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Neurological diseases can be studied by performing bio-hybrid experiments using

a real-time biomimetic Spiking Neural Network (SNN) platform. The Hodgkin-Huxley

model offers a set of equations including biophysical parameters which can serve as

a base to represent different classes of neurons and affected cells. Also, connecting the

artificial neurons to the biological cells would allow us to understand the effect of the

SNN stimulation using different parameters on nerve cells. Thus, designing a real-time

SNN could useful for the study of simulations of some part of the brain. Here, we

present a different approach to optimize the Hodgkin-Huxley equations adapted for Field

Programmable Gate Array (FPGA) implementation. The equations of the conductance

have been unified to allow the use of same functions with different parameters for all ionic

channels. The low resources and high-speed implementation also include features, such

as synaptic noise using the Ornstein–Uhlenbeck process and different synapse receptors

including AMPA, GABAa, GABAb, and NMDA receptors. The platform allows real-time

modification of the neuron parameters and can output different cortical neuron families

like Fast Spiking (FS), Regular Spiking (RS), Intrinsically Bursting (IB), and Low Threshold

Spiking (LTS) neurons using a Digital to Analog Converter (DAC). Gaussian distribution of

the synaptic noise highlights similarities with the biological noise. Also, cross-correlation

between the implementation and the model shows strong correlations, and bifurcation

analysis reproduces similar behavior compared to the original Hodgkin-Huxley model.

The implementation of one core of calculation uses 3% of resources of the FPGA

and computes in real-time 500 neurons with 25,000 synapses and synaptic noise

which can be scaled up to 15,000 using all resources. This is the first step toward

neuromorphic system which can be used for the simulation of bio-hybridization and

for the study of neurological disorders or the advanced research on neuroprosthesis

to regain lost function.
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INTRODUCTION

Brain disorders are among the leading causes of disabilities
worldwide. The increasing number of neurological diseases
raised scientists to reconsider the way of studying the human cells
and the process of healing brain afflictions. Along with advanced
technology, the combination of technological devices and
biological neurons, also called hybrid neuromorphic engineering,
was explored to find advanced solutions by designing bio-hybrid
devices. Reproducing neuro-mimetic activities and improving
the connection between living cells and machines became
mandatory for designing neuroprosthesis. Such devices (Nicolelis
and Lebedev, 2009; Hochberg et al., 2012; Bonifazi et al.,
2013) have been focused on the interactions with neuronal cell
assemblies especially on mimicking the spontaneous activities
of the biological neural networks. To perform in the future
replacing experiments (Jung et al., 2001), meaning that damaged
biological neural network will be replaced by artificial neural
network, detailed models of neurons and synapses are required.
These models should fit the electrophysiological data (Grassia
et al., 2011). To interface in real-time biological assemblies
and Spiking Neural Network (SNN), a real-time hardware
implementation is therefore needed (Mahowald and Douglas,
1991; Indiveri et al., 2001; Levi et al., 2008). A biomimetic
SNN is a neuromorphic system composed of high detailed level
of analogy to the nervous system. It is based on biophysically
detailed neurons, synapses, plasticity and noise. Most of them
are in silicon (Ambroise et al., 2013) but some are also made
with microfluidic techniques (Levi and Fujii, 2016). Biomimetic
SNN is then one way to explore for designing new generation
of neuroprosthesis and will facilitate the bio-hybrid experiments.
Such components make one reconsider about the interaction
between artificial devices and living cells.

With the appearance of real-time neuromorphic platforms,
the desire to connect artificial neural networks with biological
neural networks has emerged (Le Masson et al., 2002; Broccard
et al., 2017). These systems often considers complex neuron
models and plasticity and are in biological real-time. They mimic
the action potential shape and the spike timing. Potter et al.
(2014) and Levi et al. (2018c) presented different works on
the closed-loop hybrid experiment. Potter et al. (2014) shows
the latest innovations in the field, such as closed loop hybrid
experiments using MEAs (Bareket-Keren and Hanein, 2012;
Robinson et al., 2013), in vitro experiments (Bonifazi et al., 2013;
Pimashkin et al., 2013), in vivo experiments (Opris et al., 2012;
Nishimura et al., 2013) and clinical trials (Walter et al., 2012;
Fernandez-Vargas et al., 2013). Vassanelli and Mahmud (2016)
introduced the term “neurobiohybrid.” This term defines one
system composed by at least two heterogeneous elements which
one of them is biological neuron cells. These elements should
communicate in a uni- or bidirectional way. Recently (Chou
et al., 2014; Potter et al., 2014; Joucla et al., 2016; Serb et al.,
2017) described different works on neurobiohybrid systems. This
kind of interface would improve biomedical research and brain
affliction (Bonifazi et al., 2013; Shahdoost et al., 2014; Capogrosso
et al., 2016).

Understanding the behavior of neurons and their electrical
activities, also called Action Potential (AP), is a key to design

biomimetic systems. The choice of neuron model is the first
difficult decision because it depends on the application of the
systems and experiments.

The properties of the nerve cells can be mathematically
described allowing the prediction of biological processes into
a model called Spiking neuron model. Models of neurons that
considers the spatial variation and the membrane potential of a
neuron using several variables are called multi-compartmental.
On the other hand, single compartmental models reproduces
complex dynamics of real neurons including the evolution
of ionic channels representing by conductances that is well-
described by Hodgkin and Huxley (1952) using a four-
dimensional set of equations. Such models require high
computation resources generating suggestion of simplified
models. Izhikevich (2003), Brette and Gerstner (2005), and
Kohno et al. (2016) introduced two-dimensional models
describing dynamical behavior of specific activities of neurons
using simple equations.

