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Accurate and automatic segmentation of infant hippocampal subfields from magnetic

resonance (MR) images is an important step for studying memory related infant

neurological diseases. However, existing hippocampal subfield segmentation methods

were generally designed based on adult subjects, and would compromise performance

when applied to infant subjects due to insufficient tissue contrast and fast changing

structural patterns of early hippocampal development. In this paper, we propose a

new fully convolutional network (FCN) for infant hippocampal subfield segmentation by

embedding the dilated dense network in the U-net, namely DUnet. The embedded dilated

dense network can generate multi-scale features while keeping high spatial resolution,

which is useful in fusing the low-level features in the contracting path with the high-level

features in the expanding path. To further improve the performance, we group every pair

of convolutional layers with one residual connection in the DUnet, and obtain the Residual

DUnet (ResDUnet). Experimental results show that our proposed DUnet and ResDUnet

improve the average Dice coefficient by 2.1 and 2.5% for infant hippocampal subfield

segmentation, respectively, when compared with the classic 3D U-net. The results also

demonstrate that our methods outperform other state-of-the-art methods.

Keywords: fully convolutional network, dilated dense network, deep learning, hippocampal subfield segmentation,

infant hippocampus

INTRODUCTION

Hippocampus plays important roles in memory and spatial navigation, and is closely related to
neurological diseases, such as autism, attention deficit hyperactivity disorder, and Alzheimer’s
Disease (Shi et al., 2009; Bartsch, 2012; Li et al., 2013). Hippocampus consists of several
histologically and functionally specialized subfields (Dalton et al., 2017). It has been shown
that different pathological conditions affect subfields differently, suggesting that subfields may
provide more precise information for earlier disease diagnosis than simply using the whole
hippocampus (Small, 2014).

Accurate segmentation of hippocampal subfields from magnetic resonance (MR) brain images
is a critical step for studying memory-related neurological diseases. However, it is a challenging
task especially in infant subjects, because of the small size of each hippocampal subfield, the
blurred boundaries between subfields, and the large inter-subject variations. Manual segmentation
is widely adopted, but it suffers high intra- and inter-operator variability, and is also excruciatingly
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time-consuming. Therefore, automatic hippocampal subfield
segmentation methods are desirable. The existing automatic
hippocampal subfield segmentation methods can be mainly
categorized into three different types: (1) generative model based
method (Van Leemput et al., 2009), (2) multi-atlas based method
(Wang et al., 2013; Pipitone et al., 2014; Caldairou et al., 2016;
Romero et al., 2017), and (3) multi-modality learning based
method (Wu et al., 2018).

In the first category (Van Leemput et al., 2009), a generative
model of image around the hippocampal area was produced
by using a mesh-based probabilistic atlas learned from a set
of ultra-high-resolution training images. The model was used
to obtain automated hippocampal subfield segmentations on 10
adult subjects with the age range of 22–89 years.

In the past years, the second category of methods, namely
multi-atlas based image segmentation (MAIS) methods, have
been widely used in the field of medical image segmentation,
including hippocampal subfield segmentation on adult subjects
(Wang et al., 2013; Pipitone et al., 2014; Caldairou et al.,
2016; Romero et al., 2017). In the MAIS methods, all selected
atlas images are first registered to the target image, and the
corresponding atlas labels are then warped to the target image
space. Afterwards, these warped atlas labels are combined to
obtain the final segmentation by label fusion. Note, in the
MAIS methods, label fusion plays an important role. For
example, a weighed voting label fusion was proposed (called
joint label fusion) in a previous work (Wang et al., 2013), in
which weights were obtained by minimizing the total expected
error between the consensus segmentation and the ground-
truth segmentation. This method was later combined with
a learning-based error correction method for hippocampal
subfield segmentation (Yushkevich et al., 2015). In another
work (Romero et al., 2017), a new non-local patch based
label fusion method was proposed based on a multi-contrast
patch matching process. To further improve the segmentation,
authors exploited a neural network-based error correction
step for minimizing systematic segmentation errors. MAGeT-
Brain (Multiple Automatically Generated Templates) was also
proposed for automatic segmentation of the hippocampus and
subfields, aiming to minimize the number of atlases needed
whilst still achieving similar agreement to the multi-atlas
approaches (Pipitone et al., 2014),. Besides, a surface patch-based
segmentation method (Caldairou et al., 2016) was proposed
for hippocampal subfield segmentation by combining surface-
based processing with a patch-based template library and
feature matching.

Besides the above two categories of methods, learning-
based methods in the third category were also proposed for
adult hippocampal subfield segmentation using 3T multi-
modality MR images, including structural MRI (T1w,
T2w) and resting-state fMRI (rs-fMRI) (Wu et al., 2018).
In that paper (Wu et al., 2018), authors extracted both
appearance features and relationship features to capture
the appearance patterns in structural MR images and the
connectivity patterns in rs-fMRI, respectively. These extracted
features were then fed into a random forest classifier for
voxel-wise classification.

