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Objective:Dermatomyositis (DM)may result from exogenous triggers, including airborne

pollutants, in genetically susceptible individuals. The United States Environmental

Protection Agency’s 2011 National Air Toxics Assessment (NATA) models health risks

associated with airborne emissions, available by ZIP code tabulation area (ZCTA).

Important contributors include point (fixed), on-road, and secondary sources. The

objective of this study was to investigate the geospatial distributions of DM and subtypes,

classic DM (CDM) and clinically amyopathic DM (CADM), and their associations with

airborne pollutants.

Methods: This retrospective cohort study identified 642 adult DM patients from 336

unique ZCTAs. GeoDa v.1.10 was used to calculate global and local Moran’s indices and

generate local indicator of spatial autocorrelation (LISA) maps. All Moran’s indices and

LISA maps were permuted 999 times.

Results: Univariate global Moran’s indices for DM, CDM, and CADM prevalence were

not significant, but LISA maps demonstrated differential local spatial clustering and

outliers. CADM prevalence correlated with point sources (bivariate global Moran’s index

0.071, pseudo-p = 0.018), in contrast to CDM (−0.0053, pseudo-p = 0.46). Bivariate

global Moran’s indices for DM, CDM, and CADM prevalence did not correlate with other

airborne toxics, but bivariate LISA maps revealed local spatial clustering and outliers.

Conclusion: Prevalence of CADM, but not CDM, is geospatially correlated with fixed

sources of airborne emissions. This effect is small but significant and may support the

hypothesis that triggering exposures influence disease phenotype. Important limitations

are NATA data and ZCTA population estimates were collected from 2011 and ZCTA of

residence may not have been where patients had greatest airborne pollutant exposure.

Keywords: dermatomyositis, pollution, environmental, geospatial analysis, Moran index

INTRODUCTION

The pathogenesis of dermatomyositis (DM) is incompletely understood, but may result from
diverse exogenous exposures that trigger disease in genetically susceptible individuals, including
drugs, infections, and environmental factors such as ultraviolent radiation (UVR) and airborne
pollutants (1–18). Important subtypes include classic DM (CDM), which demonstrates clinical and
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laboratory evidence of myositis, and clinically amyopathic DM
(CADM), diagnosed when patients do not have symptomatic
myositis and have only minimal or no objective findings of
myositis (19, 20). There is evidence that disease phenotype has
been associated with specific exposure patterns (5, 8, 10, 21).

The United States Environmental Protection Agency (EPA),
an independent agency of the United States federal government
that aims to protect human health and the environment,
provides publicly available data on airborne emissions in the
United States at the level of ZIP code tabulation areas (ZCTA)
(22). ZCTAs are geographic representations of the United States
Postal Service ZIP code service areas, and were developed by
the United States Census Bureau to tabulate summary statistics
over geographic areas. In 2015, the EPA released the most recent
version of the National Air Toxics Assessment (NATA) based on
2011 emissions. NATA is a screening tool designed to provide
information on potential risks of breathing air toxics (22).
Emission levels of 181 air toxics (such as benzene, formaldehyde,
and diesel particulate matter) were measured, then modeled to
predict overall health risks and applied over geographic areas
(22). Important contributors include point sources, which denote
emissions from larger, stationary industrial and commercial
facilities, on-road sources, produced by vehicles on roads, and
secondary sources, which are formed from the chemical reactions
of other emitted pollutants (22). Since DM has been associated
with airborne pollutants, this dataset may be useful in analyzing
exposure patterns (11–13).

Geospatial analysis is a statistical approach to analyze data
over a geographic region, with applications in environmental
science, public health, and other fields. Geospatial statistical
techniques, including global and local Moran’s indices, can be
used to evaluate clustering and dispersion patterns, and have
found increasing use in medicine (23–25). These techniques have
not been applied to the study of DM due in part to the low
incidence and prevalence of disease. The relatively large cohort
at the University of Pennsylvania provides an opportunity to use
geospatial analysis to assess exposure patterns in DM.

The objective of this study was to investigate the geospatial
distributions of DM and its subtypes and their associations with
airborne pollutants in the greater Philadelphia metropolitan area.