Increasing the complexity and the dimension of the
equations improves the biological plausibility; however, it
increases the required resource and computation time. Bio-
hybrid experiments require having an accurate/bio-realistic
model which is able to reproduce the shapes and the frequencies
of APs in Real-Time (RT). Biophysical experimental data
(Alle and Geiger, 2006; Pospischil et al., 2008) suggest the
possibility that variety of spikes given to a synapse plays a
certain role in the information processing in the brain. For
instance, Debanne et al. (2013) shows that the spike transmission
and the modulation of neurotransmitter release are also a
consequence of subthreshold presynaptic potential variations.
Study of neurological disorders requires a bio-detailed model
allowing one to modify biological parameters like reversal
potentials, neuron size or ion conductance. Bio-detailed and
bio-realistic are two different terms with different meanings.
One represents the action potential according to biological and
physical parameters and the other acts in the same way as
the biology does. Adding synaptic noise (Destexhe et al., 2001;
Grassia et al., 2016) and synaptic plasticity lead the model to a
more accurate representation of a biomimetic neural network.
Indeed, the noise generates stochastic behavior on the level of the
neuronal dynamics, and influences the transmission of synaptic
signals (Manwani and Koch, 1999) and impacts on the integrative
properties of neurons (Stein et al., 2005).

SNN can be simulated with simulation software (Hines and
Carnevale, 2001; Gewaltig and Diesmann, 2007; Goodman and
Brette, 2009) and neuromorphic hardware. Power consumption
and simulation time required to seek the solution are becoming
relevant as neuroscientists turn to supercomputers to simulate
brain-scale neural networks at cellular resolution. Today’s
supercomputers require 5min to simulate 1 s of biological time
on JUQUEEN (Kunkel et al., 2014; Jordan et al., 2018) which
consumes 60–70 kW of power per racks, with 28 racks1 , and
40min for 1 sec on K2 . In contrast, hardware implementations
can realize real-time simulations with low power consumption.

1http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/
Configuration/Configuration_node.html
2http://www.riken.jp/en/pr/press/2013/20130802_1/
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For bio-hybrid experiments, the choice of hardware systems is
therefore more relevant.

Hardware implementations of SNN are divided into two
major categories: mixed implementation (based on analog
full-custom integrated circuits) and only digital implementation
(based on FPGA, microprocessors, microcontrollers or
neurochips). Moreover, the SNN could be (i) biomimetic,
meaning it reproduces and imitates biological neurons, or
(ii) bio-inspired meaning it is dedicated to computation tasks
based on neural networks. In this paper, the system is based on
biomimetic and non-bio-inspired systems.

In the case of mixed implementations, different neuron
models are implemented: multi-compartmental (Hasler et al.,
2007; George et al., 2013), conductance-based (Sorensen et al.,
2004; Binczak et al., 2006; Renaud et al., 2007; Levi et al., 2018a;
Natarajan and Hasler, 2018) or with threshold models (Liu and
Douglas, 2004; Vogelstein et al., 2004; Indiveri and Fusi, 2007;
Schemmel et al., 2007; Qiao et al., 2015; Kohno et al., 2016). Most
of these systems are composed with an analog core for the neuron
model implementation. The synapses and plasticity are usually
integrated by digital techniques and the different analog cores
are linked.

On the digital side, engineers and researchers are usually
designing SNN for bio-inspired applications (Rice et al., 2009;
Sabarad et al., 2012; Wang et al., 2013; Nanami and Kohno,
2016; Levi et al., 2018b). The number of implementations on
the FPGA platform has been steadily increasing since 1997.
Nazari et al. (2015) present the work of Cassidy et al. (2011)
for an implementation of one million simple neurons, (Arthur
et al., 2012) for the implementation of 256 Integrate-and-Fire
neurons and 1,024 × 256 synapses, (Wang et al., 2013) for the
implementation of 4,000 neurons and 1.15 million synapses.

Depending on the applications and on the choice of the
neuron model, one main concern is the size of the neural
network. Biological details of the neuron model are one
constraint on the maximum number of neurons in the hardware
system. To obtain medium size network of neurons (populations
of around 1,000 neurons) or large-scale neural network (more
than 10 000), it is necessary to:

• Implement a simple neuron and synapse models. Such
implementation is presented by Cassidy et al. (2011) which
shows a FPGA implementation of one million of neurons
using the Leaky Integrate-and Fire model (LIF). Based
on this research results, IBM has included one million
neurons and 256 million synapses in his TrueNorth chip
(Merolla et al., 2014).

• Perform neural network calculations, such as the SpiNNaker
platform (Furber et al., 2013; Van Albada et al., 2018) with a
multiprocessor architecture and real-time computations using
an integration step of 1.0, 0.1ms is classic for neuroscience
applications. Another system called BrainScaleS perform
calculations of neural network 104 times faster than biological
time (Rast et al., 2013). BrainScaleS is composed of several
modules including wafer with 448 neuromorphic chips and a
routing system achieving a simulation of 512 neurons activities
and 115,000 synapses. Both systems are used for the Human

Brain Project (Markram, 2012). They performed high-speed
simulations of the brain but no bio-hybrid experiments.

The Hodgkin-Huxley (HH) equations have been the subject of
studies for FPGA implementation. According to the computation
methodology used for the design, the computation time, the
resources and the precision can be modified. Osorio (2016)
present a pipelined implementation using floating point numbers
and complex methods, such as the Runge-Kutta algorithm to
solve the differential equation, Taylor series for the exponential
and Goldsmith algorithm. However, such methodology requires
a lot of FPGA resources. Bonabi et al. (2014) showed good
precision using fast and low resources algorithms, such as the
CORDIC algorithm and Euler method for the computation of
120 neurons connected by synapses. More recently, Akbarzadeh-
Sherbaf et al. (2018) presented another way to compute HH
neurons on FPGA with 5,120 real-time neurons (or 65,536 using
a different time scale).

Such complex models need an optimization and an adaptation
to the digital implementation. It is important, according to
the application, to know how far the approximations and the
modifications could modify the behavior of the SNN. Several
different tools exist that allows us to compare biological data with
the device output, such as bifurcation analysis, cross-correlation,
and frequency to stimulation or amplitude to stimulation graph.
Here, we present the first optimized implementation of the HH
formalism adapted to different classes of cortical neurons on
FPGA including synaptic noise and synapses. We also propose
a low resource and high-speed digital architecture allowing
biomimetic features in real time.

