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Actions are shaped not only by the content of our percepts but also by our confidence in
them. To study the cortical representation of perceptual precision in decision making, we
acquired functional imaging data whilst participants performed two vibrotactile forced-
choice discrimination tasks: a fast-slow judgment, and a same-different judgment. The
first task requires a comparison of the perceived vibrotactile frequencies to decide which
one is faster. However, the second task requires that the estimated difference between
those frequencies is weighed against the precision of each percept—if both stimuli are
very precisely perceived, then any slight difference is more likely to be identified than if
the percepts are uncertain. We additionally presented either pure sinusoidal or temporally
degraded “noisy” stimuli, whose frequency/period differed slightly from cycle to cycle. In
this way, we were able to manipulate the perceptual precision. We report a constellation
of cortical regions in the rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC) and
superior frontal gyrus (SFG) associated with the perception of stimulus difference, the
presence of stimulus noise and the interaction between these factors. Dynamic causal
modeling (DCM) of these data suggested a nonlinear, hierarchical model, whereby
activity in the rostral PFC (evoked by the presence of stimulus noise) mutually interacts
with activity in the DLPFC (evoked by stimulus differences). This model of effective
connectivity outperformed competing models with serial and parallel interactions, hence
providing a unique insight into the hierarchical architecture underlying the representation
and appraisal of perceptual belief and precision in the PFC.

Keywords: decision making, dynamic causal modeling, fMRI, prefrontal cortex, vibrotactile

INTRODUCTION

Percepts underpin all our interactions with the world. Perceptual precision, the confidence
with which we hold those percepts, informs this interaction, such as when a decision is biased
toward a precisely represented percept (Ernst and Banks, 2002). Although high perceptual
precision may be advantageous in some contexts, such as when driving a car, there exist
other situations where a degree of imprecision is crucial: if percepts were held with infinite
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precision then it would be impossible to recognize any object
encountered for a second time. For example, the texture of
a surface would feel unique and surprising on every touch.
Whereas the neurobiology of perception has been a long-studied
subject, research into the basis of perceptual precision and
its impact on decision making has been more recent (Knill
and Pouget, 2004; Moran et al., 2013; Pouget et al., 2013;
Navajas et al., 2017).

The neural basis of perceptual decision-making has been
extensively studied using two-alternative forced-choice tasks
in the somatosensory (Romo and Salinas, 2003) and visual
domain (Britten et al., 1992). These prototypical experiments
consist in presenting two sequential stimuli that are followed
by a forced response between two choices involving a
comparison between the properties of these two stimuli
(see Figure 1). In the somatosensory modality, a wealth
of neurophysiological research using vibrotactile stimuli has
established the crucial role of the prefrontal cortex (PFC) during
the performance of such tasks (Gold and Shadlen, 2007; Hegner
et al., 2007; Heekeren et al., 2008; Wang, 2012). While the
primary somatosensory cortex is clearly involved in stimulus
representation (Hernández et al., 2000; Harris et al., 2002;
Sörös et al., 2007), the PFC holds the representation of the
first stimulus in working memory for subsequent comparison
against representation of the second stimulus (Preuschhof et al.,
2006; Wang, 2008), as well as the final decision process
(Miller et al., 2003; Pleger et al., 2006; Heekeren et al., 2008;
Wang, 2008; Barak et al., 2010). With very few exceptions
(Engel and Wang, 2011), decisions in these forced-choice
experiments are only dependent on magnitude comparisons of
the perceived frequencies. A sensory percept can be viewed
probabilistically (as a probability distribution) and to first
order can hence be decomposed into its magnitude (here,
the perceived frequency) and its precision (the inverse of the
variance of the probability distribution; see Figure 2). Whilst
perceptual precision—classically captured by the signal-to-noise
ratio—impacts upon the performance accuracy of a faster-
slower comparison, the decision itself does not explicitly require
representing and acting on the precision of those perceptions.
This is because the final decision only rests upon deciding
whether the second stimulus is faster or slower than the first
and does not depend upon the subjective confidence in that
judgment. That is, a faster-slower decision can be made by
a simple subtraction and does not crucially depend upon the
precision of either percept.

The anterior cingulate and ventromedial PFC appear to
play critical roles in assessing the value of current information
in an environment of uncertain outcome and reward (Daw
et al., 2005; Kennerley et al., 2006; Behrens et al., 2007).
These regions also represent changes in this value (that is,
when the link between stimulus, outcome and reward is
volatile; Rushworth and Behrens, 2008). Whilst the value of
the percept to an external reward is uncertain in these studies
(Fiorillo et al., 2003; Yu and Dayan, 2005; Hsu et al., 2005;
Huettel et al., 2006; Behrens et al., 2007; Tobler et al., 2007),
the percept itself is not ambiguous. Hence, it is not clear
from these studies whether these regions are also involved

in representing the intrinsic precision of the percept itself,
or whether other regions are recruited when the stimulus is
noisy but the task contingencies are fixed (Kayser et al., 2010;
Bach and Dolan, 2012).

