
ORIGINAL RESEARCH
published: 24 April 2019

doi: 10.3389/fams.2019.00020

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2019 | Volume 5 | Article 20

Edited by:

Vittorio Romano,

Università Degli Studi di Catania, Italy

Reviewed by:

Vincenzo Bonnici,

University of Verona, Italy

Marzio Pennisi,

Università Degli Studi di Catania, Italy

*Correspondence:

Eric Jakobsson

jake@illinois.edu

Specialty section:

This article was submitted to

Optimization,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 27 June 2018

Accepted: 02 April 2019

Published: 24 April 2019

Citation:

Ge W, Fazal Z and Jakobsson E

(2019) Using Optimal F-Measure and

Random Resampling in Gene

Ontology Enrichment Calculations.

Front. Appl. Math. Stat. 5:20.

doi: 10.3389/fams.2019.00020

Using Optimal F-Measure and
Random Resampling in Gene
Ontology Enrichment Calculations

Weihao Ge 1,2, Zeeshan Fazal 1,3,4 and Eric Jakobsson 1,2,5,6,7,8*

1 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL,

United States, 2Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL,

United States, 3Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan,
4Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 5Carl R. Woese

Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 6Neuroscience

Program, Universityof Illinois at Urbana-Champaign, Urbana, IL, United States, 7National Center for Supercomputing

Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 8Department of Molecular and Integrative

Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Background: A central question in bioinformatics is how to minimize arbitrariness and

bias in analysis of patterns of enrichment in data. A prime example of such a question

is enrichment of gene ontology (GO) classes in lists of genes. Our paper deals with two

issues within this larger question. One is how to calculate the false discovery rate (FDR)

within a set of apparently enriched ontologies, and the second how to set that FDR within

the context of assessing significance for addressing biological questions, to answer these

questions we compare a random resampling method with a commonly used method for

assessing FDR, the Benjamini-Hochberg (BH) method. We further develop a heuristic

method for evaluating Type II (false negative) errors to enable utilization of F-Measure

binary classification theory for distinguishing “significant” from “non-significant” degrees

of enrichment.

Results: The results show the preferability and feasibility of random resampling

assessment of FDR over the analytical methods with which we compare it. They

also show that the reasonableness of any arbitrary threshold depends strongly on the

structure of the dataset being tested, suggesting that the less arbitrary method of

F-measure optimization to determine significance threshold is preferable.

Conclusion: Therefore, we suggest using F-measure optimization instead of placing an

arbitrary threshold to evaluate the significance of Gene Ontology Enrichment results, and

using resampling to replace analytical methods

Keywords: gene ontology, MCC, resampling, F-measure, false discovery rate, microarray data analysis

BACKGROUND

Gene Ontology (GO) enrichment analysis is a powerful tool to interpret the biological implications
of selected groups of genes. The gene lists from experiments such as microarrays, are gathered
into clusters associated with biological attributes, and defined as GO terms [1]. The GO terms are
arranged in an acyclic tree structure from more specific to more general descriptions, including
biological process (BP), cellular component (CC), and molecular function (MF). GO aspires to
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create a formal naming system to define the biologically
significant attributes of genes across all organisms. Each
enriched GO term derived from a list of genes is evaluated
by its significance level, i.e., the probability that the measured
enrichment would be matched or exceeded by pure chance.

Enrichment tools have been developed to process large
gene lists with the goal of inferring significantly enriched
ontologies. Huang et.al summarizes the tools widely used for
GO enrichment [2], describing the different tools emphasized
by different tools. Gorilla [3], David [4], and g:profiler [5] are
web interfaces that integrate functional annotations including
GO annotations, disease and pathway databases etc. Blast2GO
[6] extends annotation of gene list to non-model organisms
by sequence similarity. GO-Miner [7], Babelomics [8], FatiGO
[9], GSEA [10, 11], and ErmineJ [12] apply resampling or
permutation algorithms on random sets to evaluate the number
of false positives in computed gene ontologies associated with
test sets. David [4] and Babelomics [8] introduced level-
specific enrichment analysis; that is, not including both parents
and children terms. TopGO contains options, “eliminate” and
“parent-child,” which eliminate or reduce the weight of genes
in the enriched children terms when calculating parent term
enrichment [13]. TopGO [14] and GOstats [15] provide R-
scripted tools for ease of further implementation. Cytoscape
plugin in BinGO [16] is associated with output tree graphs.

Assessment of enrichment is inextricably connected to the
concept of p-value [17]. In the case of mutual enrichment of gene
lists independently derived from the genome of an organism,
p-value may be defined as the probability that the mutual
enrichment of those lists would be equal to or more than the
value observed.

To calculate uncorrected p-values for GO enrichment
without multiple hypothesis correction, published methods use
include exact or asymptotic (i.e., based on the hypergeometric
distribution or on Pearson’s distribution), one- or two-sided tests.
Rivals et al. discussed the relative merits of these methods [18].

Generally, inference of the statistical significance of
observed enrichment of categories in gene ontology databases
can’t be assumed to be parametric, because there is no
a priori reason to postulate normal distributions within
gene ontology terms. Randomization methods are powerful
tools for testing nonparametric hypotheses [19]. However,
heuristic methods for testing nonparametric hypotheses
have long been widely used due to lack of adequate
computational resources for randomization tests. In gene
ontology enrichment, a widely-used heuristic method is that
of Benjamini and Hochberg [20]. In their original paper,
Benjamini and Hochberg tested their method against a more
computationally intensive resampling procedure for selected
input data and found no significant difference, Thus the
more computationally efficient Benjamini-Hochberg method
was justified.

Benjamini-Hochberg has been widely applied in enrichment
tools such as BinGO [16], David [4], GOEAST [21], Gorilla
[3], and Babelomics [8], to name a few. The similar Benjamini-
Yekutieli method is included in the GOEAST package which
enables one to control the FDR even with negatively correlated

statistics [22]. A recent approach published by Bogomolov et al.
deals with multiple hypothesis correction and error control for
enrichment of mutually dependent categories in a tree structure
using a hierarchical Benjamini-Hochberg-like correction [23].
GOSSIP provides another heuristic estimation of false positives
that compares well with resampling in the situations tested [24].

A randomized permutation method for assessing false
positives is embedded in the protocol of Gene Set Enrichment
Analysis (GSEA) [10]. Kim and Volsky [25] compared a
parametric method (PAGE) to GSEA and found that PAGE
produced significantly lower p-values (and therefore higher
putative significance) for the same hypotheses. They suggest
that PAGE might be more sensitive because GSEA uses ranks
of expression values rather than measured values themselves.
However, they do not demonstrate that the hypothesis of normal
distributions in gene ontology databases that underlies PAGE is
generally true.