METHODS

Patient Selection
This retrospective cohort study spanned January 1, 2000 through
December 31, 2017. Data collection was complete July 31,
2018. Adult patients ≥18 years of age seen in dermatology or
rheumatology clinics at the University of Pennsylvania with
a United States ZCTA of primary residence listed in their
medical record and a diagnosis of DM, encoded by International
Classification of Disease (ICD) 9th and 10th revision codes (710.3
and M33.0X, M33.1X, M33.9X, respectively) were included.
Patients were identified using PennSeek, a custom, secure
implementation of Oracle’s web-based Endeca Information
Discovery platform adapted by the University of Pennsylvania
Data Analytics Core. PennSeek allows for targeted keyword
searches using Boolean logic of unstructured or semi-structured

medical documents that reside in the main Penn Medicine
electronic health record and ancillary systems, described in detail
elsewhere (26). After assembling the cohort, individual patient
charts were reviewed to verify diagnosis, exclude erroneously
coded patients, and extract variables of interest.

2011 NATA Dataset
2011 NATA risk estimates including total airborne, point, on-
road, and secondary source risks were taken from the EPA’s
dataset, organized by ZCTA (22).

Variables
DM subtype was assigned based on the treating clinician’s
note. In cases of ambiguity or disagreement, evidence of
myositis was determined by patient-reported symptoms plus
an objective sign (elevated creatinine kinase or aldolase or
consistent EMG, MRI, or muscle biopsy). Patients who fulfilled
these criteria were labeled as CDM and those lacking labeled
as CADM. Demographics and ZCTAs were extracted from the
medical record. Prevalence was calculated using United States
Census Bureau (USCB) 2007-2011 American Community Survey
population estimates, organized by ZCTA (27).

Analysis
Continuous variables are presented as median (interquartile
range, IQR) and categorical data are presented as count
(percentage). Heatmaps were created with Tableau Public version
10.4 (Tableau Software, Inc. 2018. Seattle, Washington).

Geospatial analysis was performed by calculation of the
global Moran’s index, an inferential statistic which estimates
spatial autocorrelation and falls between −1 and +1 (28).
More positive or negative values correspond to greater spatial
clustering or competitive dispersion, respectively (28). To test
the null hypothesis of random spatial distribution, empiric
significance is computed by permutation to yield a pseudo-
p-value (28). A pseudo-p-value differs from an analytic p-
value because it is a summary of the results of the reference
distribution, and is dependent on the number of permutations
used (28). In order to visualize spatial clustering, local indicators
of spatial autocorrelation (LISA) maps were created using
local Moran’s index calculations (29). This statistic identifies
significant locations as high-high or low-low spatial clusters and
high-low or low-high spatial outliers relative to neighboring
regions (29). In both indices, neighbor less regions are excluded
from analysis.

Bivariate global and local Moran’s indices were calculated in
the same fashion; global indices measure spatial autocorrelation
between an outcome variable in one geographic region and a
second variable in neighboring regions, and local indices were
mapped with bivariate LISA (BiLISA) maps (30).

GeoDa version 1.10 was used for geospatial analyses.
Shapefiles were obtained from the USCB 2017 ZCTA boundary
files and the weights matrix was assigned first-order queen
contiguity (neighboring regions share common edges or
vertices). All global and local univariate and bivariate Moran’s
indices and LISA and BiLISA maps were permuted 999 times. A
pseudo-p < 0.05 was set as significant.
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Ethics
This study was carried out in accordance with the
recommendations of the University of Pennsylvania Institutional
Review Board (protocol number 828959), which waived the
requirement of written informed consent from subjects. Written
consent was waived due to the retrospective nature of the study
and minimal risk it posed to subjects. The protocol for this study
conforms to the ethical guidelines of the Declaration of Helsinki.
The protocol was approved by the University of Pennsylvania
Institutional Review Board.

RESULTS

Of 205,084 adult patients seen in dermatology or rheumatology
clinics at the University of Pennsylvania from January 1, 2000
through December 31, 2017, PennSeek identified 653 patients.
Upon individual chart review, 9 patients were excluded for
diagnoses other than DM and 2 were excluded for absence of a
ZCTA in their medical record, resulting in 642 patients who met
inclusion criteria.