Here, we sought to disentangle the representation of stimulus
properties from the precision of those representations in the
PFC. Functional neuroimaging data were acquired whilst paired
vibrotactile flutter stimuli (10–50 Hz) were sequentially applied
to the index finger. In separate tasks, participants were requested
to decide if the second stimulus was faster than the first, or if the
second stimulus was different from the first. As rehearsed above,
the ‘‘faster-slower’’ task can be performed by simply encoding
and subtracting an estimate of each stimulus frequency—that
is, decisions only explicitly depend on comparing the likely
value of each of the flutter frequencies. In the ‘‘same-different’’
task, the magnitude of this subtraction must be weighed against
the precision of the perceptual beliefs, such that a difference
that is perceived as small may be inferred as significant if
each percept is held precisely (and conversely for imprecise
representations). The precision of a percept is the composite of
the roughness of the stimulus and the perceptual imprecision due
to stochastic effects in perceptual systems: tomanipulate stimulus
precision, noise was introduced to the vibrotactile oscillatory
frequency as an additional experimental factor (Harris, 2006;
Harris et al., 2006; Karim et al., 2012). Note that we refer to
precision in the statistical sense of the inverse of the noise
variance (Figure 2).

The PFC is known to be underpinned by extensive intrinsic
anatomical connections, forming local circuits that adapt to
contextual demands at hand (Fuster, 2001; Miller and Cohen,
2001; Botvinick, 2008). The hierarchical nature of these circuits
during the representation of perceptual precision is poorly
understood (Nee and D’Esposito, 2016). We first identify
a constellation of regions in the left PFC that respond to
these stimulus and task manipulations. We then study the
prefrontal networks that underpin our data using dynamic
causal modeling (DCM). DCM is a model-based technique to
infer network dynamics (Friston et al., 2003) that has found
explanatory utility in cognitive neuroscience, including language
(Leff et al., 2008; Noppeney et al., 2008), motor processes
(Grefkes et al., 2008), vision (Mechelli et al., 2003; Fairhall
and Ishai, 2007) and memory (Smith et al., 2006). DCM
has been employed to study perceptual decision-making tasks
(Summerfield et al., 2006; Stephan et al., 2007; Summerfield
and Koechlin, 2008) including vibrotactile discrimination tasks,
focussing on the exchange of information from primary to
secondary somatosensory cortex (Kalberlah et al., 2013). Here,
we use DCM to disambiguate between candidate serial, parallel
or hierarchical engagement of the PFC in the representation and
manipulation of perceptual precision.

MATERIALS AND METHODS

Overview
Sixteen healthy young adults participated in our experiment. To
avoid ceiling or floor effects and reduce inter-subject variability
in performance, participants first performed an adaptive staircase
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FIGURE 1 | Trial structure. Temporal structure of a single trial of the vibrotactile discrimination task. A pair of stimuli (f1, f2), each 512 ms in duration, separated by
an ISI of 600 ms, was presented to the participant’s right index finger. The start of the trial was indicated by a white box, which turned gray when the vibrations were
presented. Upon the onset of the second vibration, a respond screen appeared indicating that the participant could make a button press. Participants had 2 s in
which to respond after the second vibration onset. Trials were presented in four sessions; two sessions of faster-slower and two same-different.

FIGURE 2 | Schema for task rationale. (A) Frequency content of a noise-free stimulus of 30 Hz. (B) Noise imbued vibrotactile stimulus with center frequency of
30 Hz and variance of stimulus noise represented by the green bar. Precision refers to the inverse of the variance of the percept. (C) Perceptual encoding of a
noise-free stimulus can be represented by a unimodal distribution centered at the likely value of the inferred stimuli. Note that due to an inevitable perceptual error
(bias) this inferred stimulus is shifted to the left (or right) of the true stimulus frequency (red bar) and has perceptual noise (purple bar). (D) Perceptual representation of
a noisy stimulus can be conceptualized as the sum of the stimulus (external) noise (green) and the perceptual (internal) noise (purple). It may have a perceptual bias
(red bar) and perceptual noise (purple bar) in addition to stimulus noise (green bar). In separate sessions, participants were either instructed to answer the question
“Is the 2nd vibration faster?” or “Are the vibrations different?” as a yes/no response. (E) The first task can be solved by subtracting the values of the inferred stimulus
and responding on the sign of the answer. (F) The second task requires that the inferred magnitude of this difference be weighted by the precision (inverse variance)
of each percept. Due to the perceptual error, there will exist a difference in the inferred frequency difference even if f1 = f2.

Frontiers in Neural Circuits | www.frontiersin.org 3 April 2019 | Volume 13 | Article 27

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Gollo et al. Hierarchical and Nonlinear Prefrontal Cortex

procedure. Behavioral and functional imaging data were then
acquired while they performed the main vibrotactile experiment.
Analyses of these data then informed the employment of DCM.
Each of these steps is described below. Full details are provided
in the Supplementary Material.

Participants
Sixteen healthy volunteers (10 men; mean age, 28.4 years;
standard deviation, 9.3; age range, 20–61 years) participated
in the study. Participants gave written informed consent and
the study was approved by the University of New South
Wales Human Research Ethics Committee. Participants were
paid for their participation in the study. All participants were
right-handed. Participants disavowed history of a psychiatric
disorder, neurological disorder, or drug or alcohol dependence.
Participants gave written informed consent according to local
institutional human ethics committee approval.

Stimuli and Task
Using an MR-compatible stimulator, mechanical vibrotactile
stimuli were delivered to the right index finger (see
Supplementary Material, SM1.1). Trials consisted of a series of
paired stimuli, each 512 ms in duration, separated by an ISI of
600 ms (Figure 1 and Supplementary Material, SM1.2).