Noreen [26] considered the potential of using more widely
available computer power to do exact testing for the validity
of hypotheses, in order to be free of any assumptions about
the sampling distributions of the test statistics, for example the
assumption of normality. The essence of the more exact methods
is the generation of a null hypothesis by the creation and analysis
of sets of randomly selected entities (null sets) that are of the same
type as the test set. Then the extent to which the null hypothesis
is rejected emerges from comparing the results of conducting the
same analysis on the null sets and the test set. As exemplified
by the over one thousand citations of this work by Noreen,
these methods have been widely adopted in many areas in which
complex datasets must be mined for significant patterns, as for
example in financial markets.

In the present paper we follow Noreen to utilize a
straightforward random resampling method for creation of null
sets and compare resultant assessments for estimating false
positives with commonly used analytical methods as applied
to gene ontology enrichment analysis. We also evaluate the
computational cost of this method relative to analytical methods.

In applying all the cited methods and tools, it is common
to apply a threshold boundary between “significant enrichment”
and “insignificance.” Such assignment to one of two classes
is an example of a binary classification problem. Often such
classifications are made utilizing an optimum F-measure. Rhee
et al. have suggested application of F-measure optimization to the
issue of gene ontology enrichment analysis [27]. In the present
work, we present an approach to gene enrichment analysis
based on F-measure optimization, and provide a pipeline for
implementing the approach. We also compare a resampling
method to the Benjamini-Hochberg method for estimation of
FDR and use with F-measure optimization.

There is as yet no closed-form theory nor universal
algorithm for optimizing F-measure, as discussed for example
by Waegeman et al. [28]. In this paper we will emphasize the
simple maximization of F1, which is a good default option, since
as the harmonic mean of precision and recall, it balances these
twomeasures equally. However, we will also introduce the option
of maximizing an F-measure that is weighted toward precision
(F0.5) and one that is weighted toward recall (F2).
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We also consider the argument made by Powers [29] that
the F-measure is subject to positive bias, because it neglects the
measure of true negatives, and that instead of precision and recall
(the constituents of the F-measure) the constructs of markedness
and informedness should be considered. Whereas, precision and
recall are entirely based on the ability to identify positive results,
informedness, andmarkedness give equal weight to identification
of negative results. We note that the Matthews Correlation
Coefficient (MCC), another well-vetted measure of significance
[30], is the geometric mean of the markedness and informedness.

Our results in this paper will suggest that resampling is
preferable to analytical methods to estimate FDR, since the
compute costs are modest by today’s standards and that even
well-accepted and widely used analytical methods may have
significant error. Our results also suggest that F-measure or
MCC optimization is preferable to an arbitrary threshold when
classifying results as “significant” or “insignificant.” The overall
thrust of our work is well-aligned with the American Statistical
Association’s statement on p-values, “Scientific conclusions and
business or policy decisions should not be based only on
whether a p-value passes a specific threshold [17].” For the
particular analyses in this paper, we found no significant
difference in utilizing F-measure vs. MCC. In assessing
significance of results in computing enrichment in gene
ontology analysis.

METHODS

Enrichment Tool
For results reported in this study (described below), the TopGO
[14] package is implemented to perform GO enrichment
analysis, using the “classic” option. In this option, the
hypergeometric test is applied to the input gene list to calculate an
uncorrected p-value.

FDR Calculation
The empirical resampling and Benjamini-Hochberg (BH)
methods are used to estimate the FDR. The p-value adjustment
using Benjamini-Hochberg is carried out by a function
implemented in the R library. http://stat.ethz.ch/R-manual/R-
devel/library/stats/html/p.adjust.html

The resampling method is based on the definition of p-
value as the probability that an observed level of enrichment
might arise purely by chance. To evaluate this probability,
we generate several null sets, which are the same size
as the test set. The genes in the null sets are randomly
sampled from the background/reference list. GO enrichment
analysis was carried out on both test set and null set. The
average number of enriched results in the null sets would
be the false positives. In all the results shown in this paper,
100 null sets were used to compute the average, unless
otherwise indicated. In the pipeline, available for download in
Supplementary Material, the number of null sets is an adjustable
parameter. The ratio of false positives to predicted positives is
the FDR.

F-Measure Optimization and the Matthews
Correlation Coefficient
To evaluate F-measure and MCC, we started with evaluating
true/false positive/negatives and the metrics derived from the
true/false positive/negatives. The number of “predicted positive”
is the number of GO terms found at a threshold. For an analytical
method such as BH, the “false positive” would be (predicted
positive) multiply by FDR, which is estimated by the corrected
p-value. For resampling, the “false positive” would be the average
number of GO terms found by null sets. The “true positive” is
calculated by:

True Positive =
(

Predicted Positive
)

− (False Positive).

Then, we calculate the precision:

Precision =
True Positives

Total Positives

Recall is defined as

Recall =
True Positives

Relevant Elements

“Relevant Elements” is defined by

Relevant Elements = True Positives+ False Negatives

In the absence of the ability to calculate “False Negatives” directly,
we estimate the number of relevant elements as the maximum
true positive achieved across the range of possible p-values. This
procedure is shown graphically in Figure 1 for the BH method
of computing false positives, using as an example a gene list
to be described in detail later in the paper. In this figure we
plot predicted positives, false positives (False Discovery Rate ×
predicted positives), and true positives (predicted positives—
false positives) vs. uncorrected p-value for the entire range
of p-values from 0 to 1. At very lenient p-values the FDR
approaches 1, resulting in the true positives approaching 0. It
is difficult to evaluate false negatives and thus assign a number
for “relevant elements,” since a false negative is an object that
escaped observation, and thus can’t be counted directly. Yet such
estimation is essential to applying F-measure. In our case, if
we follow the trajectory of the true positives in Figure 1 as the
threshold is relaxed, we see that at very stringent p-values all
positives are true positives. As the threshold is relaxed further,
more false positives are generated, so the predicted positive
and true positive curves start to diverge. At p = 0.13 (a far
higher value than would ordinarily be used as a cutoff) the true
positives reach a maximum, and the number of true positives
starts to decline as p is further relaxed. We utilize this maximum
value as the maximum number of GO categories that can be
possibly regarded as enriched in the data set; i.e., the number of
relevant elements.

