence of TTFLs. In the unicellular  
red alga Cyanidioschyzon merolae, circadian rhythms control 
cell cycle progression in the absence of RNA translation22, and  
the unicellular dinoflagellate Lingulodinium has daily rhythms 

Figure 1. Post-translation oscillators without transcription-translation feedback loops. Examples of post-translation oscillators 
in enucleated cells such as Acetabularia and red blood cells, in unicellular alga lacking RNA rhythms, and in mice in which the classic 
transcription-translation feedback loop module is disrupted genetically or anatomically. KO, knockout; SCN, suprachiasmatic nucleus.
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in bioluminescence and photosynthesis without a detectable  
change in RNA transcript abundance and in the presence of 
transcription inhibitors23. These studies suggest that protein  
activities and post-translational modifications can serve as  
24-hour oscillators. Research has centered on phosphorylation  
as the period-determining post-translational modification37–40,  
but other post-translational modifications, including meth-
ylation, acetylation, sumoylation, and ubiquitination, also alter  
clock function41–44.

Importantly, circadian rhythms are insensitive to temperature 
and this property of temperature compensation was identified 
in biological time-keeping systems, such as those of bees, flies, 
and marine organisms, as early as the 1950s and 1960s25,26,45,46. 
Transcription and translation are temperature-dependent  
reactions47–50, which suggests that post-translational activities  
are important for temperature compensation. For example,  
Isojima et al. revealed that phosphorylation by casein kinase I 
(CKI) is a temperature-insensitive period-determining process, 
and the degradation rate of PER2, which is regulated by CKI  
phosphorylation, was found to be insensitive to temperature38. 
Importantly, the phosphorylation of PER2-derived peptide by  
CKI is insensitive to temperature in vitro. In 2015, the degra-
dation of PER2 was found to occur in a more complex mode  
composed of three distinct stages, and the duration of the second 
stage depended on circadian time, which led to the identifica-
tion of temperature-sensitive and -insensitive PER2 phosphor-
ylation sites51. Thus, differences in the temperature sensitivity of  
phosphorylation sites on the repressor, which alter degradation 
rates at different temperatures, are responsible for temperature  
compensation, PER2 stability, and ultimately the length of the 
circadian period. In 2017, Shinohara et al. identified a short  
sequence region around residue K224 in CKI, which was 
responsible for temperature compensation and converted a tem-
perature-sensitive kinase into a temperature-insensitive one 
in vitro52. Mutation of K224 shortens circadian behavioral  
rhythms and alters the temperature dependency of the circadian 
clock in the sub-hypothalamic region of the brain52, called 
the suprachiasmatic nucleus (SCN), which controls circadian  
response to light. It is though noteworthy that K224 is part of the 
consensus KRQK monopartite nuclear localization signal in CKI, 
which makes it difficult to disentangle the effects of tempera-
ture dependence from that of localization in vivo. These studies  
provide evidence for how post-translational activities modify  
TTFL rhythms, but a series of new and old studies have  
revealed that PTOs can drive rhythms even in the absence of  
TTFL clocks.

Blood: a novel source of post-translational oscillator 
rhythms
Mammals have a natural supply of enucleated cells in RBCs, 
and researchers have plumbed this cell type for non-TTFL  
rhythms. In the 1970s, circadian rhythms in ATPase activity and 
periodic rhythms in enzymes—such as acetylcholinesterase,  
glyceraldehyde-3-phosphate dehydrogenase, and glucose-6- 
phosphate dehydrogenase—in RBCs were found (Table 1), but 

it was unclear whether the rhythms were robust or persistent  
beyond 24 hours10.

In 2011, an anti-oxidant enzyme called peroxiredoxin (PRX) 
in cultured human RBCs was found to have temperature- 
independent circadian cycles of hyperoxidation for up to  
76 hours11. Because RBCs lack a nucleus and the rhythms  
persisted in the presence of transcription and translation  
inhibitors, a novel non-transcriptional-based circadian oscilla-
tor in mammals was proposed. Analysis of the PRX rhythms 
relied solely on PRX1, PRX2, and PRX-SO

2/3
 (hyperoxidized 

PRX form) antibodies. In particular, the PRX-SO
2/3

 antibody  
recognizes multiple hyperoxidized forms of PRX53, results in 
up to eight different bands on non-reducing sodium dodecyl  
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)11, and 
produces multiple non-specific bands that can confound inter-
pretation of the hyperoxidized signal54,55, which make determina-
tion of the correct PRX isoform technically difficult and in-gel  
controls essential. Nevertheless, the same researchers discovered 
that hyperoxidized PRX-SO

2/3
 rhythms were conserved in a wide  

range of species55,56.