Titration Procedure
To limit individual variability in performance and avoid ceiling
effects in accuracy, we used a titration procedure that matched
average task performance via an adaptive staircase procedure
as described previously (Karim et al., 2012). The participants
responded to the question: ‘‘Is the 2nd vibration faster?’’ For
each trial, one of the vibrations was the base 34 Hz, and
the other a comparison vibration, which varied based on the
participant’s current performance according to an adaptive
staircase procedure. The presentation order of the base and
comparison was pseudorandomly varied from trial to trial.

Two intermixed staircases (easy and hard) selected at random
were used to limit the participant from experiencing a learning
effect from consecutive easy or consecutive hard trials. The
difference in frequency between vibration pairs was initially set
to 5 Hz, then progressively decreased or increased by 10% of
the current frequency difference. For both staircases, a step-up
occurred for each incorrect response. For the easy staircase, a
step-down occurred after six non-consecutive correct responses.
That is, even amongst trials of incorrect responses, a tally was
kept for each correct response made. Once the tally reached
six, a step-down occurred and the tally was reset to zero.
Likewise, for the hard staircase, a step-down occurred after
two non-consecutive correct responses. We sought to have
performance converge at ∼90% and ∼65% proportion correct,
respectively (Zwislocki and Relkin, 2001). A medium value of
difficulty (target accuracy of 75%) was determined by calculating
the geometric mean between the easy and hard frequency
differences (Karim et al., 2012).

Behavioral Task
Following titration, participants completed a parametric
vibrotactile discrimination task with factors of context, noise

and difficulty. ‘‘Context’’ denotes the task instructions—the
faster/slower or the same/different comparison; ‘‘noise’’ refers to
the presence or absence of random fluctuations in the stimuli.
‘‘Difficulty’’ refers to the (titrated) difference between the
stimulus frequencies.

To create the noise factor, the temporal structure of the
two vibrations was degraded by adding independent Gaussian-
distributed values (mean = 0) to the wavelength of each cycle of
the sine wave (Harris et al., 2006). We added 8% noise so that
the standard deviation of the cycle length within the vibration
equalled 0.08 of the base cycle length. For example, a 40 Hz
vibration was comprised of cycles with mean length 25 ms
and standard deviation of 2 ms. We hence refer to all trials as
‘‘regular’’ (noise-free) or ‘‘noisy.’’

The contextual (task) factor was created by asking participants
to perform either a fast-slow or a same-different comparison.
In the fast-slow task, participants were instructed to answer the
question ‘‘Is the 2nd vibration faster?’’ as a yes/no response.
They were informed that there was always a faster vibration
(i.e., no identical trials). In the same-different task, participants
were instructed to answer the question ‘‘Are the vibrations
different?’’ as a yes/no response. They were (correctly) informed
that half of the presented vibration pairs were the same and
half were different. Different trials in the second (same/different)
context were identical to the corresponding trials in the first
(faster/slower) context. For same-noisy trials in the second
context, exactly the same stimulus was presented—that is, both
the center frequency and the exact same pseudorandom sequence
of jittered wavelengths. The rationale for our task design is
illustrated in Figure 2.

For feasibility issues, not all cells in the full factorial design
were performed. For example, in pilot testing, the accuracy of
hard-noisy trials was at chance (50%) and was thus not used. We
refer to the task as a ‘‘partial’’ factorial design in this sense. We do
not report on the effect of task difficulty in this article and hence
collapse all available trials (of equivalent difficulty) across this
factor (for further details, see Supplementary Material, SM1.3
and Supplementary Table S1).

MRI Acquisition and Analysis
Functional imaging data were acquired using a Philips
(Achieva X) 3.0-Tesla scanner (for acquisition details see
Supplementary Material, SM1.4). Stimuli were delivered via the
vibrotactile device to the right index finger. Participants made
button press responses via their left index and middle fingers.
Inter-trial intervals were pseudorandomly jittered between 6 and
12 s to decorrelate the evoked hemeodynamic responses between
trials. The task was conducted over four separate sessions
separated by a short break. Each block consisted of exclusively
same-different or faster-slower trials. Pre-processing of dynamic
images included realignment, normalization, re-sampling and
spatial smoothing using SPM8. Statistical analysis of the time
series of images was conducted using the General Linear Model
(GLM; Friston et al., 1994a) with regressors modeling each of the
factor components. To focus on the decision-making process, we
used a boxcar of width 200 ms immediately prior to the button
press response. The results reported here are robust to changes
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in the width of the regressor. These were convolved with the
canonical hemeodynamic response function.

Group-level, random-effects analyses used a flexible
factorial analysis of variance (ANOVA) including a subject
factor and non-sphericity correction for repeated measures
(i.e., inhomogeneity of variance among conditions was estimated
with ReML). In the second (same-different) task there also exists
an additional stimulus factor, namely ‘‘Different’’ vs. ‘‘Same’’
trials: we hence also investigate this factor within this context.
Statistical inference was performed at the cluster-level using
family-wise error (FWE) correction, p < 0.05 (Friston et al.,
1994b, 1996). Unless otherwise stated, we employed a height
threshold of p < 0.00005 and a spatial extent of 20 voxels. All
p-values reported in the Results are FWE-corrected. Cluster
locations were identified using the SPM Anatomy toolbox
(Eickhoff et al., 2005).