Based on precision and recall at each uncorrected p-value cut-
off, we can obtain a table and curve of F-measure vs. uncorrected
p-value. The F1-measure is an equally weighted value of precision
and recall. A generalized F-measure introducing the parameter
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FIGURE 1 | Number of positives for the yeast environmental stress response

(ESR) set over the full range of uncorrected p-values from 0 to 1. Vertical axis

is the number of Biological Process GO categories returned as a function of

the p-value threshold for significance. “False Positives” is the number of

predicted positives multiplied by the False Discovery Rate as calculated by the

Benjamini-Hochberg formulation. “True Positives” is “Predicted Positives”

minus “False Positives.” “Relevant Elements,” necessary to estimate number

of false negatives, is estimated as the largest number of true positives

computed at any uncorrected p-value.

β can be chosen based on the research question, whether
minimization of type I (false positive) or type II (false negative)
error, or balance between the two, is preferred, according to
the equation:

Fβ = (1+ β2)
Precision · Recall

β2Precision+ Recall
(1)

The larger the magnitude of β the more the value of Fβ is
weighted toward recall; the smaller the value of β the more the
value of Fβ is weighted toward precision. Optimizing F-measure
provides us a threshold which emphasize precision (β < 1) or
recall (β > 1), or balance of both (β = 1). Note that precision and
recall are extreme values of F-measure; that is, Precision= F0 and
Recall= F∞.

To compare the different thresholds, we also calculated for
each of them the Matthews correlation coefficient (MCC) [28].
Originally developed to score different methods of predicting
secondary structure prediction in proteins, the MCC has become
widely used for assessing a wide variety of approaches to binary
classification, as exemplified by the 2704 citations (at this writing)
of the original paper. Perhaps even more telling, the citation rate
for the seminal MCC paper has been increasing as the method
is being applied in a greater variety of contexts, reaching 280
citations in 2017 alone.

In the expression below for the MCC, the True Negative (TN)
is estimated using total number of GO categories in the database
minus predicted positive and false negative.

MCC =
TP × FN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2)

The MCC can be expressed in an equivalent expression using
definition of informedness and markedness, which includes
precision and recall, as well as the inversed precision and recall
evaluating the proportion of true negatives:

invPrecision =
True Negative

True Negative+ False Negative
(3)

invRecall =
True Negative

True Negative+ False Positive
(4)

informedness = recall+ invRecall− 1 (5)

markedness = precision+ invPrecision− 1 (6)

Combining Equations (2–6) and some algebra we find:

MCC =
√

markedness · informedness (7)

In an analogous fashion to the manner in which the F-measure
may be generalized to weight either precision or recall more
strongly by a variable β, so also the MCC can be generalized
to more strongly weight either markedness or informedness by
the expression

MCCβ = 1+β

√

markedness× informednessβ (8)

DATA SETS

The Canonical Yeast Environmental Stress
Response as a Standard Data Set
In testing statistical methods, it is common to utilize as a standard
a synthetic data set where the answers are known, for example
in searching for epistatic relationships among genetic variations
in genome wide association studies [31]. If the method being
tested is valid, the known relationships should be recaptured by
the method.

A second approach is to utilize a real data set which was
used to create the correlations in the database being interrogated,
for example a gene ontology database. A major step toward
creation of the GeneOntology was a cluster analysis of expression
patterns in yeast using a complete genome chip [32]. The results
of the cluster analysis were incorporated into a functionally
organized database of yeast genes, the Saccharomyces Genome
Database [33]. The Gene Ontology Consortium was formed by
combining and standardizing these types of data and analyses
from three model organism databases, the Saccharomyces
Genome Database, Flybase, and Mouse Genome Informatics [1].
In conjunction with the Saccharomyces Genome Database
and Gene Ontology Consortium projects, the canonical yeast
“environmental stress response” (ESR) dataset was created [34].
Because of the intimate connection between the creation of this
set and the creation of the yeast gene ontology, it can be used as
a reference or standard set against which to test any method for
gene ontology determination, such as we propose here. It is to be
expected that this data set will simultaneously provide both high
precision and high recall.
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Standard Data Set Made Noisy
In order to understand effects of error in data sets we degraded
the standard yeast ESR data set by diluting it with random genes.
Specifically, we added random genes to the ESR set so the sets
were increased in size by factors of 1.2, 1.4, 1.6, 1.8, 2, 3, 4, and
5. The point to be tested is the extent to which our methods
could successfully extract the signal in the core ESR set even when
obscured by pure noise in the form of randomly selected genes
added to the set. Prior to actually doing the calculations, it does
not seem possible to anticipate the extent to which the dilution
will compromise the results.

Alarm Pheromone (AP)
One data set is comprised of human orthologs to the honey bee
Alarm Pheromone set [35]. The Alarm Pheromone set is a list
of genes differentially expressed in honey bee brain in response
to the chemical alarm pheromone, which is a component of the
language by which honey bees communicate with each other.
Previous studies have shown that the Alarm Pheromone set is
enriched in placental mammal orthologs, compared to other
metazoans including non-social insect orthologs [36]. The Alarm
Pheromone set is much smaller than the ESR set, with 91 up-
regulated genes and 81 down-regulated genes. This data set is
chosen because it presents essentially the opposite situation from
the yeast ESR set. Because the relationship between the honeybee
genes and the human gene orthology is attenuated by the 600
million years since the last common ancestor of the honeybee
and the human, it is reasonable to anticipate that it may not
be possible to simultaneously achieve high levels of precision
and recall.

Random Test Sets
To generate a baseline of the analysis for each data set using
different FDR calculation methods, we have applied the pipeline
to analyze randomly-generated sets as “test” set inputs, where
FDR should equal to 1 for all uncorrected p-values.

The BH FDR curves are calculated in the following way: The
R program p.adjust is applied to generate a list of analytically
calculated FDR (BH) corresponding to uncorrected p-values for
each “test” set. Then the lists of FDRs are merged and sorted
by uncorrected p-values. The FDRs are smoothed by a “sliding
window” method: at each uncorrected p-value point, the new
FDR is the average value of 11 FDRs centered by the uncorrected
p-value point.

The Resampling FDR curves are calculated in the following
way: The output uncorrected p-values are binned in steps of
1E-4. The counts below the upper bound of each p-value bin
for the “test” set enrichment categories are the “Total positives,”
and average counts for the null set enrichment categories are
the “False Positives.” The process is repeated for the multiple
“test” sets, and corresponding to each test set, 100 null sets
were generated for “False Positive” calculation. Then the number
of total and false positives are averaged, respectively. The FDR
would be the quotient of the averaged total and false positives.
Then, all the FDRs are plotted against the uncorrected p-values.

