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A B S T R A C T: 
This paper reviews the mechanisms of miRNA model where mathematical models of miRNA translation are suggested to 

describe the dynamics of protein synthesis. In this regard, we use the idea of quasi steady state approximation (QSSA) for 

separating model equations into slow and fast subsystems. This separation is based on a proper scaling that we have used in this 

study. The suggested technique provides one to minimize the model elements and gives some analytical approximate solutions. 

Accordingly, the equation of slow manifold can be calculated from the simplified model. The slow manifold is sufficiently close 

to the analytical solutions when the slow-fast parameter becomes smaller. We apply three types of model coefficient analysis 

including, elasticity coefficients, flux control coefficients and concentration control coefficients. These techniques have three 

main goals. The first goal quantifies the sensitivity of reaction rates to the change of concentrations or parameters. The second 

goal is to measure the change of a flux along model pathways in response to a change in model reaction rates. The third goal is to 

calculate the change of concentrations while responding to a change in reaction rates. 
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1. INTRODUCTION : 

 

     Cells can be found in skin, muscles and bones. 

All of those cells include billions of proteins and 

enzymes. Indeed, proteins are fundamental of 

molecular for each living creature on the Earth 

(Cooper, 2000). There is an important part in cells 

that is called MicroRNA.  MicroRNAs are a type 

of post-transcriptional well organized non-coding 

RNAs lately discovered in plants and animals. It 

has been shown that they regulate various 

biological procedures ranging from the embryotic 

development to the regularization of neural 

network model (Xu et al., 2009).   

 

 

 

 

MicroRNAs (miRNAs) are 20 to 22 nucleotide 

RNAs that modulate the operation of eukaryotic 

mRNAs and have an important role in evolution, 

virus infection, stress responses, and cancer 

(Nissan and Parker, 2008). MicroRNAs are single-

stranded RNA molecules of about 21 to 23 

nucleotides in length, which modulate gene 

expression (Xu et al., 2009). There are some 

functions of miRNAs such as prevent translation 

of mRNAs,contributing mRNA and deadenylating 

progress (Eulalio et al., 2008, Filipowicz et al., 

2008, Jackson and Standart, 2007, Valencia-

Sanchez et al., 2006). 

There are some main functions of MicroRNA 

where the most important function is related to 

gene expression regulation. For the first time, they 

were described in 1993 (Lee et al., 1993). In the 
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Victor Ambros lab, and still the term microRNA 

was only introduced in 2001  (Ruvkun, 2001). As 

of early 2008, computational analysis by IBM 

proposed the existence of 50000 dissimilar 

microRNAs in the typical mammalian cell, each 

with perhaps a thousand or more possible targets 

(Glaser, 2008). Accordingly, MicroRNAs are 

recently well thought out as key regulators of a 

wide variety of biological pathways, including 

development, differentiation and on cogenesis. 

Currently, remarkable advancement was made in 

understanding of microRNA functions, biogenesis 

and mechanisms of action.  

The RISC effector complex and mature 

microRNAs are incorporated, which includes as a 

key component an Argonaut protein. MicroRNAs 

affect gene expression by guiding the RISC 

complex toward particular target mR NAs. It can 

be seen that there is a big controversial to 

determine the exact mechanism of this inhibition 

(Zinovyev et al., 2010); see Figure 1.

 
Figure 1: Protein translation process with microRNA mechanisms 

  

In last decades, many possible mechanisms of 

microRNA have been recognized. The most of all 

documented mechanisms are negative post - 

transcriptional regulation of mRNA by mRNA 

translation inhabitancy and/or mRNA rotting. 

Whereas, there are some possibilities show that 

miRNAs might also act at the decomposition 

stage. There are also some studies in the present 

literature about to determine and decide which 

mechanism and in which situations has a control 

role in living cells. It is clear that some 

experimental systems handling with the same 

pairs of miRNA and mRNA. They can provide 

contentious evidences about which is the actual 

mechanism of translation subdue noticed in the 

experiment (Zinovyev et al., 2013).  

 mRNA translation is an important procedure in 

cell signaling pathways that can be seen in many 

systems of biology. In this procedure, the genetic 

sequences are translated from mRNA to protein 

by ribosome translocation, after the genetic 

information included in DNA is transcribed to the 

mRNA. There are three important components in 

the mRNA translation process: the mRNA 

(genetic template), the ribosome (assembly 

machinery), and the aminoacyl transfer RNAs (aa-

tRNAs).    

mRNA protein translation is theoretically divided 

into three levels: initiation, elongation and 

termination. At the initiation stage, the ribosome 

first attaches to the mRNA then reads the mRNA 

codon by codon (from the 5’ end of the mRNA to 

the 3’ end). At the elongation stage, it recruits the 
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appropriate aa-tRNA and unites the latest amino 

acid into the nascent muster chain, releases the 

discharged tRNA. At the last stage of protein 

translation, the completed protein from the mRNA 

when the ribosome reaches the end of the mRNA 

eventually are released (Lewin, 2007).  