Dynamic Causal Modeling
Model Specification
DCM is a computational approach that allows construction and
comparison of dynamic network models of functional imaging
data (Friston et al., 2003). DCMuses the time series from imaging
data and combines a model of the hidden neuronal dynamics
with a forward model that translates neural states into predicted
measurements (Stephan et al., 2008). Specifying dynamic causal
models requires two steps: first, regions (network ‘‘nodes’’) that
express the specific effects of interest (noise, context, same-
different) are identified using the preceding GLM. These are
described in the ‘‘Results’’ section, following analysis of the main
and the interaction effects in our experiment. The time series data
from each node are then extracted. We used a sphere of 6 mm
radius centered at the voxel showing the group-wise maximum
contrast (see Supplementary Material, SM1.5.1).

The second step in DCM specification involves the
construction of a space of models that embody various
hypotheses about themanner in which these nodes interact—that
is, the (effective) connectivity, or network ‘‘edges,’’ between the
nodes. Restricting the space of models to a relatively small
family that test specific hypotheses is an important way to
constrain the number (and utility) of models to be tested
(Stephan et al., 2010). Since the present objective was to use
DCM to study the network models of perceptual precision
(hence, not focussing on basic vibrotactile processing per se),
we restricted our analyses to a small number of models that
shared a common sensory input base and added candidate
integrative mechanisms on top of this base. The input base
was the sensory area showing the main effect of stimuli, hence
identified using an F-contrast across all trials. We introduced
eight separate models (four bilinear and three nonlinear) on top
of the common base that modeled serial or parallel integrative
mechanisms. Serial, parallel or hierarchical architectures play
varying roles in a diversity of cognitive and even machine
learning systems (Mesulam, 1998; Friston, 2005; Petersen and
Sporns, 2015): their disambiguation here, using DCM, can hence
contribute to this broader literature, whilst also establishing the
relative primacy of perceptual value vs. precision underlying
decision-making in the presence of stimulus noise. These

DCM’s each embody one of these arrangements, differing
within-class according to the presence or absence of symmetrical
relationships (see Figure 5, and results for a representation of
the specified models). Nonlinear models specify hierarchical
relationships between the network nodes—that is, where
the neuronal activity in one region gates the flow of activity
between other regions (Stephan et al., 2010); bilinear models
mirror their more complex nonlinear counterparts, except
they lack hierarchical relationships between regions: this
gating (interaction) function is instead fulfilled by non-specific
modulatory inputs.

Model Selection and Parameter Estimation
Following model specification, DCM employs Bayesian model
selection (BMS) to identify which model is the most likely to
have generated the observed data. The process of adjudicating
between models essentially balances their goodness of fit against
a factor that penalises models for their relative complexity (for
review, see Marreiros et al., 2010). BMS yields the evidence
for each model—the (posterior) probability of the model given
the data—as well as the estimated (posterior) parameter values
that reflect the strength of interactions between regions. Relative
evidence for all models is used to identify the most likely model,
or the best family of models (see Supplementary Material,
SM1.5.2). We performed BMS using random effects analysis
(Stephan et al., 2009).

RESULTS

Behavioral Results
Analysis of the behavioral data revealed significant effects of
both context and noise (Table 1, Figure 2; also Supplementary
Material, SM2.1 and Supplementary Figure S1): consistent with
its lesser computational burden, participants were more accurate
and had faster response times (RTs) for the fast-slow task
compared to the same-different one (see Figure 3A, and for effect
sizes, see Table 1[1a,1b]). Across both contexts, there was also a
significant effect of noise: the presence of aperiodic temporal
noise in the vibrotactile stimuli decreased accuracy[1c] across
both contexts and slowed RT for the same-different context[1d].
There was no significant interaction between context and noise.

The lower accuracy in the same-different compared to the
faster-slower context could in theory be due to a response bias
arising, for example, from a conservative internal standard for
the detection of difference. We estimated d-prime (d’), a measure
of sensitivity that takes response bias into account (MacMillan
and Creelman, 2005). Repeated measures ANOVA re-affirmed
significantly lower accuracy for responses in the same-different
compared to the fast-slow context (d’ for fast-slow = 1.59, d’ for
same-different = 0.72, F(1,15) = 36.497, p < 0.0001). This suggests
that differences in the same-different context were associated
with a loss in sensitivity.

Within the same-different task, participants took longer
to respond to the same compared to the different trials
(Figure 3A)[1e,f] which was associated with a trend-level
increase in accuracy (p = 0.0509). There was an interesting
interaction between noise and difference for accuracy[1g]: for
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TABLE 1 | Behavioral performance statistics for context (Fast-slow, Same-different), noise (Regular, Noisy), and difference (Different, Same).

Contrast Factor Dependent variable F-statistic p-value Partial eta square Text ref.