Baseline characteristics of the patient cohort are noted in
Table 1. The median age at symptom onset was 49 (IQR 37, 58)
years.Most patients were female (532, 82.8%), white (476, 74.1%),
and diagnosed with CDM (439, 68.4%), though a notable fraction
had CADM (203, 31.6%). Data on year of symptom onset was
available for 630 patients (98.1%) and divided into approximate
quartiles. One hundred fifty-nine patients (25.2%) developed
symptoms in 2005 or earlier, 176 patients (27.9%) between 2006
and 2009, 153 patients between 2010 and 2013, and 142 patients
(22.5%) from 2014 to the end of the study period.

Three hundred thirty-six unique ZCTAs represented a total
underlying population of 8,110,198 (Table 1, Data Sheet 1). The
median prevalence of DM per ZCTA was 8.6 (IQR 4.6, 15.2)
per 100,000. When ZCTAs outside of the greater Philadelphia
metropolitan area were excluded, the median prevalence of DM
was 9.2 (IQR 5.2, 16.3) per 100,000. The median total airborne
risk per ZCTA was 43 (IQR 37, 48) per million, including 1.24
(IQR 0.64, 1.67) per million from point sources, 9.13 (IQR 6.56,
12.18) per million from on-road sources, and 18.10 (IQR 16.47,
19.17) per million from secondary sources.

Heatmaps of the prevalence of DM and subtypes CDM
and CADM in the greater Philadelphia metropolitan area
are illustrated in Figure 1, divided into sextiles. Many
ZCTAs with high prevalence of DM and CDM were
observed in the western and northern metropolitan area.
CADM prevalence is lower overall and aligns along a
northeast-southwest axis. Figure S1 shows heatmaps of the
onset year by quartile, with no clear patterns of clustering
or outliers.

Geospatial Analysis
Univariate global Moran’s indices for the prevalence of DM,
CDM, and CADM were not significant (Table 2), but LISA maps
demonstrated differential local spatial clustering and outliers
(Figure 2), as indicated by the presence of high-high (red) and
low-low clustering (bright blue), and high-low (pink) and low-
high (light blue) outliers. DM and CDM shared several clustered

TABLE 1 | Baseline characteristics of adult dermatology and rheumatology

patients with dermatomyositis (DM) seen at the University of Pennsylvania

between January 1, 2000 and December 31, 2017, with median 2011 NATA risk

calculations.

Metric Cohort (n = 642)

Median age at symptom onset, years (IQR) 49 (37, 58)

Female sex 532 (82.8%)

PATIENT-REPORTED RACE/ETHNICITY

White 476 (74.1%)

Black 76 (11.8%)

Asian, American Indian, or Alaskan Native 20 (3.1%)

Other 70 (10.9%)

DM SUBTYPE

CDM 439 (68.4%)

CADM 203 (31.6%)

SYMPTOM ONSET YEAR QUARTILES (n = 630)

2005 or earlier 159 (25.2%)

2006–2009 176 (27.9%)

2010–2013 153 (24.3%)

2014–2017 142 (22.5%)

ZCTA

Unique ZCTAs 336

2010 Census population 8,110,198

Median DM prevalence per ZCTA (IQR), per

100,000

8.6 (4.6, 15.2)

Median DM prevalence per Phl metropolitan

ZCTA (IQR), per 100,000 (n = 607)

9.2 (5.2, 16.3)

MEDIAN 2011 NATA RISK PER ZCTA, PER MILLION

Total airborne risk (IQR) 43 (37, 48)

Point source risk (IQR) 1.24 (0.64, 1.67)

On-road source risk (IQR) 9.13 (6.56, 12.18)

Secondary source risk (IQR) 18.10 (16.47, 19.17)

CADM, clinically amyopathic dermatomyositis; CDM, classic dermatomyositis; DM,

dermatomyositis; IQR, interquartile range; NATA, National Air Toxics Assessment; Phl,

Philadelphia; ZCTA, zip code tabulation area.

and outlier ZCTAs, and differed notably from CADM, which
demonstrated high-high clustering along a northeast-southwest
axis. High-low outliers occurred predominantly in ZCTAs of low
relative population.

The prevalence of CADM vs. point sources showed a
significant bivariate global Moran’s index (0.071, pseudo-
p = 0.02), and BiLISA mapping demonstrating western
metropolitan high-high clustering and eastern metropolitan low-
low clustering (Figure 3a). In contrast, the prevalence of CDM
vs. point sources was not significant (−0.0053, pseudo-p= 0.46),
and BiLISA mapping demonstrating western low-high outliers
and eastern low-low clustering (Figure 3b). Bivariate global
Moran’s indices for the prevalence of DM, CDM, and CADM vs.
other airborne toxics were not significant, and BiLISA mapping
revealed similar local spatial clustering and outliers between
subtypes (Figure S2).