There is a long history of mathematical modeling 

of mRNA. Models for mRNA then have been 

developed in recent years with the evolution of 

systems and synthetic biology. The various 

constructs of models for mRNA translation are 

introduced at various levels of abstraction (Zhao 

and Krishnan, 2014). 

In this study, we give a detailed description for 

mathematical modelling of miRNA that 

describing the process of protein translation. We 

simply reviewed the previous  study of miRNA 

protein translation given in (Zinovyev et al., 

2013). Then, we use quasi steady state 

approximation to separate equations into slow and 

fast subsystems and identifying some analytical 

approximate solutions for state variables. Finally, 

elasticity and control coefficient are calculated for 

the model network to identify effect of reaction 

rates, parameters and state variables on model 

dynamics. 

 

 

2. Model Equations of miRNA 

 

To explain the effect of microRNA interference 

with translation initiation factors, a non-linear 

version of the translation model was proposed. It 

explicitly takes into account recycling of initiation 

factors (eIF4F) and ribosomal subunits (40S and 

60S).  

 

The model has six chemical species 40S, 60S, 

eIF4F, F, A, and R and four chemical reactions, 

all considered to be irreversible; see Figure 2.  

 

The model reactions are given below:  

1.  40S + eIF4F         F, assembly of the initiation 

complex (rate ). 

2.  F         A, some late and cap-independent 

initiation steps, such as scanning the 5’UTR for 

the start codon A (rate ). 

3.  A           R, assembly of ribosomes and protein 

translation (rate ). 

4.  80S           60S + 40S, recycling of ribosomal 

subunits (rate ). 

 

We use stoichiometric vectors, reaction rates and 

mass action law to define the model equations 

(Khoshnaw, 2015a, Khoshnaw et al., 2016, 

Khoshnaw, 2015b).   

 

 
 
Figure 2: The model pathways for non-linear protein 

translation.   

 

The model is described by the following system of 

nonlinear differential equations:  
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System (1) contains three independent 

conservations laws: 
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initiation factor respectively. The following 

assumptions on the model parameters and initial 

variable states were suggested: 

.]40[]60[]4[
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More details and descriptions about the model 

equations and the proposed assumptions can be 

found in (Zinovyev et al., 2013). 

 

 

3. Fast and Slow Subsystems for miRNA 

Model 

Quasi steady state approximation (QSSA) is an 

important technique in systems biology. The 

method can be applied for nonlinear models to 

classify such systems into fast and slow 

subsystems and identify some analytical 

approximate solutions. More details about the 

QSSA method can be seen in (Khoshnaw, 2015a, 

Khoshnaw et al., 2016, Khoshnaw, 2015b). Based 

on conservation laws (2), we can remove the 

following variables: 
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0
]40[ 01

4 
Sk

k
  when Then, system 
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We can analytically solve equations (8b) and (8c) 

for y and z in terms of x,  
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Therefore, the approximate solution of system (7) 

is sufficiently close to the manifold , where 

 is defined as follows: 
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Thus, we obtain the following reduced differential 

equation close to the manifold , 
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The above equation can be solved analytically.  

 

 

 

The implicit solution of the separable differential 

equation takes the form  
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4. Analytical Approximate Solutions 

 

In this section, the analytical solutions for the 

original model (1) are calculated. This is based on 

equations (11), (9), (6) and (4). All analytical 

solutions are given below:  
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It is obvious that the slow manifold  is 

normally hyperbolic and stable. We assume that 

the functions is the left side of equation 

(8b) and is the left side of equation (8c). 

This means 
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The characteristic equation    can 

be solved analytically to find the eigenvalues of 

the Jacobian matrix. We obtained the following 

eigenvalues: 
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It is clear that the first eigenvalue is negative. It 

means  since  

 and .The other 

eigenvalue is also negative   

because and , 

and .  

Since eigenvalues have negative real parts 

, for i = 1, 2 then the slow manifold 

is stable. And the approximate solutions of 

equations (7) for different values of the small 

parameter  can be expressed in Figure 3. The 

approximate solutions are sufficiently close to 

 when the slow-fast parameter becomes 

smaller. We have compared the species 

concentrations of reduced model (10) and the full 

model (dimensionless form); see Figure 4.  
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a)  

 

 

b)  

Figure 4: Reduced model (10) and the full model 

(dimensionless form).  