MATERIALS AND METHODS

Different types of cortical neurons have been identified
(Izhikevich, 2003) and described (Gutnick and Mody, 2012) in
term of AP shape and frequency. Among them the Fast Spiking
neuron (FS), Regular Spiking neuron (RS), Intrinsically Bursting
neuron (IB), and Low-Threshold Spiking neuron (LTS) are the
main focus and they are described in this paper. The model used
in this paper is based on a simple-compartment model of HH
with the parameters of Pospischil et al. (2008). Here, we proposed
a SNN based on these equations and adapted to digital hardware
allowing the computation of cortical neurons connected by
synapses including synaptic noise to incorporate spontaneous
activities. Also, different tools have been developed to validate
our system and to compare it with biological recordings. The
second part will show how we validated the system, how errors
can be calculated and at which moment the mistake from the
optimization can be acceptable and how close to the biology it
should be and can be.

Neural Network Model
Neuron Model
Hodgkin and Huxley proposed an equivalent circuit (Figure 1)
of a nerve membrane which can reproduces action potential and
dynamics of ionic channels (Hodgkin and Huxley, 1952). The
model described differential equations from an electrical circuit
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representing the membrane of one neuron. The membrane
voltage is a function of the membrane capacitance and the
ionic currents.

The HH formalism is described here using the parameters
of Pospischil et al. (2008). It reproduces the biological behavior
of different cortical neurons: FS, RS, IB, and LTS neurons.
The equations include several ionic currents to simulate other
dynamic effects than the original model and to reproduce the
complex dynamic behaviors of cortical neurons.

The Equations (1–6) describe five ionic currents
corresponding, respectively to potassium (IK), sodium (INa),
leakage (ILeak), slow potassium (IKp) for frequency adaptation
and calcium (ICaL for IB or ICaT for LTS).

Cm
dVm

dt
= Is −

∑

i

Ii (1)

where Vm is the membrane voltage, Cm the membrane
capacitance, Is the stimulation current in µA/cm² and Ii (INa, IK,
IKp, ICaL) the ionic current that can be represented by (2). ICaT is
defined by (3).

Ii = gi ×mp × hq × (Vm − Ei) (2)

ICaT = gCaT ×m∞
2 × h× (Vm − ECa) (3)

dx

dt
=

x∞(Vm)− x

τx (Vm)
(4)

where x ∈ {m, h}, τx (Vm) and x∞(Vm) are obtained by the
Equations (5, 6), p and q are p= 4, q = 0 for IK, p = 3, q = 1 for
INa, p= 1, q= 0 for IM and p= 2, q= 1 for ICaL. The variable m
is the activation and h the inactivation probability of the voltage
dependent channel.

τx(Vm) =
1

αx (Vm) + β (Vm)
(5)

x∞(Vm) =
αx (Vm)

αx (Vm) + β (Vm)
(6)

FIGURE 1 | Electrical circuit representing the membrane of one neuron

according to Hodgkin and Huxley where Vm is the membrane voltage, Cm the

membrane capacitance, gK, gNa, gCa are the variable conductances

representing the opening/closing gate of the ionic channels and EK, ENa, ECa
are the reversal potentials of the different ions. The leakage conductance

composed of gLeak and ELeak maintains the resting potential of the neuron.

(6) where α and β are exponential based equations. α and β

parameters are given in Pospischil et al. (2008).
The parameters used in the above equations are shown on

Table 1 and are described in Pospischil et al. (2008). These
equations have been implemented on Matlab and adapted from
the implementation of Alain Destexhe on the Neuron software.

Synapses
Neurons communicate using Action Potential through small
units called synapses that interface with axons and dendrites.
Reproducing a biomimetic neural network implies the study
and the realization of the synapses’ behavior. Binding chemical
messages, the synapse receptors AMPA, GABAa, GABAb and
NMDA are responsible for synaptic transmissions and their
activities has been recorded and modeled (Destexhe et al.,
1998). The following equations represent the synaptic current of
excitatory synapses (AMPA and NMDA) and inhibitory synapses
(GABAa and GABAb).

IAMPA = ḡAMPA.r.(Vpost − EAMPA) (7)

INMDA = ḡNMDA.r.B
(

Vpre

)

.(Vpost − EAMPA) (8)

IGABAa = ḡGABAa.r.(Vpost − EGABAa) (9)

where,

dr

dt
= α.

[

T(Vpre)
]

. (1− r) − β .r (10)

IGABAb = ḡGABAb.
sn

sn + Kd
.(Vpost − E) (11)

where,

ds

dt
= K3.r − K4.s (12)

TABLE 1 | Values used for computation of the HH model using Pospischil

parameter.

FS RS IB LTS

dneur (µm) 67 96 96 96

Sm (cm²) π × dneur 2 × 10−8

Cm (µF/cm²) 1

Is (µA/cm²) 3.54 2.59 0.51 1.24

gk (mS/cm²) 10 5 5 5

gNa (mS/cm²) 50 50 50 50

gLeak (mS/cm²) 0.15 0.1 0.01 0.01

gM (mS/cm²) 0 0.07 0.03 0.03

gCaL (mS/cm²) 0 0 0.17 0

gCaT (mS/cm²) 0 0 0 0.4

Ek (mV) −100 −100 −100 −100

ENa (mV) 50 50 50 50

ELeak (mV) −70 −70 −85 −50

ECa (mV) 0 0 120 120

VInit (mV) −70 −70 −84 −84

Considering the neuron as a cylinder, dneur and Sm are the size of neuron; Is has been

calculated using the current inµA divided by Sm; Vinit represents the value of the first point.
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dr

dt
= K1.

[

T(Vpre)
]

. (1− r) − K2.r (13)

Ix is the synaptic current with x representing the AMPA, NMDA,
GABAa, or GABAb neurotransmitter. Vpost is the membrane
voltage from the post-synaptic neuron received by the membrane
voltage Vpre from the presynaptic neuron sending the action
potential. α , β , Kd, K1, K2, K3, K4, and n are constants and
gx, with x representing the neurotransmitters, is the conductance.
All the equations and the parameters can be found on (Destexhe
et al., 1998). The computation of T can be optimized using the
method shown in section Optimization Toward Implementation
by a hyperbolic tangent. The parameters are α = 1.1, β = 0.19, g
= 0.9 nS, E= 0mV for AMPA, α = 0.072, β = 0.00066, g= 0.35
nS, E= 0mV for NMDA, α = 5, β = 0.18, g= 1 nS, E=−70mV
for GABAa and K1 = 0.09, K2 = 0.0012, K3 = 0.18, K4 = 0.034,
Kd= 100, n= 4, g= 1 nS and E=−95 mV.