Univariate global Moran’s indices for both DM onset year
(by quartile) and median age at symptom onset were not
significant (data not shown).
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FIGURE 1 | Heatmaps of prevalence per 100,000 of the full cohort of dermatomyositis (DM) patients (a), and subtypes classic DM (CDM, b) and clinically amyopathic

DM (CADM, c) in the greater Philadelphia metropolitan area (legend inset: low prevalence, blue; high prevalence, orange). Many ZCTAs with high prevalence of DM

and CDM are observed in the western and northern metropolitan area. CADM prevalence is lower across the region and aligns along a northeast-southwest axis.

TABLE 2 | Univariate global Moran’s indices of the prevalence of dermatomyositis

(DM) and subtypes, and bivariate global Moran’s indices of DM prevalence vs.

2011 NATA metrics.

Outcome

variable

Lagged

variable

Global Moran’s

index

Pseudo p-value

DM prevalence Univariate 0.0054 0.16

Total airborne risk* 0.0080 0.34

Point sources* 0.0019 0.36

On-road sources* 0.0057 0.15

Secondary sources* 0.0036 0.46

CDM prevalence Univariate 0.0051 0.16

Total airborne risk* 0.0080 0.33

Point sources* −0.0053 0.46

On-road sources* 0.0082 0.28

Secondary sources* −0.00076 0.47

CADM prevalence Univariate 0.064 0.06

Total airborne risk* −0.0015 0.49

Point sources* 0.071 0.02

On-road sources* −0.025 0.18

Secondary sources* 0.043 0.09

CADM, clinically amyopathic dermatomyositis; CDM, classic dermatomyositis; DM,

dermatomyositis; NATA, National Air Toxics Assessment.

*Bivariate global Moran’s index.

Bold values indicate significant finding.

DISCUSSION

In this retrospective study of 642 DM patients, we found a
significant geospatial correlation between exposure to point
sources of airborne pollutants and CADM. Other airborne
toxics including overall calculated airborne risk, on-road, and
secondary sources did not correlate with DM, CDM, or
CADM prevalence.

The association between point sources and CADM is modest
but significant, as seen by the magnitude of the global Moran’s
index. Since DM has been associated with a variety of exogenous

triggers besides airborne toxics, it is not surprising that this
exposure does not account for all cases. It is noteworthy that
CDM was not correlated with point sources, supporting the
hypothesis that the type of triggering exposure may influence
disease phenotype.

Past studies have demonstrated associations between specific
exogenous triggers and serotype, which is known to correlate
with clinical phenotype (31–33). The intensity of UVR exposure
has been strongly associated with the proportion of CDMpatients
expressing anti-Mi-2 antibodies (odds ratio [OR] 6.0), while anti-
TIF1-γ antibodies have been negatively correlated with latitude
(OR 0.96) (8, 21). HLA alleles associated with anti-Mi-2 and anti-
TIF1-γ antibodies were also negatively associated with latitude
(21). Anti-MDA-5 antibodies were inversely associated with
population of city of residence and appeared to cluster along rural
areas near the Kiso River in Japan (10). Hydroxyurea may induce
a DM-like eruption that spares muscles, while other drugs may
induce a CDM-like presentation and viral infections may trigger
juvenile DM (5, 34).

This study has important limitations. It is a retrospective
cohort from a tertiary referral facility in a heavily-populated
urban center. The ZCTA of residence listed in the patient’s chart

may not have been the location where greatest airborne pollutant
exposure occurred and does not factor transportation routes or

job location. The listed ZCTA may not have been where DM
onset occurred, especially in longstanding cases. Reference data
were taken from available years: ZCTAs were collected from
medical records in 2018, ZCTA shapefiles were based on 2017
USCB boundary files, NATA metrics were calculated from data
collected in 2011, and ZCTA population estimates were collected
from 2007 to 2011 in the USCB American Community Survey.
Both population estimates and airborne pollutant levels may
have changed since 2011, though more recent, reliable data was
not available.