RESULTS

In this section, we present the results of applying our methods
to the two sets of data introduced in the Methods section, the
ESR set, the “noisy ESR sets, and the human orthologs of the
Alarm Pheromone set. For both above data sets, we show the
results from analyzing the genes using the biological process (BP)
category of the gene ontology. These results will show (1) areas
of agreement and difference between Benjamini-Hochberg and
random resampling in evaluation of FDR, (2) how the assessment
of significance of enrichment varies according to the particular
database and gene set that is being probed, and (3) how the
assessment of significance of enrichment varies according to the
weight assigned to precision vs. recall.

We note that, in those plots belowwhere Benjamini-Hochberg
correction is applied and where uncorrected p-value is the
independent variable, it is in fact derived as described above, from
the hypergeometric test applied to particular pairs of gene lists.
Thus, it is not a continuous function.

To make the curves for the Benjamini-Hochberg results, the
x-value of each point are the un-corrected p-value calculated
by TopGO. The cumulative count below each un-corrected p-
value is the y-value of each point. The points are connected by
line segments.

To make the curves for the resampling results, the p-values
are binned in intervals of 1E-4. The cumulative count below the
upper limit of each bin is represented by a point. Again, the points
are connected by line segments.

The line type on the graph (dash and solid), color, as well as
point types are only intended to label what each line is.

ESR Set (Environmental Stress
Response, Yeast)
Benjamini-Hochberg (BH)
Figure 2 shows the results of F-measure optimization on the
ESR data based on FDR calculated by Benjamini-Hochberg (BH)
method. As expected by their definitions, precision (F0) decreases
with increasing p-value while recall increases with increasing
p-value. F0.5 (precision-emphasized), F1 (precision and recall
equally weighted), and F2 (recall-emphasized) all show relative
maxima, providing a rational basis for assigning a threshold
for significance. The horizontal scale is extended far enough to
visualize the determination of the number of relevant elements.
In the case of the up-regulated gene set, maximum F1 occurs at
an uncorrected p-value close to 0.05. In the case of the down-
regulated gene set however, it appears that a muchmore stringent
cutoff would be appropriate.

Resampling
Figure 3 shows the results of F-measure optimization on the
ESR data using resampling to calculate FDR. The false positives
are calculated by average number of GO categories enriched
in random sets. For the up-regulated set, all the F-measures
optimize at much lower uncorrected p-values than do the
F-measures calculated by the BH method. For the down-
regulated set, resampling-calculated F0.5 is optimized at a lower
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FIGURE 2 | Number of positives and F-measure values for ESR set, BH-estimated FDR. (A) Shows the number of enriched biological process Gene Ontology

categories as a function of uncorrected p-value, the Benjamini-Hochberg number of false discoveries, and the projected true positives, namely the difference between

the predicted positives and the false positives, for the upregulated ESR gene set. This panel is from the same data set at Figure 1. The number pairs in parenthesis

are respectively (uncorrected p-value maximizing F0.5, number of true positives at that p-value), (uncorrected p-value maximizing F1, number of true positives at that

p-value), (uncorrected p-value maximizing F2, number of true positives at that p-value), (uncorrected p-value maximizing true positives, number of true positives at that

p-value) (B) is the same as (A) for the downregulated gene set. (C) Shows the F-measures computed from (A,D) the F-measures computed from (B). Number of

relevant elements, necessary to calculate recall [and therefore (F-measure)], is approximated by (predicted positives—false positives) max. The p-value at which the

computed true positives are a maximum is 0.13 for upregulated gene list (A) and at 0.099 for downregulated gene list. (B) The pairs of numbers in parenthesis in (A,B)

indicate the p-value and number of returned GO terms at significant markers, specifically at maximum F0.5 (emphasizing precision), F1 (balanced emphasis between

precision and recall), F2 (emphasizing recall), and Recall where we obtain an estimation of relevant elements by maximizing true positive).

uncorrected p-value than by the BH method while F1 and F2 are
optimized at slightly higher uncorrected p-value.

Comparing the results in Figures 2, 3 show that the optimum
cutoff (asmeasured bymaximumF1) varies widely, depending on
the gene set to be tested and the method for assessing FDR. Using
BH the optimum (F1-maximized) cutoff is.0476 for upregulated
ESR and.012 for downregulated ESR. Using resampling, the
optimum (F1-maximized) cutoff is 0.0096 for upregulated ESR
and 0.0126 for downregulated ESR. Also, as expected, the
optimum cutoff is relaxed when recall is emphasized (F2 instead
of F1) and made more stringent when precision is emphasized
(F0.5 instead of F1).

ESR Set Made Noisy
Figure 4A shows False Discovery Rate as a function of the
uncorrected p-value cutoff for the upregulated and downreglated
subsets at various dilutions with random genes, as interrogated

by the random resampling method. It is seen that at large
uncorrected p-values the FDR is increased significantly when the
ESR set is diluted with random genes. However, Figure 4B shows
that at the uncorrected p-value corresponding to optimum F1 the
precision and recall as defined by our protocol are essentially
unchanged by addition of random genes, even up to a 4-fold
dilution of the ESR with randomly selected genes. Figure 4C
shows numerically the number of significantly enriched GO
categories from the undiluted set and from the 2-fold and 4-fold
dilution. In the case of 2-fold dilution the great majority of the
categories of the undiluted set are recovered, and even with 4-fold
dilution a majority are recovered.

Alarm Pheromone Set (Human Orthologs)

Benjamini-Hochberg (BH)
Figure 5 shows exactly the corresponding results as Figure 2, this
time on the human orthologs to the honey bee alarm pheromone
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FIGURE 3 | Number of positives and F-measure values for ESR set, Resampling-estimated FDR. (A) Shows the number of enriched biological process Gene

Ontology categories as a function of uncorrected p-value, the average number of enriched Gene ontology categories from the random set as the false positives, and

the projected true positives, namely the difference between the predicted positives and the false positives, for the up-regulated ESR gene set. The number pairs in

parenthesis are respectively (uncorrected p-value maximizing F0.5, number of true positives at that p-value), (uncorrected p-value maximizing F1, number of true

positives at that p-value), (uncorrected p-value maximizing F2, number of true positives at that p-value), (uncorrected p-value maximizing true positives, number of true

positives at that p-value) (B) is the same as (A) for the down-regulated gene set. (C) shows the F-measures computed from (A,D) the F-measures computed from (B).

Number of relevant elements, necessary to calculate recall [and therefore (F-measure)], is approximated by (predicted positives—false positives) max. The p-value at

which the computed true positives are a maximum is 0.021 for upregulated gene list (A) and 0.0179 for downregulated gene list. (B) The pairs of numbers in

parenthesis in (A,B) indicate the p-value and number of returned GO terms at significant markers, specifically at maximum F0.5 (emphasizing precision), F1 (balanced

emphasis between precision and recall), F2 (emphasizing recall), and Recall (where we obtain an estimation of relevant elements by maximizing true positive).

set. F-measures are maximized at much higher thresholds than
for the ESR set. The difference in optimal F-measure is largely
due to the different shapes of the recall curves. For the ESR
set, precision drops significantly more rapidly with increasing
uncorrected p-value than it does for the AP set. Therefore, a
higher uncorrected p-value should be used for the AP set.