The different receptors show various behavior that can be
found in the nerve system. AMPA and NMDA are excitatory
synapses which respectively induce fast and slow excitation. On
the other hand, GABAa and GABAb are inhibitory synapses
which respectively produce fast and slow inhibition. These effects
can be observed on the FPGA in the result section of this article
and in Figure 11.

Noise
In vivo experiments show that neurons have noise behaviors both
in the transmission of synaptic signals and in the generation
of action potentials. Subthreshold membrane oscillations can be
observed. This noise behaviors come from intrinsic or extrinsic
sources (Manwani and Koch, 1999) or from the thermal noise.
Commonly, computational neuroscientists modeled synaptic
activity using fluctuating conductance (Destexhe et al., 2001),
or by adding a source of noise current in the neuron model
(Levitan et al., 1968; Tuckwell, 1988). Hence, the neuron activity
can be modeled by stochastic differential equations. In previous
work (Grassia et al., 2016), a FPGA implementation of quartic
model was suggested using Ornstein–Uhlenbeck process as
source of current noise. For this work, we will use the same
process adapting the parameters for the Hodgkin-Huxley model.
The Ornstein–Uhlenbeck process is described by the following
differential equation:

dI(t) = θ · 1t · (µ − I(t))+ σ · dW(t) (14)

Where, Wt denotes the Wiener process, θ > 0, σ > 0 are
parameters and µ represents the mean value or the equilibrium
for the process.

The form (15) represents the stationary variance of Ornstein–
Uhlenbeck process:

var (Xt) =
σ 2

2θ
(15)

(15) The source of current noise described in the stochastic
differential Equation (14) can be considered as an approximation
of the results from opening and closing of the channel
that is controlled by a set of independent gating particles

on a neuron’s surface (Tuckwell et al., 2002). Using Euler–
Maruyama method (Higham, 2001), an explicit integration
algorithm for FPGA implementation (Grassia et al., 2016) was
obtained. Consequently, the approximation to the solution can
be recursively described for 1 ≤ n ≤ N as in this way:

I[n+ 1] = I[n]+ θ(µ − I[n])1t+ σ1W[n] (16)

where, 1W[n] are independent and identically distributed
random variables with expected value zero and variance 1t,
thus 1W[n]∼N(0,1t) =

√
1t∗N(0,1); 1t = T/N is the time

step after the partition of the interval [0, T] into N equal
subintervals of width 1t > 0, n is the iteration step. To realize
an FPGA implementation of the Euler-Maruyama method,
normally distributed random variables with standard deviation√

1t were generated.
The Equations (14, 16) are represented under the form of a

current to add with the ionic current. In the result section, the
neuron dynamic with synaptic noise will be discussed.

Optimization Toward Implementation
Unlike low-level implementation, computation of ionic channel
is costly due to the presence of extensive calculations of
exponentials and divisions. Here, optimized equations for the
ionic dynamics adapted to a low-level digital implementation that
are low cost are introduced. Optimizing the equations reduces the
computation time and increases the number of neurons, synapses
and other features like the noise in the FPGA.

Alternative Equations
Another method of representing the equations is by fitting
x∞ and τx using hyperbolic functions. This choice of using
hyperbolic functions comes from the development of a high
speed and low resources module on FPGA for reproducing
hyperbolic functions using CORDIC algorithm (see part FPGA
Implementation). Thus, ionic channels can be represented by the
same functions with different parameters.

dx

dt
=

x∞ (Vm) − x

τx (Vm)
(17)

x∞ (Vm) = a1. tanh
(

b1.(Vm − Vx)+ c1
)

+ d1 (18)

τx (Vm) =
a2

cosh
(

b2 × (Vm − Vx)+ c2
) + d2 (19)

Where x is the concerned ionic channel (m or h), Vm the
membrane voltage and a, b, c, d are parameters. The equations
present different constants, which are represented on Tables 2, 3
according to the ionic channel and the ionic current needed.

The ionic current ICaT follows the same rules. The differences
come from the fact that τ can be calculated by another hyperbolic
tangent. Thus, m∞, u∞ and τu can be calculated with the
following formula using the parameter in Table 4.

f (v) = a. tanh
(

b.v+ c
)

+ d (20)

These novel equations and calculation methods are able to
reproduce action potential (Figure 2) using unifying equations
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TABLE 2 | Parameters for x∞; The computation of an IB and a LTS neuron

requires more precision on m∞ , then the parameters become: a1 = 0.001179*v

+ 0.5479, b1 = 2−4 + 2−10 , c1 = 1.954 and d1 = 0.4577 when Vmem < −30

else, a1 = 0.0001474*v + 0.4383, b1 = 2−4 + 2−8 , c1 = 1.817, and

d1 = 0.567.

a1 b1 c1 d1

IK m 2−1 2−5 + 2−6 −1.128 0.467

INa m 2−4 −1.718 0.497

h −2−3 2.705 0.502

IM m 2−5 + 2−6 −0.938 0.5

IL m 2−3 4.151 0.495

h −2−6 – 2−7 2.705 0.502

TABLE 3 | Parameters for τ_x where γ = −0.2334 × (Vm – Vx ) + 9.649,

δ = −0.1118 × Vm + 2.264 and ε = −0.9446 × Vm + 237.6; Vx = 2mV.

a2 b2 c2 d2

IK m 1.325 0.046 −0.497 0.335

INa m 0.893 −0.041 0.937 0.029

h γ 0.099 −1.960 0.3498

IM m 2−1 −1.618 2−4 0.498

ICaL m δ 0.093 3.452 0.371

h ε −0.029 −1.833 150.7

TABLE 4 | Parameters for the computation of ICaT ionic current.

a b c D

m∞ 2−1 2−4 + 2−6 5 0.5

u∞ −2−3 −11

τu −28.09 0.162 12.808 37.03

and present small differences in frequency and amplitude.
Using the power of two as coefficient allows the replacement
of multiplier by logical shift operations which makes the
implementation lighter and faster. Also, hyperbolic tangent and
cosine are faster to compute than exponentials.