In mice, blocking hemoglobin oxygen transport by incuba-
tion with carbon monoxide eliminates PRX2 hyperoxidized  
rhythms57. Hemoglobin auto-oxidation in RBCs generates  
superoxide, which is converted to H

2
O

2
 by superoxide dismutase 

1 (SOD1)58,59, and H
2
O

2
 is subsequently reduced by catalase, 

glutathione peroxidase, and PRXs54,58,60, which results in the  
oxidation of these proteins61. Oxidation of PRX2 is reversed by 
sulfiredoxin (SRX)62–64, but rhythms in PRX2 oxidation in mice 
are not mediated by the rhythmic reduction of hyperoxidized  
PRX2 by SRX but rather through rhythmic degradation by 
20S proteasomes, and only about 1% of the total PRX pool is  
modified in a circadian manner57. Mitochondria-specific PRX 
(PRX3) is also reversibly inactivated by hyperoxidation, reduced, 
and reactivated by SRX, and hyperoxidized PRX3 and SRX 
undergo anti-phasic circadian oscillations in the mitochondria 
in various mice tissues, which links mitochondria function 
to circadian rhythms65. Another group revealed about three peaks 
in hyperoxidized PRX-SO

2/3
 rhythms in mice over a 48-hour  

period (instead of two as would be expected for a circadian  
rhythm) and showed that rhythms were impaired in SOD1- 
mutant mice66. There is still uncertainty regarding the origin 
of PRX hyperoxidation rhythms, but the data suggest that  
PRX-SO

2/3
 oscillations are more an output of rhythm-generating 

machinery involving the 20S proteasome rather than a daily  
oxidation-reduction cycle.

Deconstructing PRX rhythms biochemically and using non- 
antibody methods, such as mass spectrometry, to directly 
detect the hyperoxidized cysteine residue or redox-sensitive  
fluorescent proteins may bolster understanding of this novel  
PTO. However, biochemical reconstruction is difficult because 
RBC lysis causes gradual loss of PRX-SO

2/3
 signal over a 48-hour 

period9. However, these types of approaches have revealed that 
potassium-containing media enhances PRX2-SO

2/3
 rhythms9, 
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Table 1. Oscillatory phenomena observed in human red blood cells.

Molecule Year Period Impact Reference

Glucose-6-phosphate 
dehydrogenase

1975 ~12 hours Observed two peaks in enzyme activity over a 24-hour period in three 
different individuals

13

Glutamate oxaloacetate 
transaminase

1975 ~12 hours Observed two peaks in enzyme activity over a 24-hour period in two 
different individuals

13

Acid phosphatase 1975 ~24 hours Observed one peak in enzyme activity over a 24-hour period in one 
individual in plasma-free human red blood cell suspensions

13

Acetylcholinesterase 1975 ~24 hours Observed one peak in enzyme activity over a 24-hour period in two 
individuals

13

Glucose-6-phosphate 
dehydrogenase

1976 ~12 hours Observed two peaks in activity over a 24-hour period with one pattern 
peaking at 4 p.m. and midnight and the other peaking at midnight and  
8 p.m. in six and five individuals, respectively

14

6-phophogluconate 
dehydrogenase

1976 ~12 hours Observed two peaks in activity over a 24-hour period peaking at  
4 a.m. and 4 p.m. in 11 individuals

14

Lactic dehydrogenase 1976 ~12 hours Observed two peaks in activity over a 24-hour period with one pattern 
peaking at noon and midnight and the other peaking at 4 a.m. and  
4 p.m. in four and seven individuals, respectively

14

Aspirate aminotransferase 1976 ~12 hours Observed two peaks in activity over a 24-hour period peaking at 4 a.m. 
and 4 p.m. in 11 individuals

14

Hexokinase 1976 ~24 hours Observed one peak in activity over a 24-hour period peaking at 4 p.m. 
in 11 individuals

14

Potassium efflux 1976 NS Observed a steady increase in potassium efflux over a 48-hour period in 
an unknown number of individuals (averaged data reported)

12

Membrane potential 1976 ~24 hours Observed two peaks in membrane potential by DiOC5(3) over a 48-hour 
period in an unknown number of individuals (averaged data reported)

12

Mg-dependent ATPase 1976 ~24 hours Observed one peak in activity from human blood bank bags incubated 
at 37 °C for 27 hours (average of eight samples)

8

Acetylcholinesterase 1978 NS Observed variations in acetylcholinesterase activity over a 24-hour 
period in four individuals, but variations had lower amplitude than 
reference13 and were not circadian

10

Peroxiredoxin 2011 ~24 hours Observed three peaks of peroxiredoxin dimer oxidation and PRX-SO2/3 
abundance over a 60-hour period in three individuals