Noise and context Context PC F(1,15) = 87.039 p < 0.0001∗ 0.853 1a
Noise F(1,15) = 5.352 p = 0.0353∗ 0.263 1c
Noise ∗ Context F(1,15) = 0.672 p = 0.4251 0.043

(Both contexts) Context RT F(1,15) = 28.759 p = 0.0001∗ 0.657 1b
Noise F(1,15) = 3.154 p = 0.0960 0.174
Noise ∗ Context F(1,15) = 0.419 p = 0.5273 0.027

Noise and difference Noise PC F(1,15) = 0.009 p = 0.9256 0.001 1h
Difference F(1,15) = 4.502 p = 0.0509 0.231 1f
Noise ∗ Difference F(1,15) = 17.927 p = 0.0007∗ 0.544 1g

(Same-different context only) Noise RT F(1,15) = 7.240 p = 0.0168∗ 0.326 1d
Difference F(1,15) = 19.225 p = 0.0005∗ 0.562 1e
Noise ∗ Difference F(1,15) = 0.286 p = 0.6008 0.019

Proportion correct (PC) was used to assess accuracy and response time (RT) was used to assess speed. ∗Significant p-values.

FIGURE 3 | Behavioral results for the same-different context and interpretations. (A) Reaction time for Fast-Slow vs. Same-Different comparisons. Note the longer
reaction times for the latter task. (B) Proportion of correct (PC) responses (or accuracy) of regular and noisy response for different and same trials in the
Same-Different task. (C) Stimulus noise increases the variance of the perceptual representation of the two frequencies f1 and f2, increasing the overlap between
them. A larger overlap between perceptual representations decreases the sensitivity of responses to Different trials (left). The yellow bar depicts the difference
between the mean of the two percepts—here the sum of the true stimulus differences and the perceptual error. Conversely, noise increases the accuracy of
responses to Same trials (right): some slight difference in perception occurs even for identical, periodic stimuli (red bars, sum of perceptual errors). However, stimulus
noise degrades the precision of each percept, hence increasing their overlap and masking these small (false) perceptual differences.

same trials, accuracy was greatest when trials were noisy,
whereas for different trials accuracy was higher for regular trials
(Figure 3B, p < 0.0007).

Thus, it appears easier for participants to correctly classify
same trials as ‘‘same’’ when they are imbued with temporal
noise than when they are pure sinusoids. Conversely, different
trials were more likely to be correctly reported when they are
regular. These observations can be interpreted by considering the
influence of stimulus noise on perceptual accuracy (Figure 3): we
return to this issue in the ‘‘Discussion’’ section.

Functional Imaging Contrasts
We observed a strong and significant main effect of ‘‘context’’
in our functional imaging data, with several clusters surviving
FWE-corrected significance (Table 2 and Supplementary
Material, SM2.2.1). All of these effects were in the direction of
the same-different over the fast-slow context, again consistent
with the additional computational load of this task andmirroring
the behavioral results. The strongest effect was expressed
in a large cluster in the left inferior frontal gyrus (BA
45; p < 0.0001, Supplementary Figure S2A), occupying the
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mid-ventrolateral PFC (VLPFC). A second effect was observed
in the right middle temporal gyrus (BA 21; p < 0.0001,
Supplementary Figure S2B). Also in accordance with the
behavioral results, no significant interaction effects between
noise and context were found.

We next focussed on effects present within the same-different
context (Table 3, Supplementary Material, SM2.2.2). The
contrast of different over same trials yielded three distinct
clusters, all of which surpassed FWE-corrected significance
for both cluster and height statistics. The strongest effect was
centered over the left inferior parietal lobule (BA 40; p < 0.0001,
Figure 4A) and included voxels within the supramarginal
and the post-central gyri. Other effects occurred in the PFC,
including a strong effect in the left middle frontal gyrus (the
dorsolateral PFC, DLPFC, BA 44; p < 0.002, Figure 4B).
Inspection of the parameter values for these two regions revealed
quite distinct responses: whereas the large posterior cluster
showed significantly positive values for both different and same
trials (with the different greater than same trials, consistent
with repetition suppression), the DLPFC cluster only showed
non-zero responses to different trials, specific to the ‘‘signal
trials’’ (true positives) in this context. A third cluster was located
in the midline, centered on the supplementary motor area
(BA 6; p < 0.008).

The contrast between regular and noisy trials speaks directly
to the representation of perceptual precision. Interestingly,
despite the absence of a significant effect of stimulus noise on
behavioral accuracy in same-different trials[1h], there existed a
strong and specific effect in the imaging data, with a single cluster
towards the rostral pole of the left PFC, and in the left DLPFC, for
the contrast of regular over noisy trials (BA 10; p < 0.016, FWE-
corrected, Figure 4C). This cluster lies within a sulcus in rostral
PFC (rPFC, BA10), bounded dorsally by the DLPFC. There were
no effects approaching significance for the contrast of noisy over
regular trials.

The significant interaction between regular-noisy trials and
same-different trials present in the behavioral data[1g] motivated
analysis of the corresponding interaction in the functional

imaging data. We observe a single significant cluster, located
within the left superior frontal gyrus (SFG, BA 8, p< 0.010 FWE-
corrected, Figure 4D, Table 3).

We, therefore, observe four distinct clusters in the left PFC
for the main effect of context, the main effect of noise, the
main effect of difference and the interaction between noise and
difference. Whilst nearby, these four clusters nonetheless reside
in distinct sulci. One cluster resides with the VLPFC, and two
within the DLPFC.