Resampling
Figure 6 shows the number of GO categories and F-measures
for the alarm pheromone set human orthologs using resampling
method. The resampling method have found more false positives
than BH, and therefore the precision is much lower than the
precision calculated from BH, and the F-measures are optimized
at lower uncorrected p-values than the F-measures calculated
from BH.

From the above Figures 2 through 6, we can note the stepped
structure in the number of enriched GO categories. The stepped
structure lies in the fact that the number of genes associated
with any GO category, in the test set or reference set, must

be an integer with limited number of choices. Therefore, the
uncorrected p-values calculated would be in a discrete set instead
of a continuum. Consequently, the number of positives as a
function of p-values increases in a stepped way. As a result,
the F-measures derived from the number of GO categories have
spikes. But as our graphs have demonstrated, the optimal F-
measures reflect the different weights on precision and recall
despite the spikes.

Comparing the results in Figures 5, 6 shows that, for
the AP gene sets as for the ESR gene sets, the optimum
cutoff threshold (defined by uncorrected p-value) is different
for the upregulated and downregulated gene sets and also is
different when BH is used to determine the FDR as compared
to resampling.

Comparison of F-Measure With MCC for
Optimization of Threshold Choice
As indicated in the section on methods, a widely used alternative
to the F-measure for optimization is the Matthews Correlation
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FIGURE 4 | Performance of the resampling protocol when the ESR set is degraded by dilution with randomly selected genes. (A) shows the false discovery rate as a

function of uncorrected p-value over a wide range of uncorrected p-values up to p-value equals 0.12, for dilutions of a factor of 1.2, 1.4, 1.6, 1.8, 2, 3, 4, and 5. As

expected, dilutions increase the false discovery rate. (B) shows the behavior in the region of p-values where F1 is optimized. In this range the performance is only

moderately affected by dilution. In particular, the uncorrected p-value at which F1 is optimized is essentially the same at 2-fold and 4-fold dilution of the upregulated

gene set as are the precision and recall at that cutoff, as our method computes those quantities (C) shows numerically the extent to which the recovery of statistically

significant enriched GO categories is affected by dilution. The undiluted set returns 225 categories. The 2-fold dilution returns 205 categories, of which 187 are

common with the undiluted and 18 of which are different. The 4-fold diluted set returns only 127 categories, 118 of which are common with the undiluted set and only

2 of which are different. Dilution degrades the performance, but most of the categories found in the undiluted set are still recovered in even in the most diluted sets.
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FIGURE 5 | Number of positives and F-measure values for Alarm Pheromone set, BH-estimated FDR (A) shows the number of enriched biological process Gene

Ontology categories as a function of uncorrected p-value, the Benjamini-Hochberg number of false discoveries, and the projected true positives, namely the difference

between the predicted positives and the false positives, for the upregulated alarm pheromone human orthologs gene set. The number pairs in parenthesis are

respectively (uncorrected p-value maximizing F0.5, number of true positives at that p-value), (uncorrected p-value maximizing F1, number of true positives at that

p-value), (uncorrected p-value maximizing F2, number of true positives at that p-value), (uncorrected p-value maximizing true positives, number of true positives at that

p-value) (B) is the same as (A) for the downregulated gene set. (C) Shows the F-measures computed from (A). (D) The F-measures computed from (B). Number of

relevant elements, necessary to calculate recall [and therefore (F-measure)], is approximated by (predicted positives—false positives) max. The p-value at which the

computed true positives are a maximum is 0.372 for upregulated gene list (A) and at 0.295 for downregulated gene list. (B) The pairs of numbers in parenthesis in

(A,B) indicate the p-value and number of returned GO terms at significant markers, specifically at maximum F0.5 (emphasizing precision), F1 (balanced emphasis

between precision and recall), F2 (emphasizing recall) and Recall (where we obtain an estimation of relevant elements by maximizing true positive).

Coefficient (MCC) which, unlike the F-measure, gives equal
weight to negative as well as positive identifications. Figure 7
shows MCC optimization for exactly the same data set (ESR) and
False Discovery Rate determination (Resampling) as in Figure 6.
An important lesson from this Figure is that the uncorrected p-
value that maximizes MCC1 is almost exactly the same as the
uncorrected p-value that maximizes F1, and that these maxima
occur when Precision and Recall are approximately equal. The
related theory is shown in Additional File 4. The theory shows
that in the limit where True Negatives are much more numerous
than the other categories (True Positive, False Positive, False
Negative), and under the condition that precision=recall, MCC1

and F1 converge to the same value. Since there are tens of
thousands of terms in the gene ontology database the number of
True Negatives is indeed much larger than the other quantities,
so optimization of the F-measure in this case is an adequate

strategy. However, we agree with Powers [28] that optimization
of the MCC is the more universally correct strategy for binary
classification in general.

Comparison of FDR (False Positive)
Calculation by Benjamini-Hochberg (BH)
and Resampling
In the previous section, we have demonstrated how to use F-
measure optimization to obtain a flexible threshold based on
whether precision or recall is more heavily weighted by the
researcher. In that section the FDR is calculated but not shown
explicitly. The present section explicitly compares the FDR as
calculated by the BH method and by random resampling. In
each case the random resampling FDR is computed based on
the average of 50 randomly sampled null sets of the same size
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FIGURE 6 | Number of Positives and F-measure values for AP set, Resampling-estimated FDR. The figure shows the number of enriched biological process Gene

Ontology categories as a function of uncorrected p-value, the average number of enriched Gene ontology categories from the random set as the false positives, and

the projected true positives, namely the difference between the predicted positives and the false positives, for the up-regulated alarm pheromone human orthologs

gene set. (B) is the same as (A) for the down-regulated gene set. (C) Shows the F-measures computed from (A).(D) The F-measures computed from (B). Number of

relevant elements, necessary to calculate recall [and therefore (F-measure)], is approximated by (predicted positives—false positives) max. The p-value at which the

computed true positives are a maximum is 0.475 for upregulated gene list (A) and at 0.048 for downregulated gene list. (B) The pairs of numbers in parenthesis in

(A,B) indicate the p-value and number of returned GO terms at significant markers, specifically at maximum F0,5 (emphasizing precision), F1 (balanced emphasis

between precision and recall), F2 (emphasizing recall), and Recall (where we obtain an estimation of relevant elements by maximizing true positive).

as the test set. Figure 8 shows that for the ESR set, the BH
method and resampling estimate similar FDR at low p-value.
As the threshold increases, the BH method estimates lower
false discovery rate, and therefore higher precision, than the
resampling method at the same uncorrected p-value. By contrast,
for the Alarm Pheromone set, the BH method estimates lower
FDR than resampling.