In order to have similar amplitude and frequency for all
the classes of neurons, best stimulation current minimizing the
root mean square error and maximizing the R value of cross-
correlation has been found.

foriginal_FS (Is) = fSimplified_FS (Is) = (7.58.Is) + 3.381 (21)

foriginal_RS (Is) = (4.3.Is) − 0.66;

fSimplified_RS (Is) = (4.206.Is) − 0.661 (22)

where, Is is the stimulation current.
The optimized version of Hodgkin-Huxley model shows

similar behavior in shape and in frequency as the original
one’s. Modifying the Hodgkin-Huxley equation requires one to
measure the correlation between the two signals and the stability
of the new system compared to that of the original one.

Validation Tools
The proposed set of equations are chosen and validated to be
close to the original equations and to the biological behavior.
It is modeled to be convenient in term of resources and
time computation as a digital implementation. Different ways
of comparison have been developed for showing similarities
between the dynamics of two set of data. Frequency vs.
Stimulation current curve (F-I) and Amplitude vs. Stimulation
current curve (A-I) are the most representative because they
show the different stimulation currents of reaction of neurons.
Moreover, it is possible to compare the dynamics of the living
cells to the artificial cells. The F-I graph shows strong similarities
for the FS between the biological recording and the FPGA
output which represents the frequency of the neuron according
to the stimulation.

F-I curves (Figure 3) show good correlation between the
original and the optimized equations. However, as Pospischil
et al. (2008) stated, the model does not fit with the biological
recordings but shows frequency adaptation which is used for
the other type of neurons. F-I shows the behavior of an
isolated neuron when applying a stimulation current. However,
it does not consider the shape of the AP. Optimized neuron
implementation will show similar behavior to the model which
aims to fit electrophysiological recording. However, how similar
is the optimized implementation from reality and how far from
the reality should the AP be? These common questions about
correlation have been the object of studies and show that one
of the known tools is the Pearson Product Moment Correlation
(PMCC) (Cohen and Kohn, 2013). Pearson correlation gives a
value between−1 (negative correlation) and+1 called “r.” Other
tools have been used to analyze brain signals going from the
electrophysiology records to the neuroimaging results (Ide et al.,
2017). Statistical method, such as Granger causality analysis can
be used to predict one series from other series (Seth et al., 2015)
despite a delay in signals. Also, cross-correlation (CC) is one of
the most common correlation methods used in different fields
which quantifies the correlation and the phase difference of two
signals, also called lag (Yuan et al., 2015). Pearson correlation is
defined by the Equation (3) and shows the covariance divided by
the multiplication of the standard deviation of the two set of data
called x and y.

rxy =
1

N − 1

N
∑

i=1

(

xi − µx

σx

) (

yi − µy

σy

)

(23)

where µx and µy are respectively the mean of x and y, σx, and σy
are the standard deviation of x and y, N the number of samples.

Cross-correlation is similar to the Pearson correlation but
adds the lag as a feature. The function is also close to a
convolution product that translates a signal and measures its
similarity with a reference signal.

rxy(i) =
N

∑

j=0

x (i) .y
(

i+ j
)

(24)

where N the number of points, i and j are the index of the
data vectors.
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FIGURE 2 | Comparison between Matlab implementation of HH neurons using Pospischil parameters and Matlab implementation of simplified model: (A) Fast Spiking

neuron possesses a constant frequency while the current stimulation is constant; (B) Regular Spiking neuron shows a frequency adaptation; (C) Intrinsically bursting

neuron begins with a burst when the threshold is exceeded; (D) Low Threshold Spiking burst after when a negative excitation ends and has a regular behavior when

excited with positive current, the burst of the optimized result shows less spikes than the original version.

FIGURE 3 | Left graph shows the F-I curve of the biological cell recordings

(Blue curve named Biology), original model (red dotted line named Pospischil)

from Pospischil et al. (2008) and the optimized model proposed in this paper

(green dotted in named Optimized); Right graph shows the frequency of the

first and 10th spike of the original and optimized equations compared to the

biological cell.

Cross-correlation is simple and sufficient for small size of the
neural network capable of quantifying the differences between
original equations computed on MATLAB and ones computed
on FPGA (Figure 4).

Pearson correlation identifies the correlation >0.9 compared
to a single spike of each classes of neuron. However, when

applying train of spike, the r value decreases (Figures 4a.1–d.1).
The error could be originated from a small phase induced
by the modification of the model which is demonstrated
by the (Figures 4a.2–d.2). The R value of the CC of two
compared signals suggests better correlation (>0.9) with a
|lag| different to 0.

The proposed set of equations for the Hodgkin-Huxley model
are validated to be close to the original equations through
bifurcation analysis that is used to investigate the dynamical
property of the neuron model in response to a sustained current
stimulus as shown by Izhikevich (2000) and by Rinzel and
Ermentrout (1989). Biological neurons can be classified into
Class 1 or Class 2 according to their response to a stimulation
current (Hodgkin, 1948). The characteristic of Class 1 is observed
when the transition from non-active phase to spiking phase is
associated with a saddle-node bifurcation. When resting state
loses its stability via a Hopf bifurcation, biological neurons
classified as Class 2. The dynamical properties of the HH model
that have been studied by Hassard (1978) and Hassard et al.
(1981) belong to Class 2. As already investigated in previous
work (Grassia et al., 2012), AUTO software was used to perform
bifurcation analysis for equilibria as well as for periodic orbits, to
compare our simplified HHmodel to that of Hansel et al. (1993).