 

 

5. Elasticity and Control Coefficients for 

MicroRNA Model 

The power to change metabolism states in 

response to an outer signaling is called metabolic 

control. It is measurable in terms of  influence of 

the metabolic response to external factors. This is 

happened without any idea about the purpose 

/function/mechanism of the response (Newsholme 

and Start, 1973). The control structure of a 

metabolic pathway can be quantitatively 

characterized by metabolic control analysis 

(MCA). This is a mathematical frame work for 

describing metabolic, signaling, and genetic 

pathways. MCA quantifies how variables, such as 

fluxes and species concentrations, depend on 

network parameters. In particular, if MCA 

describes how networks depend on their 

properties, is called control coefficients. In 

addition, if MCA depending on its local 

properties, is called elasticities. By means of 

control and elasticity coefficients, the control 

coefficient is the fractional change in metabolic 

concentration (Puigjaner et al., 1997). Metabolic 

control analysis is an important step forward to 

determine the complexity of dynamic changes of 

species in a complex metabolic system (Li et al., 

2010,  Teusink et al., 2000). There are three main 

types of coefficient analysis. The first one is 

elasticity coefficients that quantify the sensitivity 

of a reaction rate to the change of concentration or 

a parameter. The second type is flux control 

coefficients that measure the change of a flux 

along a pathway in response to a change in the 

reaction rates. The last one is concentration 

control coefficients that calculate the change of 

concentration of some metabolite species Si in 

response of a change in the rate of a reaction 

(Newsholme and Start, 1973). 

 

5.1. Elasticity  

Elasticity coefficients are used in economics, 

physics, chemistry, or more generally in 

mathematics as a definition of point elasticity. The 

rate of reaction is affected by many different 

factors, such as pH, temperature, reactant and 

product concentrations and etc. The elasticity is 

defined effectively by factors on the reaction rates. 

Elasticities in biochemistry theory called kinetic 

orders and describe how sensitive a reaction rate is 

to changes in reactant, product and effector 

concentrations (Kacser et al., 1995, Klipp et al., 

2008, Sauro et al., 1987). The elasticity 

coefficient is the fractional change in the net rate 

for an individual substrate, with everything else is 

kept fixed (Puigjaner et al., 1997). The main 

equation of elasticity coefficient given by 
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where is reaction rate and  is concentration of 

species. The equation of elasticity measures the 

change of   in response to a change in , while 

everything else is kept fixed. If we have substrate 

S, inhibition I and activation A in a pathway then 

some quantitative amounts can be considered. 
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There are some typical values for elasticity 

coefficients that satisfy the following inequalities: 
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That means more substrates are required to have 

fast rates, while more products give slower rates. 

In addition, if there are given inequalities 
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This gives us fast reaction rates required the 

higher activator concentration, whereas slow 

reaction rates are depended on the higher inhibitor 

concentration (Newsholme and Start, 1973). 

 

5.2. Control Coefficients for MicroRNA 

Model. 

A control coefficient quantifies the relative steady 

state change in a system variable, e.g. metabolite 

concentration S or pathway flux J, in response to a 

relative change in a parameter. We have two main 

control coefficients, they are concentration control 

coefficients and flux control coefficients  (Kacser 

et al., 1995, Klipp et al., 2008, Sauro et al., 1987). 

The equation of flux control coefficients is 

defined below 
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The equation of  concentration control coefficients 

is given by 
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The flux control coefficient  gives the relative 

small change in (a system variable) concentration 

with small change in pathway flux J. The word 

flux J also used to describe the rate of the system. 

Therefore, changing in the concentration can be 

fluctuated between increasing and decreasing (Li 

et al., 2010, Teusink et al., 2000). Flux 

coefficients usually vary from 0 to 1. 

The concentration control coefficient  gives 

the relative change in metabolite concentration S. 

The concentration control coefficients can have 

large values. They can also vary from negative to 

positive and small to large value (Li et al., 2010, 

Teusink et al., 2000). 