11

NADH 2011 ~24 hours Observed three peaks in NADH abundance over a 60-hour period in 
three individuals

11

NADPH 2011 ~24 hours Observed three peaks in NADPH abundance over a 60-hour period in 
three individuals

11

Membrane potential 2017 ~24 hours Observed two peaks in membrane potential by dielectrophoresis, 
DiOC5(3), and mass spectrometry over a 48-hour period in four 
biological replicates

9

Membrane conductance and 
cytoplasm conductivity

2017 ~24 hours Observed two or three peaks in membrane conductance and cytoplasm 
conductivity over a 48-hour period in four individuals

9

Intracellular potassium 2017 ~24 hours Observed two peaks in intracellular potassium concentrations over a 
48-hour period in four biological replicates

9

NS, not significant.

and chemical perturbation with Conoidin A, a PRX2 inhibitor67,  
shortens PER2:LUCIFERASE rhythms in immortalized mouse 
fibroblasts68.

The exact mechanism of rhythmic PRX oxidation is still unclear, 
but researchers have begun to examine other general rhythmic  
behaviors in RBCs. Although no one has followed up on the 
circadian, ultradian, and irregular rhythms of various enzyme  
activities in the 1970s, in 2011 researchers reported circadian 

changes in NADH and NADPH levels11, and in 2017 research-
ers reproduced circadian changes in RBC membrane potential9 
observed in an article published in 197612. Paradoxically, the 
researchers reported circadian changes in potassium concentra-
tion in 2017, whereas no rhythms in potassium were observed 
in 1976; instead, a gradual and steady increase in potassium  
efflux occurred over the 48-hour observation period. Whether  
these differences arise from measuring slightly different  
potassium populations (intracellular versus extracellular), a small 
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sample size, technical differences in methods and individuals, or  
an actual biological phenomenon remains to be determined.

Post-translation control of circadian period in 
transcription-translation feedback loop model 
organisms
There are shared design principles between the period- 
determination processes of PTO-based and TTFL-based  
oscillators. A PTO generates rhythmic changes in protein  
states without changing the amount of protein itself. On the  
other hand, rhythmic protein synthesis and degradation are essen-
tial for TTFL-based oscillations, and mechanisms that control  
protein abundance are critical for controlling the circadian period. 
This idea is widely accepted for circadian TTFL oscillators  
because there is a significant correlation between the half-life 
of transcription repressor mutants, such as in Drosophila PER 
and Neurospora FRQ, and circadian period69,70. The correlation  
suggests that faster degradation of circadian repressors accel-
erates clock speed. In mammalian circadian clocks, F-box  
proteins recruit E3 ubiquitin ligase complexes that license 
PER and CRY degradation, which modulates period length71.  
Although the circadian TTFL-based oscillators involve post- 
translational regulation as period-determination mechanisms, 
modification of transcription repressors regulates period length 
by changing repressor stability. For example, a mutation 
in CKIε that destabilizes mammalian PER results in period  
shortening72,73, and mutation of a phosphorylation site on PER 
that destabilizes PER also results in period shortening74,75.  
Other kinases, such as AMPK and DNA-PK, control period 
length by altering CRY stability through phosphorylation76,77. 
In addition, stabilization of CRY by small molecules lengthens 
the period78, and destabilization of CRY by degron tagging of  
CRY shortens the period79, strongly suggesting the causal  
relationship between CRY stability and period length.

However, a recent study of the Neurospora circadian clock 
challenged this protein stability–period length paradigm of  
period determination in a TTFL-based oscillator80. Researchers 
used an FWD-1–deleted strain, which is an F-box protein that 
causes proteolysis of phosphorylated FRQ. The Δfrd-1 strain 
results in a markedly increased FRQ half-life, and new FRQ is  
produced even in the presence of hyperphosphorylated FRQ. 
Nonetheless, circadian oscillation of FRQ-promoter activities  
persists with modest change in period length, and several  
short-period mutations of FRQ still have a short period in a  
Δfrd-1 background in which the stability of FRQ is significantly 
increased. Because mutation of phosphorylation sites in FRQ 
still alters the period and because generic inhibition of kinase  
activity lengthens the period even in the absence of FWD-1, 
these data suggest that a protein-state not a protein-abundance  
attribute, namely phosphorylation, controls period length.