Bifurcation diagram of our simplified HH model and the
original HH model are shown respectively in Figures 5A,B,
where red and black curves define stable and unstable equilibria,
respectively, while yellow and blue curves respectively represent
stable and unstable limit cycles. The repetitive firing that emerges
when sustained stimulation current was applied corresponds to
stable limit cycle. It suggests that in both cases the limit cycles
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FIGURE 4 | (1) Single spike on scatter plot for the Pearson Correlation calcul; (2) Lag and R coefficient represented for each classes of neurons; (a) FS neuron with a

stimulation of 0.5 nA, rPPMC = 0.96 for a single spike and for a spike train, rCC = 0.99; (b) RS neuron with a stimulation of 0.75 nA, rPPMC = 0.96 for a single spike,

rPPMC = 0.37 for a spike train, rCC = 0.97; (c) IB neuron with a stimulation of 0.15 nA, rPPMC = 0.89 for a single spike, rPPMC = 0.34 for a burst, rPPMC = 0.38 for a

spike train, rCC = 0.97; (d) LTS neuron with a stimulation of −0.15 nA, then no stimulation, then 0.15 nA of stimulation, rPPMC = 0.38 for a single spike, rPPMC =
0.34 for a burst, rPPMC = 0.38 for a spike train, rCC = 0.97.

begin initially through a fold bifurcation of limit cycles, then
at the Hopf bifurcation (HB) point the systems state jumps to
the stable limit cycle. Figures 5C,D represent a zoomed view of
Figures 5A,B in which we can observe that, via the subcritical
Hopf bifurcation, the resting state loses its stability. Furthermore,
in both case, we observed that through a fold bifurcation a limit
cycle a limit cycle appears and disappears by a supercritical Hopf
bifurcation at the second HB point. Moreover, the reduction in
amplitude is similar in both cases as shown in Figures 5A,B.

The bifurcation analysis affirms that our simplified HHmodel
shares the dynamics of the HH model while keeping the non-
linear dynamical characteristics of the original model.

FPGA Implementation
What are the requirements for designing electrical system
for bio-hybrid platforms and neurological diseases study. It
must be must a tunable system allowing to easily and quickly
simulate different kinds of neurons with different parameters.
It must be a low resources system that allows additional
parameters like synapses and noise. Finally, having a system
containing a large number of neurons is useful for the
study of simulation of brain regions, robotics application and
different network dynamic behaviors. The FPGA is the best
component due to its flexibility, speed and stability. Thus,

the novel equations have been designed to be adapted to a
FPGA implementation. To do so, basic operations, such as
exponential, hyperbolic functions, division, differential equation
resolution or multiplication must be designed using complex
algorithms. Here, the hardware is used to output the AP in
order to show the different algorithms and methods to compute
these operations.

System
The chosen FPGA is a Kintex-7 of “xc7k325tffg900” family
included in the Genesys 2 evaluation board. In order to output
the signals, a Digital to Analog Converter (DAC) with a precision
of 12 bits and a 2.5V reference voltage converts the digital data.
The frequency of the system is 100 MHz.

Fixed point coding has been used for the calculations. It
is basically composed by 1 bit of sign, 7 bits of integer and
10 bits of decimal for the membrane voltage. The size of the
vectors is limited by the DSP of the Kintex-7 which computes the
multiplication of an 18 bits by a 24 bits vector. According to the
need of precision concerning the different parts of the system, the
size should not be the same. For example, the calculation of the
sodium conductance (m and h computation) has been designed
with a 18 bits vector containing 1 bit of sign, 1 bit of integer
and 16 bit of decimal. Ionic channels computation requires more
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FIGURE 5 | Comparison of the models using bifurcation analysis. (A) Bifurcation diagram of our simplified HH model. (B) Bifurcation diagram for HH model; (C,D),

subcritical Hopf bifurcation at the first HB point, respectively zoomed view of (A,B).

precision and the values will never be up to 1 because its nature
of probability of opening/closing of ionic gate.

Mathematical Tools
The differential equations can be solved using the Euler method
(25) which defines derivative function. Looking at the equations,
it can be deduced that the smaller the dt is, the higher is the
precision. The value of dt is chosen to be digitally convenient, to
have stable dynamics and to stay in the acceptable range of living
variability. The following equations show that the resolution of
the differential equation needs one multiplier and one adder.

f
(

t+ dt
)

= f (t) + dt.f′(t) (25)

fi+1 = fi + dt.fi
′ (26)

By choosing a power of two as dt it is possible to replace the
multiplier by a logical shift operation. Also, according to the
chosen dt, amplitude and frequency of the AP can change.
Figure 6 shows a better stability with few variations for a smaller
value of dt. It also analyses the variability of the system according
to the chosen value.

Division has been the subject of much research and several
algorithms have been developed in order to increase the
performance of the operation on a computer (Obermann and
Flynn, 1997). Among them, non-restoring division is a simple
and efficient way to compute a division of fixed point number
on a digital platform (Sutter and Deschamps, 2009).

Multiple algorithms exist to compute hyperbolic functions,
such as COordinate Rotation DIgital Computer (CORDIC)
which is mostly used in digital implementation. This method
is optimized for low resources and high-speed computation
(Andraka, 1998). CORDIC algorithms allow the calculation of
hyperbolic sine and cosine from which it is possible to calculate
the exponential and the hyperbolic tangent by coupling the
Non-restoring division with the CORDIC module using the
following equation:

ex = cosh(x)+ sinh(x) (27)

tanh(x) =
sinh(x)

cosh(x)
(28)

CORDIC and Non-Restoring algorithm are iterative methods.
They need multiple stages before retrieving the result. When
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FIGURE 6 | Variability of the frequency (A) and the amplitude (B) of AP

according to the chosen dt for Euler method.

designing the FPGA module, using iteration would take more
computation time or more resources. In order to limit both
time and resources, the designed computation block for division
and hyperbolic operations uses multiple stages of operations by
performing in one clock cycle. Due to number of stages, it is
better to avoid the use of these modules when it is possible to
limit the number of iterations and to limit the number of bits of
the vectors used in the operations.

FPGA Architecture
The architecture has been designed for taking few resources
and to compute a maximum of neurons. Computation of
exponentials, hyperbolic tangents and divisions are low resource
modules in the FPGA. This novel architecture uses the same
computation module to calculate all the ionic channels using one
hyperbolic tangent and one hyperbolic cosine for all the neurons
computation and is presented in Figure 7.