To further evaluate the methods, we carried out multiple runs

using random (null) sets as test sets. In this case, the FDR should

in principle be 1, for any uncorrected p-value. The results of
this test are shown in Figure 9A, where for each segment of p-

values (bin size = 0.0001) we show the mean plus/minus the
standard deviation. The resampling method passes the test on the
average, but the results are noisy. The BH method systematically
underestimates FDR. Figure 9B shows that the noise in the
resampling method results in Figure 9A are largely due to the
variation in the random null sets, and that the noise level in using
random resampling for real data is acceptably low.

Inferences Drawn From Results Using
Different Threshold Criteria
Table 1 shows the statistical summary of using different criteria
[maxF.5, maxF1, BH (FDR-corrected p-value <0.05, and max
MCC] for the distinction between significant and non-significant
enrichment. Important inferences to be drawn this table include:
(1)We note that the threshold criterion of BH (F < 0.05)
seems to strongly favor precision over recall, both for the
ESR set where both are high and for the AP set where they
are relatively low. It appears that the use of this criterion
implicitly and unwittingly favors precision over recall. In
some contexts this may be justifiable, but we recommend
that the researcher make such a choice consciously, by use
of a precision-weighted F-measure such as F0.5, rather than
unwittingly. (2) For the particular case of gene ontologies,
where the number of true negatives at reasonable thresholds
is far larger than the numbers of true positives, false positives,
and false negatives, there is no advantage to deploying the
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FIGURE 7 | Number of positives and Matthew’s Correlations Coefficients (MCC) for AP set, Resampling-estimated FDR. The figures shows the number of enriched

biological process Gene Ontology categories as a function of uncorrected p-value, the average number of enriched Gene Ontology categories from the random set as

the false positives, and the projected true positives, namely the difference between the predicted positives and the false positives, for the up-regulated alarm

pheromone human orthologs gene set. Panel (B) is the same as (A) for the down-regulated gene set. Panel (C) shows the MCC computed from (A). (D) the MCC

computed from (B).

more complex MCC as compared to the simpler F-measure
(Figures 7C, D).

IDENTITY OF ENRICHED TERMS USING
DIFFERENT THRESHOLD CRITERIA

Higher Order Relatively General Terms
The enriched GO terms are categorized by their parent terms, 1st
order parent being direct children of the root term “Biological
Process” (GO:0008150), 2nd order parent being direct children
of the 1st order parent terms. Each enriched GO term is traced
back to the root by the shortest route. Tables 2 through 5 below
provide an outline of the complete gene ontology results by
showing the high order terms that are either themselves enriched
according to the described criteria or have child terms enriched,
or both. In each case the results from three different thresholds
are shown, BH FDR < 0.05, optimum F.5, and optimum F1.
The most striking pattern is that for the ESR sets (Tables 2, 3),
modifying the threshold within the parameters of this paper did
not change the identity of the putatively enriched higher order

terms very much. However, for the AP sets (Tables 4, 5), relaxing
the threshold caused a substantial increase in the number of high
order terms judged to be putatively significant. However, from
Table 1 is it seen that the precision (confidence) of the additional
terms for the AP sets is substantially lower than for the terms
returned using the most stringent threshold. Thus, for the AP set
we clearly see that we can’t simultaneously have high precision
and high recall. We must trade one for the other.

Relatively Specific Terms
Specific, or “child” terms returned in these calculations
are too numerous to delineate completely in the body of
the paper. They are instead provided in the spreadsheet
“AllGOTermsInTree_Final (Supplementary Material 1)”
Separate tabs delineate the returns from ESR upregulated, ESR
downregulated, AP upregulated, and AP downregulated. Each
entry in the spread sheet is color coded with the code given in
the tab labeled “color coding.” Entries that are shaded are either
primary or secondary (more general) classes, which will also be
shown in Table 1. Entries colored in black appear at “standard”
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FIGURE 8 | False discovery rate comparison. False discovery rate estimated

by Benjamini-Hochberg (solid curve) and Resampling (dashed curve) for the

ESR set and Alarm Pheromone set. Figure 7 compares the number of false

discovery rate calculated by Benjamini-Hochberg (solid) and Resampling

(dashed) in each set: (A) up-regulated ESR, (B) down-regulated ESR, (C)

up-regulated Alarm Pheromone set, and (D) down-regulated Alarm

Pheromone set. Generally, resampling has found higher false discovery rate

than Benjamini-Hochberg. At low p-values, the BH and resampling methods

get similar estimation of false discovery rate for the ESR set.

threshold: BH FDR<0.05. Entries colored in blue emerge at
the threshold determined by optimal F0.5. For AP Up, the
standard threshold is the most stringent while for all other sets,
the optimal F0.5 is the most stringent. Entries colored in red first
emerge at the least-stringent threshold for that data set, which
corresponding to optimal F1. The format of the spreadsheet for
each of the data sets is as follows: Column A is the identifying
number of the GO class that is returned as significant, column
B is the name of that class, and column C is the uncorrected
enrichment p-value for that class. Column D is non-zero only
for the rows belonging to primary or secondary GO classes
(which are shown explicitly in Tables 2–5 for the four data
sets). The numerical value in column D represent the smallest
uncorrected p-value of all the classes under the primary or
secondary class shown in that row. The spread sheet is organized
to be sectioned off according to primary or secondary classes. To
illustrate the sectioning, under the “AP up” is the primary class
“cellular process” and immediately under that the secondary
class “protein folding.” This is followed by more specific classes
under “protein folding” such as “chaperone-mediated protein
folding” and others. The columns E and farther to the right are
GO numbers representing the lineage of the particular term in

that row starting with the primary class and continuing to the
particular term in that row.

Because the trade-offs with varying threshold are most
clear with the AP sets, we select those now for discussion.
One biologically interesting feature emerging from varying the
threshold consists of the more specific GO classes emerging
from general classes already identified with a more stringent
threshold. For example, in the “AP up” set “protein folding” was
identified as a secondary class of interest by virtue of a very strong
enrichment score. On relaxing the thresholdmore specific “child”
classes emerged, such as “chaperone cofactor-dependent protein
folding,” “endoplasmic protein folding,” and others. While these
more specific classes are identified with less confidence than
the overall “protein folding” class they are subsumed into, they
do provide the most likely subclasses within protein folding to
be biologically meaningful. Similarly, under the secondary class
of “signal transduction” more specific subclasses such as “ER-
nucleus signaling pathway,” “stress-activatedMAPK cascade” and
others emerge with modest threshold relaxation. This pattern is
seen throughout the spreadsheet. Relaxing the threshold provides
not only improved recall, but improved specificity, which will
help in biological interpretation of GO enrichment results.