Although several automatic methods have also been proposed
for hippocampal subfield segmentation, most of them were
evaluated only on the adult subjects, and thus cannot
be directly applied to infant subjects due to insufficient
tissue contrast and fast changing structural patterns of early
hippocampal development.

In the recent years, deep convolutional neural networks
(CNN) have been widely applied in the medical image
segmentation (de Brébisson and Montana, 2015; Zhang et al.,
2015; Moeskops et al., 2016). In CNN based segmentation
methods, a patch centered at the target voxel (or pixel for 2D
images) is taken as input for networks, and the tissue class of
the center voxel is produced as the output of the networks. By
learning sets of convolutional kernels, CNNs can capture highly
non-linear mappings between inputs and outputs. Compared
with MAIS methods and the traditional learning-based methods,
CNN based segmentation methods are free of image registration
and manual feature extraction.

A drawback of the CNN based segmentation approaches is
that the input patches from neighboring voxels have huge overlap
and the same convolutions are computed for many times. To
address this limitation, fully convolutional networks (FCN) were
proposed for voxel-wise dense prediction, by reformatting the
fully connected layers as convolutional layers (Long et al., 2015).
So far, a number of FCNs have been proposed and successfully
used in medical image segmentation, including hippocampal
segmentation (Ronneberger et al., 2015; Milletari et al., 2016;
Chen Y. et al., 2017; Yu et al., 2017; Cao et al., 2018). For example,
in the paper (Ronneberger et al., 2015), a U-net architecture
was proposed by comprising a contracting (down-sampling)
path, followed by an expanding (up-sampling) path. The features
in the contracting path are concatenated to the corresponding
features in the expanding path to recover the detailed image
information that is lost during the down-sampling process. In the
work (Milletari et al., 2016), authors extended U-net to a V-net
structure by incorporating residual blocks (He et al., 2016a). In
the paper (Yu et al., 2017), authors proposed a new volumetric
convolutional neural network with mixed residual connections,
where both the short connections between successive layers and
the long connections between contracting path and expanding
path are implemented with residual connections. In the work
(Cao et al., 2018), authors proposed a multi-task CNN for joint
hippocampal segmentation and clinical score regression with
U-net as a subnet for hippocampal segmentation. In the paper
(Chen Y. et al., 2017), authors proposed a multi-view ensemble
approach to combine multiple decision maps obtained from
several deep neural networks for hippocampal segmentation.
Besides these contracting-expanding structures, dilated FCNs
were also proposed for image segmentation, which can enlarge
the receptive field exponentially without reducing any spatial
resolution (Liang-Chieh et al., 2015; Yu and Koltun, 2015;Li et al.,
2017; McKinley et al., 2017).

The U-net like structures are particularly successful in
the field of medical image segmentation. One of the most
important factors in the U-net is the long-skip connections
which can concatenate the features in the contracting path to
the corresponding features in the expanding path to recover the
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lost image information. However, the levels of features in the
contracting path are much lower than those in the expanding
path. Thus, it may not obtain optimal results when directly
concatenating these features.

In this paper, we develop an automatic method to address the
challenging infant hippocampal subfield segmentation problem
with state-of-the-art deep learning techniques (LeCun et al.,
2015; Litjens et al., 2017; Shen et al., 2017). To overcome the
limitation of U-net structure, we propose a novel network by
embedding a dilated dense network in the U-net, namely DUnet.
The embedded dilated dense network can generate multi-scale
features while keeping high spatial resolution, which is useful
in fusing the low-level features in the contracting path with the
high-level features in the expanding path. To further improve
the performance, we use residual connections to group every
pair of convolutional layers in DUnet, and obtain the Residual
DUnet (ResDUnet).

The proposed method was applied for segmenting infant
hippocampal subfields based on the Baby Connectome Project
(BCP) dataset, containing 10 infant subjects. To the best of
our knowledge, this is the first work to propose an automatic
method for infant hippocampal subfield segmentation. To
further illustrate the effectiveness of our proposed method,
we also validated our proposed method for segmenting
adult hippocampal subfields on a publicly available dataset.
Experimental results show that our proposed DUnet and
ResDUnet, respectively, improve the average Dice coefficient
by 2.1 and 2.5% for infant hippocampal subfield segmentation,
and 0.5 and 0.6% for adult hippocampal subfield segmentation,
compared to the classic 3D U-net (Çiçek et al., 2016). Our
proposed ResDUnet also outperforms both the state-of-the-
art ConvNet (Yu et al., 2017) and hippocampal subfield
segmentation method (HIPS) (Romero et al., 2017).