Dynamic Causal Modeling
We next employed DCM to model the interactions between the
left inferior parietal lobe (IPL) and the three prefrontal clusters
engaged in the second (faster-slower) context (Figure 4E and
Supplementary Material, SM3.5). We excluded areas outside of
the PFC, such as the supplementary motor area, likely involved
in lower level processing and/or preparation for the motor
response. All specified dynamic causal models of these data
shared a common input base, beginning with stimulus inputs
(i.e., vibrotactile stimuli) directed to the left IPL. The effect of
regular trials expressed in the rPFC was modeled by an effective
connection from IPL to rPFC, modulated by the pure (regular)
trials (Figure 4E). Likewise, a connection from the IPL to the
DLPFC, modulated by stimulus difference, modeled the effect
of difference observed in the DLPFC. Finally, SFG is subjected
to the influence of both modulations as the interaction between
regular-noisy and same-different trials occurs there. Note that a
backward connection was placed here to allow for the diminished
response of different compared to same trials to be modeled by
the feedback influence of the DLPFC on the IPL.

We specified seven separate models (four bilinear:
‘‘Diamond,’’ ‘‘Fork,’’ ‘‘Legs 1,’’ and ‘‘Legs 2’’; and three nonlinear:
‘‘Stork 1,’’ ‘‘Stork 2,’’ and ‘‘Stork 3’’; see Supplementary Material
for additional details) on top of this common base that represent
serial, parallel or hierarchical processes (see ‘‘Materials and
Methods’’ section and Figure 5). As the name suggests, in serial
models (both bilinear and nonlinear), information passes in a
serial manner from the IPL via the rPFC or the DLPFC (or both)

TABLE 2 | Significant clusters for the effect of context (fast-slow vs. same-different).

Contrast Anatomical label R/L MNI coordinates BA T-value Statistics

X Y Z Cluster PFWE-corr Size (voxels)

T: Fast-slow
< Same-different

Inferior Frontal Gyrus pars triangularis L −36 29 16 45 6.43 <0.0001 41

Middle Temporal Gyrus R 51 −25 −14 21 5.59 <0.0001 36

Significant results of “Faster-slower” < “Same-different” are shown. Standard Montreal Neurological Institute (MNI) coordinates correspond to peak maxima. Size indicates the number
of voxels in the cluster. Note that the “Same” trials have been omitted from the same-different contrast as there were no counterpart same trials from the fast-slow contrast.

TABLE 3 | Significant clusters for contrasts within the same-different context.

Contrast Anatomical label anatomy R/L MNI coordinates BA T-stat Statistics

X Y Z Cluster PFWE-corr Extent

Different > Same Inferior Parietal Lobule L −45 −46 43 40 5.81 0.0001 145
Middle Frontal Gyrus (DLPFC) L −39 14 34 44 5.69 0.002 42
Supplementary motor area L 0 23 52 6 4.91 0.008 29

Regular > Noisy Middle Frontal Gyrus (PFC) L −27 44 19 10 4.78 0.016 22
Noise × Difference Superior Frontal Gyrus L −21 23 37 8 4.88 0.010 26
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FIGURE 4 | Prefrontal cortical regions engaged in the same-different vibrotactile trials. (A) Main effect of the “Different > Same” contrast in the left inferior parietal
lobe (IPL). (B) Main effect of the “Different > Same” contrast in the left dorsolateral prefrontal cortex (DLPFC). (C) Main effect of “Noise-free > Noisy” contrast in the
left rostral PFC (rPFC). (D) Interaction of noise and difference in the left superior frontal gyrus (SFG). (E) Relative anatomical location of the corresponding nodes
employed in the dynamic causal modeling (DCM), as labeled and colored in the inset. Thick arrows show effective connectivity common to all DCM models. Thin
yellow links show connections used in some but not all models.

en route to the SFG. In parallel models, there is a direct effective
connection from the IPL to the SFG in parallel to the rPFC
and DLPFC connections. Additional modulatory influences are
introduced on top of these architectures in order to explain the
interaction effect in the SFG. In the nonlinear models (Figure 5,
lower row) the modulation of inputs to SFG is mediated by
modulation of connections from one area by another (namely
DLPFC or rPFC). This activity-dependent modulation can be
considered hierarchical. In contrast, in bilinear models (Figure 5,
top row), this modulation is attributed directly to experimental
inputs (namely, stimulus difference and regularity). In short,
both bilinear and nonlinear models allow for context or state-
dependent changes in afferents to the SFG: however, nonlinear
models consider this state-dependent modulation to be dynamic
and activity-dependent. These seven models encompass all
possible such serial, parallel and hierarchical arrangements

considered separately. Because we sought a parsimonious and
non-redundant model space, we did not consider models that
combine these basic features (for example both serial and
parallel connections).

BMS identified the double nonlinear and hierarchical model
‘‘Stork 3’’ as the model with the highest posterior exceedance
probability of the seven tested (Figure 6). This model was
followed by the other nonlinear models ‘‘Stork 2,’’ and ‘‘Stork 1.’’
The remaining bilinear models embodying serial and parallel
motifs performed poorly as they were associated with a
considerably lower exceedance probability (Figure 6A).