Summary
In general, when thresholds are varied, a tradeoff can plainly be
seen between precision and recall. When looking at the specific
GO classes that are returned at different choices of threshold
a second tradeoff emerges, between generality and specificity.
As threshold is relaxed some more general terms are revealed,
but the greater effect is that more specific terms are revealed
within general terms that were suggested at more stringent
thresholds. These specific terms can help to provide a more
focused interpretation of the biological results.

CONCLUSIONS

In this work, we have addressed two issues with the commonly
used methods in the GO enrichment analysis: the relationship
between resampling vs. Benjamini-Hochberg theory for
estimating false discovery rate, and the arbitrariness of the
p-value threshold for significance.

To consider resampling vs. Benjamini-Hochberg we
made multiple independent comparisons. Four consisted
of upregulated and downregulated genes separately for two
different animal experiments. The fifth was an array of random
gene lists (null sets). For the yeast ESR sets, which we use as
our “standard” or canonical dataset, the two methods gave
almost the same results for uncorrected p-value< 0.04 but
diverged substantially for more relaxed p-values, with the BH
underestimating the FDR. For the honeybee AP set the BH
method underestimated the FDR significantly at all uncorrected
p-values. For the random or null sets, we know that the correct
FDR is 1, because there is no significance to the results. Yet
for the null sets the BH method produced FDR < 1 by a large
margin for the full range of uncorrected p-values. By contrast
the resampling method, although noisy, does not systematically
deviate from 1 in its prediction of FDR for the null sets.
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FIGURE 9 | Comparison of different FDR calculation method on accuracy and convergence. (A) Comparison of BH and Resampling on random “test” sets. At each

p-value (p-values binned at intervals of 0.0001), the mean and standard deviation are calculated and plotted as shown. The random test sets consist of 281 yeast

genes, against the background of the entire yeast genome. For each of the methods 50 test sets were used and the mean plus/minus standard deviation plotted as

shown. Resampling hits the mark on the average but with substantial noise, while BH systematically underestimates FDR. (B) Evaluation of resampling convergence

on a real data set, ESR upregulated considered in this paper. This set is run against five different ensembles of null sets, each ensemble containing 100 null sets. The

mean and standard deviation are plotted and compared to the results from the random test sets. It is seen that the noise of the resampling method on a real data set

is acceptable.

TABLE 1 | Precision, recall, and Matthews Correlation Coefficients (MCC) at thresholds BH FDR<0.05, resampling optimal F0.5, and resampling optimal F1.

Data Set Threshold Uncorrected p-value # enriched categories Precision Recall MCC

ESR Up BH FDR<0.05 0.00459 118 0.936 0.798 0.864

RS opt F0.5 0.0029 110 0.964 0.765 0.858

RS opt F1 0.0096 146 0.890 0.939 0.914

Max MCC 0.0096 146 0.890 0.939 0.914

ESR Down BH FDR < 0.05 0.00689 211 0.948 0.883 0.914

RS opt F0.5 0.0016 185 0.989 0.808 0.894

RS opt F1 0.0126 251 0.902 1 0.948

Max MCC 0.0126 251 0.902 1 0.948

AP Up BH FDR < 0.05 0.00116 57 0.807 0.0974 0.290

RS opt F0.5 0.012 246 0.600 0.312 0.429

RS opt F1 0.0636 699 0.416 0.615 0.500

Max MCC 0.0636 699 0.416 0.615 0.500

AP Down BH FDR < 0.05 0.00138 58 0.759 0.353 0.517

RS opt F0.5 4.00E-04 44 0.909 0.321 0.540

RS opt F1 0.0073 146 0.534 0.626 0.577

Max MCC 0.0073 146 0.534 0.626 0.577

For the four data sets examined, we have found that optimal F1 is the position that MCC reaches maximum. For the ESR set, the MCC is high for all thresholds. For AP set, MCC is

relatively low, and the MCC for BH FDR<0.05 is the lowest.

We also considered the performance of the random
resampling method on datasets created by corrupting the yeast
ESR set by the addition of randomly selected genes, up to
a level at which the dataset was 5/6 random genes and only
1/6 the original canonical dataset. The random resampling
method combined with F-measure optimization selected the
essentially the same uncorrected p-value for optimum threshold
and recovered essentially the same enriched GO categories from
the corrupted sets as from the original set, suggesting the method
is able to extract signal from noise effectively.

It is of interest to consider why the BH method, while
very useful and successful in some cases, sometimes fails. It is

understood that the method will always work when the true
inferences are independent. Strictly speaking, this will not be
true of Gene Ontology data since many genes belong in multiple
Gene Ontology categories. However, Benjamini and Yekutieli
[22] showed that the method was still valid for dependent
hypotheses provided that the related hypotheses that failed the
null test showed positive regression of likelihoods. Consideration
of the tree-like structure of Gene Ontology data [37] shows
that this is true to a great extent. The branches of the tree-like
structure clearly show positive regression within each branch;
if a child category is enriched a parent is more likely to
be enriched, and vice versa. Thus, as long as the enriched
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TABLE 2 | ESR, Up-regulated set each row corresponds to a 1st order parent

terms of enriched GO categories of ESR set, up regulated genes.

GO ID Parent term Minimum uncorrected

p-value of child terms

GO:0008152 Metabolic process (80,85,100) 3.40E-13

GO:0050896 Response to stimulus

(22,23,26)

7.40E-13

GO:0065007 Biological regulation (4,5,7) 9.00E-05

GO:0009987 Cellular process (4,5,13) 0.00035

**GO:0032502 Developmental process (0,0,1) 0.00589

The three numbers in parentheses reflect the total number of terms in the Parent family

(Parent plus children). We found no difference in the high order terms between BH

FDR<0.05 and F.5. However, the developmental process parent term (labeled with “**”)

emerges when the threshold is increased to optimal resampling F1. The groupings as

defined by the parent terms do not change very much, but the number of more specific

child terms increases moderately.

TABLE 3 | ESR, Down-regulated Set 1st order parent terms of enriched GO

categories of ESR set, down regulated genes.