 Furthermore, there is a relationship between 

control coefficients and elasticity. The flux control 

summation theorem was discovered independently 

by Kacser/Burns group and Heinrich/Rapoport 

group in the early 1970s and late 1960s 

respectively. The flux control summation theorem 

implies that metabolic fluxes are systemic 

properties and that their control is shared by all 

reactions in the system. When a single reaction 

changes its control of the flux this is compensated 

by changes in the control of the same flux by all 

other reactions. The two important equations are 

proposed as follows: 
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The connectivity theorems are specific 

relationships between elasticities and control 

coefficients. They are useful because they 

highlight the close relationship between the 

kinetic properties of individual reactions and the 

system properties of a pathway. Two basic sets of 

theorems exist, one for flux and another for 

concentrations. The concentration connectivity 

theorems are divided again depending on whether 

the system species  is different from the local 

species . 
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5.3.  Model Results 

 

For system (1), we have the following reaction 

rates  
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The following elasticity equations are calculated 

for system (1): 
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In general, if an elasticity value is positive then 

reaction rates are increased. On the other hand, if 

elasticity value is negative then reaction rates are 

decreased. For the chemical reaction rates in 

system (1), we assume that [40S], [eIF4F] and 

[60S] are fixed boundary species. Therefore, the 

pathway can reach a steady state. Then, we can 

calculate the control coefficients for the remaining 

sates F, A and R. The model has some control 

coefficient equations based on summation and 

connectivity theorem as below:  
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By substituting the elasticity values in equations 

(13) into equations (14), the following results are 

obtained  
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According to flux control coefficients 

, this means that second, third 

and the last step of reactions have not any effect 

on model fluxes. On the other hand, the control 

coefficient , this gives us the first reaction 

rate has a strong effect on the model fluxes. In 

other words, the model steady state fluxes are 

controlled by .  

Furthermore, concentration control coefficients 

quantify how variables, such as species 

concentrations, depend on reaction rates. In this 

study, it can be more precisely concluded that 

there is no any relative change in F, A and R 

regarding to reaction rates  and . While, 

there is a significant change in F, A and R with 

respect to .    

 

6. Conclusions  

The non-linear model of miRNA protein 

translation including seven species and four 

parameters has been studied. Mass action law and 

classical chemical kinetics under constant rates are 

used for modelling the system. We have 

introduced some new variables to reduce the 

number of model species and parameters. We 

proposed QSSA to analyze the fast variables and 

calculate slow manifolds. As a result, the 

analytical approximate solutions are sufficiently 

close to the manifolds when the slow-fast 

parameter becomes smaller. The analytical 

approximate solutions give some effective results 

particularly provided us understanding about 

global dynamics. It can be also noticed that there 

is a good agreement between the simplified and 

the original model dynamics.         

Results in this study show some interesting points. 

The first point is that how variables, such as fluxes 

and species concentrations, depend on network 

parameters. Another point is that how reaction 

rates are sensitive to changes in reactant, product 

and concentrations. The proposed techniques will 

be applied to a wide range of complex miRNA 

mechanisms.  
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Puigjaner, J., Raïs, B., Burgos, M., Comin, B., Ovádi, 

J. and Cascante, M. 1997. Comparison of control 

analysis data using different approaches: modelling 

and experiments with muscle extract. FEBS letters, 

418, 47-52. 

Ruvkun, G. 2001. Glimpses of a tiny RNA world. 

Science, 294, 797-799. 

Sauro, H. M., Small, J. R. and Fell, D. A. 1987. 

Metabolic control and its analysis: extensions to the 

theory and matrix method. European journal of 

biochemistry, 165, 215-221. 

Teusink, B., Passarge, J., Reijenga, C. A., Esgalhado, 

E., Van der weijden, C. C., Schepper, M., Walsh, 

M. C., Bakker, B. M., Van dam, K. and 

Westerhoff, H. V. 2000. Can yeast glycolysis be 

understood in terms of in vitro kinetics of the 

constituent enzymes? Testing biochemistry. 

European Journal of Biochemistry, 267, 5313-

5329. 

Valencia-sanchez, M. A., LIU, J., Hannon, G. J. and  

Parker, R. 2006. Control of translation and mRNA 

degradation by miRNAs and siRNAs. Genes and 

development, 20, 515-524. 

Xu, F., Liu, Z., Shen, J. and Wang, R. 2009. Dynamics 

of microRNA-mediated motifs. IET systems 

biology, 3, 496-504. 

Zhao, Y.-B. and Krishnan, J. 2014. mRNA translation 

and protein synthesis: an analysis of different 

modelling methodologies and a new PBN based 

approach. BMC systems biology, 8, 25. 

Zinovyev, A., Morozova, N., Gorban, A. N. and Harel-

belan, A. 2013. Mathematical modeling of 

microRNA–mediated mechanisms of translation 

repression. MicroRNA cancer regulation. Springer. 

Zinovyev, A., Morozova, N., Nonne, N., Barillot, E., 

Harel-bellan, A. and Gorban, A. N. 2010. 

Dynamical modeling of microRNA action on the 

protein translation process. BMC systems biology, 

4, 13. 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