MATERIALS

Two image datasets were used for validating our method. The
first dataset is from BCP, which was funded by the National
Institutes of Health (NIH) as a component of the Lifespan
Human Connectome Project. The BCP aims to provide scientists
with unprecedented information about how the human brain
develops from birth through early childhood and will uncover
factors contributing to healthy brain development. For this
project, researchers are acquiring MRI scans (including T1- and
T2-weighted structural MRI, DTI, and rs-fMRI) of 500 typically
developing children, ages 0–5 years, over the course of 4 years.
In our experiment, 10 infant subjects (6 females/4 males) were
randomly selected, each with T1w and T2w images acquired at
12 months old with 3T Siemens Prisma MRI scanners at the
Biomedical Research Imaging Center (BRIC) at the University of
North Carolina at Chapel Hill. Table 1 lists the imaging protocol
for acquiring the T1w and T2w MR images. Five hippocampal
subfields were manually labeled for each subject by the consensus
of two neuroradiologists, including cornu ammonis sectors
1 (CA1), CA2/3, subiculum (SUB), CA4/dentate gyrus (DG),
and Uncus. All T1w and T2w images underwent intensity

inhomogeneity correction using the N3 bias field correction,
and T2w images were rigidly aligned with corresponding T1w
images. All images were aligned to a selected subject with
affine registration.

The second dataset is a publicly available dataset (https://
www.nitrc.org/projects/mni-hisub25), which contains 25 adult
subjects (31 ± 7 years, 12 males). Each subject consists of an
isotropic 3D-MPRAGE T1-weighted image (TR = 3,000ms;
TE = 4.32ms; TI = 1,500ms; flip angle = 7◦; matrix size
= 336 × 384; FOV = 201 × 229 mm2; 240 axial slices with
0.6mm slice thickness resulting in 0.6 × 0.6 × 0.6 mm3 voxels;
acquisition time = 16.48min), an anisotropic 2D T2-weighted
TSE image (TR = 10,810ms; TE = 81ms; flip angle = 119◦;
matrix size = 512 × 512; FOV = 203 × 203 mm2, 60 coronal
slices angled perpendicular to the hippocampal long axis, slice
thickness of 2mm, resulting in 0.4 × 0.4 × 2.0 mm3 voxels;
acquisition time = 5.47min), and a manually labeled image
for hippocampal subfields including CA1-3, SUB, and CA4/DG
(Kulaga-Yoskovitz et al., 2015). All T1w and T2w images
underwent automated correction for intensity non-uniformity
and intensity standardization. All images were linearly registered
to the MNI152 space and resampled to a resolution of 0.4×0.4×
0.4 mm3. Following the previous work (Romero et al., 2017), we
named this dataset as Kulaga-Yoskovitz dataset. Figure 1 shows
an example of T1w image and manual hippocampal subfield
segmentation from the BCP dataset and the Kulaga-Yoskovitz
dataset, respectively.

To facilitate the processing, we identified a bounding box that
is big enough to cover the hippocampus of unseen target subject
(Hao et al., 2014). In particular, for each subject in the BCP
dataset and the Kulaga-Yoskovitz dataset, we went through all
the training subjects to find the minimum and maximum x, y,
z positions of the hippocampus, and empirically add 32 voxels
in each direction as a bounding box to cover the hippocampus
and its surrounding tissues. This step was done separately for
these two datasets given the large hippocampus size differences
in infants and adults. Then, we cropped all images with the box
and applied a histogrammatching method to the cropped images
for obtaining similar intensity levels across all training subjects.
To leverage the limited data, we left-right flipped each training
image to double the number of training subjects.

METHODS

We propose a new FCN for hippocampal subfield segmentation.
The FCN based segmentation methods can implement dense
prediction by estimating the posterior probabilities for each
voxel. Given the posterior probability pk(x|θ) of voxel x
belonging to the kth category, where θ is the FCN model
parameters, the hippocampal subfield label of voxel x is
determined by

L(x) = argmaxk∈C pk (x|θ) ,

where C = {1, 2, . . . ,K}, and K is the number of categories. In
the remaining part of this section, we will introduce the details of
our proposed FCN architectures and its loss function.
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TABLE 1 | Imaging protocol for acquiring infant T1w and T2w MR images.

Matrix FOV Resolution mm3 FA TE TR Slices orientation AF/MB Time

T1w 320 × 320 256 × 256 0.8 × 0.8 × 0.8 8 2.24 2,400/1,060 208/Sag AF = 2 6:38

T2w 320 × 320 256 × 256 0.8 × 0.8 × 0.8 VAR 564 3,200 208/Sag AF = 2 5:57

FIGURE 1 | T1w image and manual segmentation of a representative subject from the BCP dataset (top row) and Kulaga-Yoskovitz dataset (bottom row),

respectively.

Dilated Dense Network
Recent 3D neural networks often use small convolutional kernels
with size 3 × 3 × 3 to reduce the number of parameters,
and enlarge the receptive field by alternating convolutions
and pooling operations to capture large image contexts (Çiçek
et al., 2016). This successive down-sampling process will
significantly reduce spatial resolution, which will lose detailed
image information. Recently, dilated convolutions were proposed
for semantic image segmentation (Liang-Chieh et al., 2015; Yu
and Koltun, 2015). By using the dilated convolutions, the feature
maps can be computed with a high spatial resolution, and the
size of the receptive field can be enlarged arbitrarily. Figure 2
illustrates the dilated convolutional kernels with different dilation
rates. Let F : Z

3→ R be a 3 dimensional discrete function,
and h : �r→ R be a discrete filter with a dilation rate l, where
�r = [−r, r]3

⋂

Z
3. The dilated convolution ∗l can be defined as

(Yu and Koltun, 2015),

(

F∗lh
) (

p
)

=
∑

s+lt=p

F (s) h (t) . (1)

Note that, when l = 1, the dilated convolution becomes the
normal convolution.