GO ID Parent Term Minimum uncorrected

p-value of child terms

GO:0008152 Metabolic process

(120,139,168)

1.00E-30

GO:0009987 Cellular process (6,6,7) 1.00E-30

GO:0071840 Cellular component organization

or biogenesis (31,32,36)

1.00E-30

GO:0051179 Localization (21,22,22) 5.20E-28

GO:0065007 Biological regulation (7,11,15) 3.20E-12

*GO:0050896 Response to stimulus (0,1,2) 0.00357

For this data set the optimum F.5 was more stringent than the BH FDR <0.05. The term

“response to stimulus” (labeled with “*” does not meet the optimum F.5 criterion but does

for the other two criteria. The numbers in the parentheses refer to the numbers of enriched

terms in each parent category, ordered from low to high. As with the up-regulated genes,

relaxing the threshold did not change the parent terms much, but did increase the number

of more specific child terms moderately.

classes fall along a few well-delineated branches of the Gene
Ontology tree structure, BH will work well. This appears to be
largely the case for the yeast ESR set at relatively stringent p-
values, in which the experimental intervention activated well-
defined and annotated pathways. Thus, for relatively stringent
cutoffs the BH FDR works well for this data set. However,
some genes are members of categories in multiple branches,
compromising the positive regression criterion. In the ESR
set at relatively relaxed thresholds, and for the AP set at all
thresholds, many Gene Ontology categories in different branches
but with overlapping gene membership are represented in
the returned categories, so that both independence and the
positive regression criterion are violated. These considerations
tell us why BH fails dramatically for the completely null sets.
Neither independence nor positive regression are satisfied, except
sometimes completely accidentally.

To deal with the issue of the arbitrariness of the threshold, we
introduced optimization of F-measures so that both type I and II
errors are considered. Unlike arbitrarily applied threshold of BH

TABLE 4 | First order parent terms of enriched GO categories of AP set, Up

regulated genes.

GO ID Parent Term Minimal uncorrected p-value

of child terms

GO:0009987 Cellular process (13,36,96) 1.10E-10

GO:0050896 Response to stimulus

(57,71,119)

1.40E-08

GO:0065007 Biological regulation

(28,113,288)

4.30E-05

GO:0008152 Metabolic process (9,44,113) 5.00E-05

GO:0032502 Developmental process

(1,9,33)

0.00043

GO:0071840 Cellular component

organization or biogenesis

(1,6,12)

0.00102

*GO:0051179 Localization (0,8,37) 0.00138

*GO:0022414 Reproductive process (0,2,7) 0.00192

*GO:0002376 Immune system process

(0,2,8)

0.00504

*GO:0032501 Multicellular organismal

process (0,5,19)

0.00509

*GO:0040011 Locomotion (0,1,2) 0.00932

**GO:0051704 Multi-organism process

(0,0,11)

0.02

**GO:0008283 Cell proliferation (0,0,2) 0.02962

The terms with “*” appears when the threshold is increased from BH FDR<0.05

(uncorrected p-value < 0.00116) to optimal resampling F0.05-measure (uncorrected p-

value< 0.012). Terms with “**” emerges when the threshold is increased to that for optimal

resampling F1(uncorrected p-value < 0.0096). The number in the brackets refers to the

number of enriched terms within each parent category at each threshold, ordered from

low to high. Unlike the ESR sets, for this data set relaxing the threshold caused significantly

greater returns in both general terms and their children.

FDR<0.05 or uncorrected p-value < 0.01 for any data set, the
F-measure optimization approach provides a flexible threshold
appropriate to the nature of the data set and the research
question. If the data set is high in noise-to-signal ratio and the
penalty for letting in false positive is high, we can choose to
optimize F-measures weighing more on precision. If the data set
fails to show much enrichment by commonly-applied methods,
we can relax the threshold and extract the best information
indicated by F-measure optimization.

A concern is that, because of the nature of the problem, we
were forced to use a heuristic (albeit reasonable) method to
estimate the false negatives, essential for calculating recall. We
judge that this concern is more than offset by the advantage
of enabling the replacement of an arbitrary threshold with F-
measure optimization.

We found that for the particular class of problems dealt with
in this paper the F-measure is as appropriate an optimization
criterion as the Matthews Correlation Coefficient. A balanced
weighting of precision and recall is an appropriate starting point
for exploration. By examination of the specific GO categories
that are returned by our analysis, we find that more stringent
thresholds reveal preferentially the more general GO categories,
while relaxing the threshold uncovers more specific classes
contained within the general categories, Thus, varying the
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TABLE 5 | First order parent terms of enriched GO categories of AP set, down

regulated genes.

GO ID Description Minimal p-value of child

terms

GO:0008152 Metabolic Process (40,7,25) 3.20E-08

GO:0009987 Cellular process (3,4,13) 7.00E-06

GO:0071840 Cellular component organization

or biogenesis (1,0,5)

7.90E-06

*GO:0051179 Localization (0,3,16) 0.00052

**GO:0065007 Biological regulation (0,0,15) 0.00145

**GO:0050896 Response to stimulus (0,0,7) 0.00174

**GO:0022414 Reproductive process (0,0,1) 0.00441

**GO:0051704 Multi-organism process (0,0,1) 0.00441

**GO:0032501 Multicellular organismal process

(0,0,3)

0.00441

**GO:0032502 Developmental process (0,0,1) 0.00534

The terms with “*” disappears when the threshold is decreased from BH FDR<0.05

(uncorrected p-value < 0.00138) to optimal resampling F0.05-measure (uncorrected p-

value < 4.00E-4). Terms with “**” emerges when the threshold is increased at optimal

resampling F1 (uncorrected p-value < 0.0073). The number in the brackets refers to the

number of enriched terms at each threshold, low to high. Unlike the ESR sets, for this set

relaxing the threshold caused substantial increases in the putative enriched categories at

both the general level and the more specific child level.

threshold not only reflects the tradeoff between precision and
recall, but also between generality and specificity.

In the Supplementary Material we present the spreadsheet
“AllGOTermsInTree_Final,” which shows all the specific GO
terms returned in the work described in this paper. Also, in
the Supplementary Material, we present our automatic pipeline
integrating TopGO with resampling and analyzing functions to
carry out the whole process of resampling, enrichment analysis,
F-measure calculation, and representing results in tables and
figures. The pipeline also includes a GOstats [15] module for
easy analysis of under-represented terms and a STRINGdb [38]
module for KEGG pathway terms. As demonstrated, the pipeline
can also calculate analytical FDR including, but not limited to, the
BH method.

In summary, we suggest replacing a fixed p-value for assigning
a threshold in enrichment calculations with an optimal F-
measure, which incorporates the well-established and well-
defined concepts of precision and recall.
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