A similar uncoupling of protein stability and circadian period 
may occur even in the TTFL clock in mammals. A recent study of  
CRY1 mutations in phosphorylation sites by Ode et al. revealed  
that multiple phosphorylation sites near the co-factor binding  
pocket of CRY1 markedly changes period length while having  
only a modest effect on CRY1 half-life79. Mutagenesis of CRY1 

and CRY2 revealed mutations in a secondary co-factor binding 
pocket which shorten the period without reducing CRY1  
stability81. Furthermore, an exon-skipping mutation in CRY1 
found from a human family with delayed sleep phase syn-
drome lengthens the period without affecting CRY1 stability82.  
Therefore, mammalian CRY may also control the circadian  
period independently of its abundance.

If protein abundance control does not explain all aspects of  
period determination, what is the nature of state control of  
TTFL-based oscillator proteins such as multisite phosphoryla-
tion of FRQ, PER, and CRY? One of the shared properties of  
period-determining repressor proteins is structural flexibility.  
Most FRQ and PER regions modified by multisite phosphoryla-
tion are intrinsically disordered, highly flexible, and variable83,84.  
The multisite phosphorylation region of CRY1 critical for  
period control also occurs on a flexible loop region. These  
flexible regions may undergo a relatively large conformation  
change that may underlie slow dynamics (that is, 24 hours) of 
protein activity change. The intrinsically disordered C-terminal  
domain of BMAL1 controls the period through a slow con-
formation change with a high energy barrier85. Conformation  
changes may lead to a slow and coherent re-organization of 
the macromolecular repressor complex86, which is consistent  
with the dynamics of the cyanobacteria PTO87,88 in which the  
slow dynamics of the intrinsic conformational change of KaiC89 
couple to the re-organization of the KaiABC complex90. An  
atomic-scale understanding of the repressor complex in a  
TTFL-based oscillator may reveal subtle differences in molecu-
lar mechanisms of 24-hour period determination between PTO-  
and TTFL-based oscillators.

Oscillations without classic transcription-translation 
feedback loop oscillators
Several classic models of circadian rhythms have persistent 
24-hour rhythms even when the circadian TTFL machinery is 
absent or disrupted. In S2 cells, which are generally regarded 
as non-rhythmic, a multi-omics approach recently revealed  
hundreds of genes, proteins, and metabolites with 24-hour  
rhythms20. Although this approach seems to suggest the 
presence of a novel non-canonical oscillator with 24-hour 
periodicity, it does not preclude possible cell cycle effects  
from the roughly 24-hour doubling time of S2 cells or the  
possibility of classic circadian clock components operating  
below the experimental limits of detection. For example, large- 
scale proteomics studies of circadian variation frequently fail 
to detect circadian proteins91,92 because there may be only a few  
hundred to a thousand protein copies per cell93. Thus, genetic 
knockout (KO) of canonical clock genes is needed to definitively 
determine whether rhythms derive from a novel oscillator.

In mammals, genetic and anatomical ablation of the circa-
dian machinery normally disrupts 24-hour behavioral rhythms, 
but rhythms persist under specialized situations. For example,  
SCN-lesioned rats administered methamphetamine in the drink-
ing water retain circadian behaviors of activity in constant 
light conditions17. This so-called methamphetamine-sensitive  
oscillator also does not depend on classic circadian genes, 
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such as Per1-2, Cry1-2, Bmal1, Npas2, and Clock18,94. Recent 
data suggest that the methamphetamine-sensitive oscillator is 
a long-period manifestation of a tunable dopamine ultradian 
oscillator95,96. KO of a dopamine transporter in SCN-lesioned 
or Bmal1 KO mice, which prevents dopamine reuptake in 
dopaminergic neurons, increases the period of the ultradian 
rhythms. Similarly, administration of methamphetamine, which 
increases extracellular dopamine concentrations, lengthens  
ultradian rhythms in a dose-dependent manner from 4 hours 
to an astonishing 48 hours. In contrast, the anti-psychotic 
drug haloperidol, which selectively blocks the dopamine D2  
receptor, shortens long-period rhythms induced by metham-
phetamine in wild-type and Bmal1 KO mice95. These data  
suggest that dopamine neurons are a second independent  
rhythm-generating mechanism in the brain, and future studies 
using chemical and genetic approaches to perturb dopamine  
pathways coupled with recently developed brain-clearing  
techniques97–100 may enable a more complete understanding of  
the neural architecture of this dopamine ultradian oscillator.

Conclusions
From blood to brain, these studies suggest that non-canonical  
PTOs have an impact on circadian rhythms beyond the classic 
PER negative feedback loop. However, recent studies of PER  
itself, including temperature-sensitive phosphorylation sites51, 
three prime untranslated region (3′-UTR) regulation101, and the  
separation of Period2 rhythms from Bmal1 rhythms in the  
SCN102, indicate that even a gene as well studied as Period can  
still teach us new tricks about the period-determining mechanisms 
of circadian rhythms.
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translation feedback loop.
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