With the dilated convolutions, we design a dilated dense
network using dense connections (Huang et al., 2016), as
shown in Figure 3. In the dilated dense network, we use
dilated convolutions with different dilation rates to enlarge
the receptive field, and use dense connections to concatenate
all previous generated features to the current feature maps.
To avoid overfitting, dropout operations are used after each
3× 3× 3 convolution with dropout rate 0.5 (Srivastava et al.,
2014). Thus, the dilated dense network can capture contextual
image information while keeping high spatial resolution and
generate multi-scale image features. This dilated dense network
will be embedded in our proposed DUnet, as introduced in the
next subsection.

Dilated Dense U-Net
U-net (Ronneberger et al., 2015) consists of a contracting path to
extract abstract features and an expanding path to recover spatial
resolution. The features in the contracting path are concatenated
to the corresponding features in the expanding path to provide
the detailed image information that is lost during the successive
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FIGURE 2 | Illustration of dilated convolutional kernels: 1-dilated convolutional kernel (left); 2-dilated convolutional kernel (middle); 4-dilated convolutional kernel

(right).

FIGURE 3 | The structure of the dilated dense network. The number in each operation rectangle is the number of kernels. All operations are implemented in a 3D

manner, and “c” denotes the concatenation.

down-sampling steps. However, the level of features in the
contracting path is much lower than that in the expanding path.
It will not obtain the optimal results when directly concatenating
these features. To overcome this limitation, we embed the dilated
dense network in the U-net to obtain a new network (DUnet).
Figure 4 shows the structure of our proposed DUnet.

Same to U-net, the proposed DUnet consists of a contracting
path and an expanding path. The contracting path is built by
alternating two 3 × 3 × 3 convolutions and one 2 × 2 × 2 max
pooling operation with stride 2. The contracting path is followed
by two 3 × 3 × 3 convolutions. Correspondingly, the expanding
path is built by alternating one 4 × 4 × 4 deconvolution with
stride 2, and two 3 × 3 × 3 convolutions. The expanding path
is then followed by a 1 × 1 × 1 convolution, which outputs K
feature maps (K is the number of label categories including the
background). Each 3 × 3 × 3 convolution is followed by a batch
normalization layer and a rectified linear unit (ReLU). Different
from the original U-net, some padded convolution layers are also
used to maintain the spatial dimension.

The feature maps before the first pooling layer and the last
pooling layer are concatenated to the corresponding featuremaps
in the expanding path. The feature maps before the second
pooling layer are first input into the dilated dense network which
is introduced in the last subsection of this paper. Then, the
output features of the dilated dense network are concatenated
to the corresponding feature maps in the expanding path. The
dilated dense network can provide multi-scale features while
remaining high spatial resolution. Moreover, two different kinds

of features provided by the dilated dense network and the
contracting-expanding path are fused, providing more abundant
image information for dense prediction.

Residual Dilated Dense U-net
To further improve the performance, we use residual connections
in DUnet to promote the information flow within the network
(He et al., 2016a). Formally, the residual connection can be
expressed as:

xl = Hl

(

xl−1
)

+ xl−1,

where xl−1 and xl are the input and output of the lth unit,
and Hl(·) is a non-linear function which is used to learn the
residual xl − xl−1 of the lth unit. We group every pair of
convolutional layers with one residual connection along the
contracting path and the expanding path of DUnet, and obtain
the Residual DUnet (ResDUnet). Figure 5 shows the structure of
our proposed ResDUnet. The difference between ResDUnet and
DUnet is the use of residual connections in ResDUnet, which
connects two adjacent convolutions with an identity mapping
(or a 1 × 1 × 1 convolution if the number of feature maps is
not matched).

Loss Function
We train our models using Softmax loss (Gu et al., 2017):

LSoftmax = −

N
∑

i=1

K
∑

k=1

1
{

yi = k
}

log
ezk,i

∑K
j=1 e

zj,i
,
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FIGURE 4 | The structure of our proposed DUnet. The number in each operation rectangle is the number of kernels. All operations are implemented in a 3D manner.

FIGURE 5 | The structure of our proposed ResDUnet. The number in each operation rectangle is the number of kernels. “⊕” denotes the element-wise summation,

and all operations are implemented in a 3D manner.

where zk,i represents the kth output of the last network layer for
the ith voxel, yi ∈ {1, 2, . . . ,K} represents the corresponding
ground-truth label, K and N are the number of categories and

the number of voxels, respectively. The term e
zk,i

∑K
j=1 e

zj,i represents

the prediction probability for the kth class of the ith voxel, which
is computed by the Softmax function.