Every cycle a Finite State Machine (FSM) selects different
parameters (see part Alternative Equations) for the computation
of x∞ and τx according to the ionic channel which is then
stored into a Random Access Memory present in the FPGA.
A parallel equation is solved taking the I – 1 value of ionic
channel to compute the ionic current and then the membrane
voltage. The synapses are selected by a connectivity matrix which

contains conductances. The Vpost value can be computed by
the product between the transposed connectivity matrix and the
voltage membrane (Vpre) vector.

All the computation is pipeline-based. Figure 8 explains the
timing of computation for the 4 ionic channels to compute
one neuron.

RESULT

FPGA Resources
The optimized Hodgkin-Huxley equations are calculated using
a dt of 2−5 ms during eight cycles (Figure 8) at 100 MHz. It
corresponds to a computation time of 80 ns for the calculation of
one neuron using the proposed pipelined architecture. Then the
membrane voltage of a new neuron can be computed every cycle
because of the pipelined architecture. The maximum number of
neurons is determined by the computation of the ionic channel
due to its long calculation period (eight cycles or 80 ns), and it
must follow the rule described by Equation (29).

8.Tclk + N.6.Tclk ≤ dt (29)

where Tclk is the period of the clock frequency of the FPGA
(100 MHz), dt the calculation step (2−5 ms), N the number of
neurons. The constant 8 corresponds to the number of cycles
needed to compute one ionic channel and the value 6 represents
the clock cycles which are needed for the sending of all four ionic
currents. Then, the maximum number of neurons of one core
is 500 and could be increase to 15,000 neurons if we use all the
resources (30 cores) which is limited by the number of DSP. In
this implementation, we reduced the number of DSP for one core
compared to other architecture proposed in the state of the art.

The FPGA implementation resources are presented according
to the number of neurons in which shows good performances
of the optimized equations and architecture compared to
other architectures.

Table 5 demonstrates the efficiency of our implementation.
The work of Bonabi et al. (2014) and Akbarzadeh-Sherbaf et al.
(2018) proposed implementation of three ionic currents (Na, K
and Leak) which reproduce Fast Spiking (FS) neuron family. The
number of neurons for one core computation was multiplied
by 6.9 compared to Bonabi et al. (2014) and by 2 compared
to Akbarzadeh-Sherbaf et al. (2018). Often, the critical point in
FPGA implementation is the number of DSP available in FPGA
platform. Our work reduced by 69.5 compared to Bonabi et al.
(2014) and by 4.35 compared to Akbarzadeh-Sherbaf et al. (2018).

Our implementation including FS, RS, LTS IB neurons,
synapses and synaptic noise can simulate 500 neurons in real-
time for one core of computation.

Neuron Validation
All the neurons can be output on an oscilloscope and show
similar behavior as the biological neurons presented in Pospischil
et al. (2008) and as Matlab simulations (Figure 9). Because of
the low precision of the DAC compared to the amplitude of an
AP, the result has been multiplied by a factor and an offset has
been added.
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FIGURE 7 | FPGA architecture for the optimized Hodgkin-Huxley equations where Xi represents m and h for the different ion currents, Ex the equilibrium voltage, gx
the conductance value, i is the discretized time, x∞ and τx the equations presented in the previous part, Ix the computation of the ionic current where x represents K,

Na, P, CaL or CaT, Cm the membrane capacitance; Parameters are shown in part Alternative Equations; FSM is a Finite State Machine and selects every cycle a ionic

channel to compute. The red part is the computation of ionic channel. The blue part is the computation of the neuron. The green part is the store of parameters in

memory blocks.

Figure 9 shows the validation of our neuron families with real-
time output in oscilloscope. Spike timing and shape are the same
compared to Matlab simulation and Vivado simulations.

Stochastic Neuron Validation
Using the HH implementation on the FPGA coupled with
the digital implementation of the OU process (Grassia et al.,
2016), the system shows some random and spontaneous
activities (Figure 10).

Inter-spike Interval (ISI) has been determined around 10.4
± 4.5 spikes per second in Neocortical cells of rats by
Nawrot et al. (2007) and 2.5 spikes per second in cerebral
cortex neurons of cats (Webb and Burns, 1976). Spike rates
of spontaneous activity are variable in living cells. Thus, the
equation can be tuned to fit with the biological behavior. The
probability distribution between the noise from Matlab and
the one implemented into the FPGA was compared using the
Quantile-Quantile (QQ) plot showing strong correlation and
similarities between experimental data and data obtained using
hardware implementation.

Figure 10 describes the validation of synaptic noise with
oscilloscope outputs. The stimulation current which includes
synaptic noise allows stochastic behavior of the neuron that
mimics closer to biological behavior. This dynamic stimulation
current also validates the dynamic behavior of the neuron.

Spontaneous biological activity can be reproduced thanks to this
synaptic noise.

Neural Network Validation
All the neurons can be connected to each other using a
connectivity matrix representing how the neurons are connected.
The behavior of AMPA, NMDA, GABAa, and GABAb can be
reproduced (Figure 11). The raster plot represents the effect of
excitatory synapses and inhibitory synapses on neurons through
16 cells. The system is able to compute 500 neurons in one core or
15,000 using 30 core which can be output through a raster plot.

This platform shows the possibility of computed cortical
network using different classes of neurons and different
receptors. All the bio-physical parameters can be modified using
a software developed in Python 3.6 to communicate through
Universal Asynchronous Receiver Transmitter (UART) with the
FPGA. The developed solution for communication is able to send
the needed parameters and to receive raster plot. Thus, such a
system could be used to simulate complex cortical network or to
perform bio-hybrid experiments.

CONCLUSION AND PERSPECTIVES

A biomimetic neural network has been designed including
synapses and synaptic noise. This real-time system is tunable
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FIGURE 8 | Pipeline structure of the ionic gate computation. Four different ionic currents composes the computation of one neuron (INa, IK, IKp, ICaL for IB, ICaT for

LTS). For INa, ICaL, and ICaT, they are divided in two states called m and h which are the probability of opening and closing of the channel. Six clock cycles are

needed to send of all probability parameters. Eight clock cycles are needed to compute the ionic gate equation. The computation of x∞ and τx uses CORDIC

algorithm for hyperbolic functions. The differential equation is solved using Euler technique.