It is important to note that NATAmetrics are risk assessments
based on collected airborne emissions and do not reflect exposure
to all compounds, all pathways of exposure, or accurately model
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FIGURE 2 | Local indicators of spatial autocorrelation (LISA) maps for prevalence of the full cohort of dermatomyositis (DM) patients (a), and subtypes classic DM

(CDM, b) and clinically amyopathic DM (CADM, c). High-high (red) and low-low (bright blue) spatial clusters, and high-low (pink) and low-high (light blue) spatial outliers

relative to neighboring regions are identified. Geospatially non-significant (white) and neighborless (dark gray) regions are visible. Differential spatial clustering is most

notable between CDM (b) and CADM (c).

FIGURE 3 | Bivariate local indicators of spatial autocorrelation (BiLISA) maps for prevalence of clinically amyopathic dermatomyositis (CADM, a) and classic

dermatomyositis (CDM, b) vs. point sources. High-high (red) and low-low (bright blue) spatial clusters, and high-low (pink) and low-high (light blue) spatial outliers

relative to neighboring regions are identified. In CADM (a), western metropolitan high-high clustering and eastern metropolitan low-low clustering is prominent, while in

CDM (b), western low-high outliers and eastern low-low clustering is notable. Geospatially non-significant (white) and neighbor less (dark gray) regions are visible.

episodic emissions (22). Risk assessments by source represent
pooled data from many pollutants, and the contributed risks
of individual compounds were not assessed. Furthermore, these
data apply to geographic areas and groups, rather than specific
locations or individuals (22).

The prevalence of DM found in this study is lower than
previously reported (35). This estimate is not population-based
and likely underestimates the true prevalence in the greater
Philadelphia metropolitan area. During the 18-year time period
of this study, there were 5 major academic medical centers
and a large number of group and individual dermatology and
rheumatology practices, many of whom see DM patients not
included here.

While the spatial distribution of onset of DM symptoms
changed over time, specific regions did not cluster by onset year.

DM frequency remained approximately stable when comparing
the 4-year intervals from 2006 to 2009, 2010 to 2013, and 2014 to
2017. However, DM, especially CADM, is frequently delayed in
diagnosis or misdiagnosed and presentation to a tertiary referral
centermay result in additional delay, so patients withmore recent
onset may be unaccounted for (36).

Identifying exogenous triggers for DM is challenging
given the heterogeneity of both exposure and the underlying
disease. Geospatial analysis is a candidate method for studying
geographic patterns of exposure and may have applications
examining infectious triggers, pollutants, demographics, and
other factors. Future population-based studies may better
estimate these associations. Further exploration of the geospatial
distribution of DM phenotype by serology, malignancy
association, or the presence of interstitial lung disease may
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also be useful for determining risk factors and understanding
disease pathogenesis.

In conclusion, in this retrospective cohort study we found
prevalence of CADM, but not CDM, is geospatially correlated
with larger, geographically fixed sources of airborne pollution.
This effect is small but significant andmay support the hypothesis
that triggering exposures may influence disease phenotype
in DM.
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Data Sheet 1 | Unique ZCTAs and corresponding census populations and DM

counts, calculated prevalences, and NATA risk estimates are shown. On the far

right, counts of DM are listed by year of symptom onset. CADM, clinically

amyopathic dermatomyositis; CDM, classic dermatomyositis; DM,

dermatomyositis; NATA, National Air Toxics Assessment; ZCTA, zip code

tabulation area.

Figure S1 | Heatmaps of new-onset cases of dermatomyositis in the greater

Philadelphia metropolitan area in 2005 or earlier (a), 2006–2009 (b), 2010-2013

(c), and 2014–2017 (d) (legend inset: lower count, light blue; higher count, dark

blue). Geospatial analysis did not demonstrate clustering or dispersion.

Figure S2 | Bivariate local indicators of spatial autocorrelation (BiLISA) maps for

prevalence of the full cohort of dermatomyositis (DM) and subtypes classic DM

(CDM) and clinically amyopathic DM (CADM) vs. total airborne risk (a–c,

respectively), on-road sources (d–f, respectively), and secondary sources (g–I,

respectively). High-high (red) and low-low (bright blue) spatial clusters, and

high-low (pink) and low-high (light blue) spatial outliers relative to neighboring

regions are identified. Geospatially non-significant (white) and neighbor less (dark

gray) regions are visible. Note the similarities in both spatial clustering and outliers

between DM, CDM, and CADM. All global Moran’s indices were non-significant.
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