Evaluation Metrics
We evaluated the image segmentation results based on two types
of segmentation evaluation measures (Jafari-Khouzani et al.,
2011): Dice coefficient (Dice) and Average Symmetric Surface
Distance (ASSD). Dice is used to measure the relative volumetric
overlap between the automated segmentation and the manual
segmentation, and ASSD is used to measure the agreement

between segmentation boundaries. By denoting A as the manual
segmentation, B as the automated segmentation, and V(X) as
the volume of segmentation X, the two evaluation measures are
defined as:

Dice = 2
V(A ∩ B)

V (A) + V(B)
,

ASSD =
(

meane∈∂A
(

minf∈∂Bd
(

e, f
))

+meane∈∂B
(

minf∈∂Ad
(

e, f
)))

/2,

where ∂A denotes the boundary voxels of A, and d(·, ·) is the
Euclidian distance between two points.
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EXPERIMENTS AND RESULTS

Experimental Details
Five-fold cross validation was used in the experiment for the
BCP dataset. In each fold, we selected 7 subjects for training,
1 subject for validation, and 2 subjects for testing. Experiments
were performed using a NVIDIA Titan Xp with 12 GB memory.
Because of the restriction of limited training subjects and GPU
memory, we randomly extracted patches from each training
subject, instead of using the whole images as input for each
network. We extracted about 1,300 patches from each subject.
These patches were extracted as follows. First, we extracted
patches one by one with stride of 2 × 2 × 2. The extracted
patches that contain at least one hippocampal voxel were taken,
and were numbered as 1, 2,. . . , n. Then, these numbers were
randomly reordered. At last, we took the first half part of the
reordered patches as our training patches. The patch size was
optimally set to 24 × 24 × 24 by comparing the results obtained
by the baseline 3D U-net method with different patch sizes,
which is shown in Table 2. Since both T1w and T2w images
were available, we concatenated the corresponding T1w and T2w
image patches as input for each network. The networks were
trained by Adam method with a batch size of 5, which were
implemented with Caffe (Jia et al., 2014). The learning rates were
initially set to 0.0001 and were decreased by a factor of γ = 0.1
every 10,000 iterations. We used a weight decay of 0.0005 and
a momentum of 0.9 in all networks. The training process was
stopped after 60,000 iterations. For segmenting a testing image,
patches were extracted to feed into the trained models with an
overlapped sliding windows strategy. The patch size was set to
24 × 24 × 24 with stride of 8 × 8 × 8. We used a majority
voting strategy for the overlap regions to get the whole image
prediction. Note that we used the same hyper-parameters during
the 5-fold cross-validation.

As the networks are trained based on image patches extracted
around the hippocampus, the global spatial information of brain
structures may not be perfectly captured. Thus, the obtained
network models can well-recognize the hippocampal subfields
around the hippocampus, but cannot recognize those far away
from hippocampal region. For example, a patch in the caudate
(denoted by the pink circle in the left of Figure 6) may look
similar to the patches in the hippocampus, and will be classified

TABLE 2 | Mean (STD) values of Dice for each subfield segmentation using

different patch sizes (R×R×R) on the BCP dataset by 3D U-net.

R = 16 R = 24 R = 32

CA1 0.635 (0.066) 0.648 (0.078) 0.638 (0.107)

CA2/3 0.565 (0.071) 0.567 (0.082) 0.556 (0.099)

SUB 0.717 (0.038) 0.719 (0.080) 0.708 (0.123)

CA4/DG 0.711 (0.063) 0.709 (0.072) 0.706 (0.057)

Uncus 0.710 (0.034) 0.712 (0.050) 0.704 (0.069)

Average 0.668 0.671 0.662

Higher Dice values indicate better segmentation performance. The best results are shown

in bold.

to hippocampal subfields in the testing stage. As a result, there
are some isolated false positives outside the hippocampal region,
as shown in Figure 6. To remove these artifacts automatically,
our post-processing steps include searching the voxels of each
automated segmentation to find the non-zero neighbors of
current voxel, and to obtain several connected regions. Then, we
selected two regions with maximum volumes for the final left and
right hippocampal subfields.

Five-fold cross validation was also used in the Kulaga-
Yoskovitz dataset. In each fold, we selected 15 subjects for
training, 5 subjects for validation, and 5 subjects for testing. The
same experimental settings were used as the BCP dataset, except
that the patch size was set to 32 × 32 × 32 as the resolution
of images in this dataset is much higher, and the batch size
was set to 3 because of the GPU memory limit. The same post-
processing was used to remove isolated tiny blocks outside the
hippocampal region.