TABLE 5 | Resource table according to the number of neurons N, the frequency F and the resources in LUT, Flip-Flops (FF) and DSPs; In blue, our work and in red,

implementation of HH on FPGA presented in other publications; The maximum number of synapses is considered to be N² which represent an all to all connection case;

The results of this works includes into the resources the DAC handle; (Akbarzadeh-Sherbaf et al., 2018) show a maximum of 5,120 neurons in real-time with 10 cores.

Original

equations

One core

(only FS)

One core

(FS, RS, IB, LTS) + N²

synapses + synaptic

noise

30 cores

(FS, RS, IB, LTS) + N²

synapses + synaptic

noise

(Bonabi et al., 2014) 4 cores

(only FS)

(Akbarzadeh-Sherbaf et al.,

2018)

N 150 1,034 500 15,000 150 2,048

F (MHz) 100 100 100 100 63.386 58.8

LUT 169,003 4,735 5,551 167,346 86,032 46,045

FF 65,059 1,552 2,360 71,608 30,528 4,606

DSP 332 16 28 840 1,112 280

It means 512 neurons for one core. Our implementation can multiply by 2 this number with reducing the resources especially DSP numbers.
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FIGURE 9 | Signals measured from DAC on scope; (A) FS with a stimulation current of 0.5 nA; (B) RS with a stimulation current of 0.75 nA; (C) IB with a stimulation

current of 0.15 nA.

FIGURE 10 | Synaptic noise validation. All blue data are from the scope (A) Random and Spontaneous activities raised by the noise using θ = 1, µ = 0.1, and σ =
1.05 (B) Random and Spontaneous activities raised by the noise using θ = 1, µ = 0.1, and σ = 2.2; (C) Quantile-Quantile (QQ) plot showing the similarities between

the random function into Matlab and from the FPGA; (D) (QQ) plot showing similar behavior between the current representing the noise computed on Matlab and

generated by the FPGA.

and mimics the activities of four main important cortical neuron
types and four synaptic receptor types. The optimization of the
Hodgkin-Huxley equations using hyperbolic function and power
of two parameters allows the use of large scale with low resources
of biomimetic neurons. Also, algorithms, such as non-restoring
division, Euler method, and CORDIC make the system faster in
terms of frequency in low power consumption. Thus, our results
show a strong correlation between the hardware implementation
of our optimized solution and the original model. On the

other hand, bifurcation analysis describes stability and similarity
to dynamic of our model compared to the original one. The
performances are compared to other works and demonstrate
that this system goes further than the state of the art in terms
of features and bio-plausibility. Our architecture allows us to
compute and output real-time neural network activities for bio-
hybridization experiments. Moreover, all the HH, synapses and
noise parameters can be modified through a UART connection
using a software which has been developed for this purpose.
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FIGURE 11 | Raster plot of 16 neurons with their respective oscilloscope output (A) N13->N14->N15->N16 with GABAb synapse showing a longer response of the

inhibition than GABAa; (B) N9->N10 and N11->N12 showing fast inhibition of N10 and N12; (C) N5->N6->N7->N8 by NMDA synapses demonstrated that N5

stimulate N6 which stimulate N6; (D) N1->N2->N3->N4 by AMPA synapses showing faster response of excitation than NMDA synapses, synaptic conductance of

the synapse connecting N3 to N4 is too small resulting in a lack of excitation of N4 and no spike.

Output tunable real-time neuron activities is not possible using
conventional computing with such a number of neurons and
ionic currents. UART is a good and simple solution for as
small number of neurons. However, the number of parameters
increases with the number of neurons letting the possibility
of using TCP/IP protocol for bigger networks. This article
also describes different tools for studying the variation that
could occurs into the HH model during the optimization. The
bifurcation analysis validates the similarity in the dynamic of
the new system compared to the original one. Also, the cross-
correlation gives good correlation coefficient and shows a small
phase between the optimized AP and the original one. Measuring
the correlation between two signals gives a “r” value that can be
analyzed as strong correlated when close to 1, but how close do
the system need to be able to communicate with living cells?

The aim of this work was primarily to provide a scalable
and tunable platform allowing the study of neurological diseases.
By connecting a real-time neural network to living cells,
it will be possible to observe the effect of the different
biophysical parameters on a biological network. Using an
artificial neural network affected by a disease, the effect of
the affliction on the living cell can be observed. This work
is the first step toward new ways of studying the brain and

understanding the possibilities of connecting nerve cells with
the machine.

The next step is to reproduce a larger neural network
like pyramidal layer structure and to connect this biomimetic
SNN with neuron culture or brain organoids (Kawada et al.,
2017). These closed-loop bidirectional experiments can test some
therapeutic stimulation protocols. Another point is to increase
the degree of precision by designing multi-compartmental
neurons and give a real-time tool to neuroscientist to simulate
their neuron structure with different parameters. To conclude,
this biomimetic SNN platform can provide better solutions for
biomedical application especially in neuroprosthesis (Buccelli
et al., 2019) and therapeutics protocol for neurological diseases.

Another way to explore is linked to Artificial Intelligence
(AI). We will implement in the next future some learning rules
like STDP to perform AI algorithm (Zhang et al., 2018) like
pattern recognition. This biomimetic SNN can reproduce the
spike timing but also the shape of neurons. Debanne et al.
(2013) indicates that subthreshold variation in the presynaptic
membrane potential also determines spike-evoked transmission
and that membrane voltage might modulate neurotransmitter
release. Brette (2015) discusses about the difference between
rate-based or spiked-based computation and the possible real
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neural coding used in the brain. We think that being closer
to the biology will lead to better results in AI algorithms
using less number of neurons and hidden layers. In more long
term future, it will allow neurobiohybrid experiments using
biological intelligence and AI in the same time for maximizing
the efficiency.
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