DISCUSSION

While being formed, stimulus representations contend with
noise in the nervous system, placing an upper bound on
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FIGURE 5 | DCM parsimonious and non-redundant model space. Stimulus inputs arrive via the IPL (green arrow) and propagate, via intrinsic connections (black
arrows) to the rPFC and the dorsolateral PFC (DLPFC). Each of these intrinsic connections is perturbed by experimental inputs: different (red) and Regular (blue)
stimulus trials that account for the corresponding effects in the SPM contrasts. From left to right, top motifs are linear serial (Diamond), parallel (Fork), hierarchical
with the regular modulation at the higher level (Legs 1), and a hierarchical with the different modulation at the higher level (Legs 2). Bottom motifs are hierarchical and
nonlinear. From left to right, regular modulation is at the top of the hierarchy (Stork 1), different modulation is at the top of the hierarchy (Stork 2), and the double
non-linear model in which both modulations occupy top and low hierarchy positions at the different interactions (Stork 3). Please refer to the Supplementary
Material for further discussion on the model space.

the precision of the stimulus representation and confounding
any imprecision arising from the properties of the stimulus
(Faisal et al., 2008). The precision of the ensuing percept
is thus a composite of the stimulus noise and stochastic
process in the perceptual system. This is crucial to perceptual
inference: not only do we integrate information across modalities
by weighting according to relative precision (Jacobs, 1999;
Ernst et al., 2000), precision also plays a crucial role in
combining new sensory evidence with prior knowledge to
inform perceptual beliefs (Friston et al., 1996). However,
there must also be a lower bound on precision in many
everyday tasks, such that objects that are re-encountered can be
recognized as familiar and, conversely, salience can be directed
toward novel or surprising parts of the sensorium (Vossel
et al., 2014). The modulation of factors influencing perceptual
precision is thus context-dependent and under executive

control. Using a vibrotactile discrimination task whereby
participants made contextual judgments that either implicitly
required encoding of a precision estimate (same-different) or
not (faster-slower), we identified a constellation of cortical
regions predominantly in the left PFC that are engaged in
computing, representing and deploying perceptual precision
in the service of decision making. By modeling these effects,
we observe that effective connectivity amongst these regions
is subserved by a hierarchical network whereby activity
in left rPFC and DLPFC exert a mutual gating influence
on the SFG.

Accuracy is higher and responses are faster for simple
magnitude comparisons (fast-slow) than during the detection
of difference (same-different). As described by signal detection
theory (MacMillan and Creelman, 2005), these two tasks differ
in the way stimuli and noise are perceptually represented
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FIGURE 6 | Bayesian model selection (BMS). (A) Posterior exceedance probability that any single model is more likely than any other. (B) Posterior parameter
values of the winning model.

in ‘‘decision space’’: although perceptual uncertainty clearly
plays a role in all decisions in our experiment (both faster-
slower and same-different), the former task can be achieved
simply by subtracting the inferred stimulus frequencies. By
contrast, in the latter task, perceptual precision is explicitly
part of the decision process, so that the perceived magnitude
difference is weighed against the precision of each representation
(Figures 2, 3). This additional computational burden is reflected
in slower reaction times (Figure 3A); the corresponding
contextual functional neuroimaging contrast yielded a robust
effect in the left IFG pars triangularis (BA 45), which lies
within the mid VLPFC and has been implicated in the cognitive
control of working memory (Badre and Wagner, 2007), a
necessary component of our task. It has also been argued
that the mid-VLPFC is involved in the ‘‘active retrieval’’ of
information from posterior cortical association areas: active
retrieval is required when stimuli in memory ‘‘do not bear
stable relations to each other and therefore retrieval cannot
be automatically driven by strong, stable, and unambiguous
stimulus or context relations’’ (Petrides, 2002). This argument
recapitulates the notion that additional neuronal resources are
called upon when the ambiguity of perceptual representation
becomes an integral aspect of the task at hand and not a mere
nuisance factor.

To further understand the neural correlates of perceptual
precision, we studied the consequence of degrading the temporal
structure of the stimuli, thereby introducing controlled stimulus

noise. The contrast of regular > noisy trials in the same-different
context showed additional activity in the left rPFC (BA 10,
Figure 4), an apex region of the PFC. The rPFC has been
associated with a broad variety of executive and integrative
functions, including those that pertain to decision making
(Koechlin andHyafil, 2007; Li and Yang, 2012), workingmemory
(Ramnani and Owen, 2004) and context (Simons et al., 2005).
The stronger engagement of this region during the regular
trials may be indicative of a requirement to account for the
relatively high precision of stimulus representations arising from
regular vibrations. This might reflect a fundamental role for
this region in modifying perceptual stability to optimize the
detection of change and surprise (Friston et al., 2012). Greater
activity in regular compared to noisy vibrotactile stimuli has
been previously observed in other regions of PFC during the
explicit detection of stimulus noise (Godde et al., 2010). In
our study, detecting the presence of noise was not explicitly
required (or reported) but rather an implicit component of task
execution. The rPFC may, therefore, encode a generic means
of representing perceptual precision rather than a role linked
specifically to explicit stimulus decoding. We return to this
issue below.

The presence of noisy stimuli in the same-different task was
either a help or a hindrance to task performance, depending
upon the nature of the trial: consistent with our framing of
decision-making in the presence of noise (Figure 2), noise
increased the accuracy for same but not different trials.
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In the case of same trials, stimulus noise may diminish
the significance of the slight perception of difference that
inevitably arises when encoding stimuli, even when such
stimuli are physically identical. The presence of noise thus
decreases the chance that such trials are mistakenly classified
as different. However, the lower precision also increases
the likelihood that the perception of difference associated
with truly different trials is rendered subthreshold, increasing
their misclassification. This behavioral interaction thus speaks
directly to perceptual precision. The corresponding interaction
contrast in our functional magnetic resonance imaging (fMRI)
data yielded a cluster deep in the sulcus of left DLPFC
cortex—the SFG. This finding suggests that in concert with other
prefrontal regions such as the rPFC, the SFG may accumulate
multiple aspects of decision-relevant evidence and integrate these
on the fly.