The Efficacy of Multi-Modality
In this subsection, we studied the efficacy of multi-modality by
comparing the segmentation results obtained using only single
modality images (i.e., T1w or T2w) and multi-modality images
(T1w+T2w), respectively. All experiments were carried out on
the BCP dataset with the same network architecture (ResDUnet)
and the same training strategies. Table 3 lists the Dice coefficients
of segmentation results using different imagemodalities. It shows
that training using multi-modality images can obtain better
results in the most subfields, compared with those using only
either T1w or T2w single-modality images. This demonstrates
that the network trained with multi-modality images can
generate more discriminative features, which improves the
performance of hippocampal subfield segmentation. From the
results, we also find that T1w images can provide more
useful information than T2w images for hippocampal subfield
segmentation on the BCP dataset. In some subfields, training
using only T1w images obtains similar or even a little better
segmentation results than those using multi-modality images.

Comparison With State-of-the-Art Methods
Our proposed method was also compared with two state-of-the-
art networks, namely, 3D U-net (Çiçek et al., 2016) and ConvNet
(Yu et al., 2017). The 3D U-net is extended from the previous
2D version (Ronneberger et al., 2015) into a 3D variant for
volumetric feature representation. For a fair comparison, the 3D

FIGURE 6 | An example of isolated tiny blocks, outside the hippocampal

region, appeared in the automated segmentation.
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TABLE 3 | Mean (STD) values of Dice for each subfield segmentation using

different modalities on the BCP dataset.

T1w T2w T1w+T2w

CA1 0.674 (0.044) 0.604 (0.142)*# 0.672 (0.050)

CA2/3 0.571 (0.069)* 0.546 (0.104)* 0.598 (0.041)

SUB 0.745 (0.032) 0.644 (0.223)*# 0.745 (0.051)

CA4/DG 0.723 (0.027) 0.662 (0.157)* 0.729 (0.032)

Uncus 0.725 (0.031) 0.645 (0.203)*# 0.736 (0.035)

Average 0.688 0.620 0.696

Higher Dice values indicate better segmentation performance. The best results are shown

in bold.

*Indicates that T1w + T2w achieves significant improvement over the corresponding

method, and # indicates that T1w achieves significant improvement over the

corresponding method in the Wilcoxon signed rank tests with p < 0.05.

U-net used in our experiments consists of three pooling layers
and three deconvolutional layers, which are the same as our
proposed DUnet. The only difference is that the dilated dense
network is used to fuse themiddle level features of the contracting
path with those of the expanding path in DUnet, instead of
directly concatenating them as in 3D U-net. ConvNet (Yu
et al., 2017) is a volumetric convolutional neural network with
mixed residual connections, which also consists of three pooling
layers and three deconvolutional layers. In ConvNet, residual
connections are used between the successive convolution layers
to form the residual blocks, and also between the feature maps of
contracting path and those of expanding path. Besides, ConvNet
(Yu et al., 2017) exploits a deep supervision mechanism to
accelerate its convergence speed. All these comparative networks
use Softmax loss as loss function, and the same post-processing
is used to remove the tiny isolated blocks of segmentation results
that appear outside of the hippocampal region.

Table 4 reports the Dice coefficients of the segmentation
results obtained by different networks on the BCP dataset. It
shows that our proposed DUnet outperforms 3D U-net (Çiçek
et al., 2016) in segmenting CA1, SUB, CA4/DG and Uncus, and
our proposed ResDUnet outperforms 3D U-net (Çiçek et al.,
2016) in segmenting CA1, CA2/3, SUB, and Uncus, according
to the Wilcoxon signed rank tests with p < 0.05. As can be
seen in the table, our proposed ResDUnet achieves the highest
Dice coefficient for the average of subfields. Table 5 reports the
ASSD coefficients of the segmentation results, which shows that
our proposed ResDUnet achieves the best ASSD coefficient for
the average of subfields. Figure 7 shows hippocampal subfield
segmentations of a randomly selected subject from the BCP
dataset, obtained by manual segmentation and four different
networks. It can be seen that our proposed ResDUnet achieves
the most accurate results.

Results on a Public Adult Dataset
Tables 6, 7 list the Dice and ASSD coefficients of the
segmentation results obtained by five different networks on the
Kulaga-Yoskovitz dataset. The results show that our proposed
DUnet outperforms 3D U-net (Çiçek et al., 2016) and ConvNet
(Yu et al., 2017) in segmenting CA1-3 and SUB, and our

proposed ResDUnet outperforms 3D U-net (Çiçek et al., 2016)
and ConvNet (Yu et al., 2017) in segmenting all subfields,
according to the Wilcoxon signed rank tests with p < 0.05.
Table 6 also lists the comparison of our proposed method with
the state-of-the-art hippocampal subfield segmentation method
(HIPS), which obtained the best segmentation results on the
Kulaga-Yoskovitz dataset so far (Romero et al., 2017). Note that,
for a fair comparison, we use the published results of HIPS as
reported in Romero et al. (2017). It shows that our proposed
DUnet and ResDUnet also outperform HIPS method, especially
for segmenting the CA4/DG subfield which is the most difficult
task (Dalton et al., 2017). Figure 8 shows hippocampal subfield
segmentations of a randomly selected subject from Kulaga-
Yoskovitz dataset, obtained by manual segmentation and four
different networks. It can be seen that our proposed DUnet and
ResDUnet achieve the most accurate results.