We employedDCM tomodel dynamic network computations
enacting the interaction of stimulus change and perceptual
noise. The key features of the winning model (Stork 3) are
nonlinear and hierarchical relationships between the DLPFC,
the rPFC and the SFG (Figure 5). The balanced nature of
this motif’s structure mirrors the notion that the assessments
of precision and stimulus difference mandate a mutual,
dynamic exchange during the corresponding same-different
task: high values of perceptual precision up-regulate the
appreciation of stimulus change and likewise, the perception
of change influences the role of precision on decisions.
The nonlinear terms that account for the interaction effect
ostensibly have an underlying biological basis—a ‘‘gating’’
mechanism, whereby the effective influence of activity from
one neural region to another depends on the current activity
in a third region. Candidate neural processes capable of
underlying this effect include priming of voltage-dependent
N-Methyl-D-aspartate (NMDA) channels through partial
depolarization by AMPA-mediated synapses, synaptic
depression/facilitation or early long-term potentiation (for
review, see Stephan et al., 2008). The neural response of the
SFG may thus depend on the immediate history of responses
of the rPFC (facilitated by regular stimuli) and the DLPFC
(facilitated stimulus difference), each influencing the other’s
concurrent influence.

The hierarchical organization of networks and information
flow has been frequently described across prefrontal regions
(Nee and D’Esposito, 2016). The ‘‘action-perception cycle’’
describes the complementary interaction between prefrontal
networks of executive memory with a posterior network
of perceptual memory, exerting reciprocal influences. This
interaction is thought to occur at all levels of the nervous
system, engaging neural networks at every hierarchical level of
the neocortex (Fuster, 2009). All stages of processing generate
internal feedback upon earlier stages, serving to monitor
and modulate incoming signals at every stage (Fuster, 2006).
Here, we have focused only on the interactions among the
constellation of PFC regions identified by the task contrasts.
The PFC is thought to constitute the highest level of the
cortical hierarchy dedicated to the representation and execution
of actions (Fuster, 2001). The analysis of functional and

structural hierarchies in PFC is a very active area of research
(see Gorbach et al., 2011): to the best of our knowledge,
this is the first study of hierarchies of effective connectivity
within the human PFC underlying perceptual precision. The
predominance of left PFC in this study may be partly due
to the fact that all participants in our study were right
handed and all stimuli were presented to the right index
finger. The lateralization may thus be a consequence of the
right-sided stimulus presentation rather than a reflection of
hemispheric specialization. Most of our effects were indeed
bilateral, although often only exceeding threshold in the
left hemisphere (results not shown). Future work could also
incorporate premotor regions involved in the task, likely in
pre-empting the motor response.

It is important to note that the fast-slow < same-different
contrast did not contain the same trials required for
the same-different task. Hence, the full stimulus-set
used by participants to set their decision-criteria in the
same-different context is not present in this contrast. In
addition to a substantially lower sensitivity (Supplementary
Figure S1), participants possibly adopted a response bias
towards responding ‘‘same’’ for the same-different context,
reflected in higher accuracy (using proportion correct)
for same trials than for different trials. Therefore, the
fast-slow < same-different contrast examined in this study,
whilst avoiding any confounds due to stimulus differences,
is an incomplete comparison of stimulus representation
between the two judgments. The neural regions identified
from the contrast (IFG pars triangularis and middle
temporal gyrus, Supplementary Figure S1) necessarily
reflect the perceptual representation of the same-different
judgment, and the computational criteria that underlies
response bias.

We have framed the performance of our perceptual decision-
making task in terms of Bayesian inference, i.e., that decisions
depend uponweighting sensory evidence according to perceptual
precision (Dayan et al., 1995; Karim et al., 2012). While all
percepts accordingly involve both the perceptual value (mean)
and the precision, our findings elucidate the manner in which
this evidence and its precision are represented and integrated
in a hierarchical prefrontal network when required for decision-
making. For example, the representation of perceptual precision
is associated with greater activity in the rPFC which then
gates the effect of other stimulus properties. Our findings
build on prior work regarding gain-mediated precision-weighted
perceptual inference (Moran et al., 2013) and are consistent
with the notion that neuronal activity encodes probability
distributions regarding sensory evidence (Dayan et al., 1995;
Sanger, 1996; Zemel et al., 1998). However, the application of
classic DCM to fMRI data is limited to inferences regarding
changes in local mean firing rates. Probabilistic population
encoding likely also involves other moments of population
activity, such as a direct mapping between the variance
of neuronal states and the uncertainty of the perceptual
representation (Beck et al., 2008; Shi and Griffiths, 2009).
Although there exists a theoretical link between the variance
of local population activity and gain control (Marreiros et al.,
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2010), future work that employs stochastic variants of DCM
(Li et al., 2011) could be used to infer higher order moments
of neuronal activity (Harrison et al., 2005; Breakspear, 2013)
and thus more directly probe the local neural correlates of
perceptual precision.
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