DISCUSSION

FCNs have achieved great success in the field of medical image
segmentation, which usually consist of a contracting path to
extract abstract features, and an expanding path to up-sample
the feature maps for dense prediction (Ronneberger et al., 2015;
Çiçek et al., 2016; Chen H. et al., 2017; Lian et al., 2018; Nie
et al., 2018). The detailed image information may be lost during
these contracting and expanding processes. The existing U-net-
like FCNs concatenate the feature maps in the contracting path to
the corresponding feature maps in the expanding path to recover
the lost image information. However, the levels of features in the
contracting path are much lower than those in the expanding
path. It may not obtain the optimal results when directly
concatenating these features. To overcome this limitation and
fully exploit multi-level image features, we proposed a new FCN
by exploiting a dilated dense network to connect the features of
the contracting path and the features of the expanding path. The
dilated dense network uses the dilated convolutions to extract
contextual features without reducing spatial resolution, and it
also employs dense connections to aggregate multi-scale features.
Thus, multi-scale features can be generated from the dilated
dense network, which are fused with the corresponding features
in the expanding path. To avoid overfitting, dropout operations
are also used in the dilated dense network (Srivastava et al., 2014).

By using the dilated dense network to connect the feature
maps in the contracting path and expanding path, our
proposed method provides a way to fuse the finer-grained
low-level features in the contracting path and the coarse
high-level features in the expanding path. Moreover, the
multi-scale features extracted by the dilated dense network
are useful for segmenting multi-structures with different
shapes and different scales. To further promote information
propagation and accelerate the convergence, we introduce
residual connections to group every pair of convolutional layers
(He et al., 2016a,b).

Different from natural images, many imaging modalities
are 3D in the field of medical image analysis. In the past few
years, a lot of effort has been dedicated to exploit CNNs to
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TABLE 4 | Mean (STD) values of Dice for each subfield segmentation by different networks on the BCP dataset.

3D U-net (Çiçek et al., 2016) ConvNet (Yu et al., 2017) DUnet (proposed) ResDUnet (proposed)

CA1 0.648 (0.078)*# 0.670 (0.046) 0.665 (0.061) 0.672 (0.050)

CA2/3 0.567 (0.082)* 0.584 (0.038)* 0.589 (0.045)* 0.598 (0.041)

SUB 0.719 (0.080)*# 0.737 (0.045)* 0.742 (0.052) 0.745 (0.051)

CA4/DG 0.709 (0.072)# 0.726 (0.030) 0.733 (0.028) 0.729 (0.032)

Uncus 0.712 (0.050)*# 0.721 (0.035) 0.733 (0.034) 0.736 (0.035)

Average 0.671 0.688 0.692 0.696

Higher Dice values indicate better segmentation performance. The best results are shown in bold.

*Indicates that ResDUnet achieves significant improvement over the corresponding method, and # indicates that DUnet achieves significant improvement over the corresponding method

in the Wilcoxon signed rank tests with p < 0.05.

TABLE 5 | Mean (STD) values of ASSD for each subfield segmentation by different networks on the BCP dataset.

3D U-net (Çiçek et al., 2016) ConvNet (Yu et al., 2017) DUnet (proposed) ResDUnet (proposed)

CA1 0.175 (0.089)* 0.146 (0.033) 0.158 (0.048) 0.147 (0.034)

CA2/3 0.211 (0.104)* 0.175 (0.020) 0.178 (0.028)* 0.170 (0.025)

SUB 0.153 (0.073)* 0.132 (0.030) 0.136 (0.040) 0.134 (0.039)

CA4/DG 0.157 (0.080) 0.133 (0.019) 0.134 (0.019) 0.133 (0.020)

Uncus 0.179 (0.055)* 0.168 (0.038) 0.170 (0.041) 0.167 (0.044)

Average 0.175 0.151 0.155 0.150

Smaller ASSD values indicate better segmentation performance. The best results are shown in bold.

*Indicates that ResDUnet achieves significant improvement over the corresponding method in the Wilcoxon signed rank tests with p < 0.05.

FIGURE 7 | Hippocampal subfield segmentations of a randomly selected subject from the BCP dataset, obtained by manual segmentation, and four different

networks.

process volumetric data. Some of them applied 2D CNNs to
each slice of volumetric images (Prasoon et al., 2013; Setio
et al., 2016; Chen Y. et al., 2017). To effectively make full use
of the 3D spatial information, recent studies applied 3D CNNs
to deal with volumetric images (Çiçek et al., 2016; Chen H.
et al., 2017;Nie et al., 2018; Wachinger et al., 2018). Following

these methods, our proposed FCNs were also implemented
in a 3D manner. As the number of our training subjects is
limited, we randomly extracted patches from each training
subject, instead of using the whole image as the input for
each network. The patch size was set to 24 × 24 × 24 for
the BCP dataset and 32× 32× 32 for Kulaga-Yoskovitz
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TABLE 6 | Mean (STD) values of Dice for each subfield segmentation by five different methods on the KULAGA-YOSKOVITZ dataset.

HIPS (Romero

et al., 2017)

3D U-net (Çiçek

et al., 2016)

ConvNet (Yu

et al., 2017)

DUnet

(proposed)

ResDUnet

(proposed)

CA1-3 0.916 (0.015) 0.916 (0.011)*# 0.918 (0.010)*# 0.919 (0.011) 0.920 (0.011)

CA4/ DG 0.862 (0.034) 0.871 (0.021)* 0.870 (0.016)* 0.875 (0.020)* 0.879 (0.020)

SUB 0.886 (0.021) 0.883 (0.016)*# 0.887 (0.018)*# 0.890 (0.016) 0.888 (0.018)#

Average 0.888 0.890 0.892 0.895 0.896

Higher Dice values indicate better segmentation performance. Best results are shown in bold.

*Indicates that ResDUnet achieves significant improvement over the corresponding method, and # indicates that DUnet achieves significant improvement over the corresponding method

in the Wilcoxon signed rank tests with p < 0.05.

TABLE 7 | Mean (STD) values of ASSD for each subfield segmentation by four different networks on the KULAGA-YOSKOVITZ dataset.

3D U-net (Çiçek

et al., 2016)

ConvNet (Yu et al.,

2017)

DUnet (proposed) ResDUnet (proposed)

CA1-3 0.065 (0.011)*# 0.064 (0.009)*# 0.062 (0.009) 0.062 (0.010)

CA4/DG 0.077 (0.014)* 0.079 (0.015)* 0.075 (0.015)* 0.072 (0.014)

SUB 0.069 (0.013)*# 0.066 (0.013)*# 0.064 (0.012) 0.065 (0.013)#

Average 0.070 0.070 0.067 0.066

Smaller ASSD values indicate better segmentation performance. The best results are shown in bold.

*Indicates that ResDUnet achieves significant improvement over the corresponding method, and # indicates that DUnet achieves significant improvement over the corresponding method

in the Wilcoxon signed rank tests with p < 0.05.

FIGURE 8 | Hippocampal subfield segmentations of a randomly selected subject from the Kulaga-Yoskovitz dataset, obtained by manual segmentation, and four

different networks.

dataset, considering different image resolutions in these
two datasets.

As both T1w and T2w images were available for each
subject, we concatenated the extracted T1w and T2w image
patches as input to the networks. Compared with single

modality data, multi-modality MR images can provide
complementary contextual information, which contributes
to better segmentation performance. From our experiments, we
find that training using multi-modality images can obtain better
results than using only single-modality images, and we also find
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that T1w images can provide more discriminative information
than T2w images for hippocampal subfield segmentation.

Experimental results on the BCP dataset show that our
proposed DUnet and ResDUnet improve the average Dice
coefficient by 2.1 and 2.5%, respectively, for infant hippocampal
subfield segmentation, compared with the 3D U-net (Çiçek
et al., 2016). To further validate the effectiveness, we also
applied our proposed method for adult hippocampal subfield
segmentation based on a publicly available dataset. The results
show that our proposed DUnet and ResDUnet improve the
average Dice coefficients of 0.5 and 0.6%, respectively, compared
with the 3D U-net (Çiçek et al., 2016). The improvement of our
proposed ResDUnet method on both infant dataset and adult
dataset comes from (1) multi-scale image features aggregation
for distinguishing different hippocampal subfields; (2) utilization
of the embedded dilated dense network for effectively fusing
the low-level features in the contracting path and the high-
level features in the expanding path; and (3) utilization of
residual connections for promoting information propagation and
accelerating the convergence.

However, the proposed method was mainly designed for
infant hippocampal subfield segmentation on the BCP dataset.
First, the embedded dilated dense network can provide multi-
scale image features, which are especially useful for segmenting
infant hippocampal subfields, since tissue contrast between infant
hippocampal subfields are much blurrier than in adults. Second,
the task of infant hippocampal subfield segmentation on the BCP
dataset is to segment hippocampus into five parts (CA1, CA2/3,
SUB, CA4/ DG, and Uncus), while there are only three parts
(CA1-3, SUB, and CA4/DG) on the Kulaga-Yoskovitz dataset.
Therefore, the segmented hippocampal subfields in the infant
subjects are much smaller than those of the adult subjects. In
our proposed network, the embedded dilated dense network can
capture contextual image information without losing detailed
image information, which is extremely useful for segmenting
small structures.

CONCLUSION

In this paper, we have proposed a new FCN by integrating
U-net and dilated dense network for hippocampal
subfield segmentation. Our proposed method can
avoid losing the detailed image information in the
successive down-sampling steps, effectively fuse the
low-level features of the contracting path with the
coarse high-level features of the expanding path, and
generate multi-scale image features. Experimental results
show that our proposed method outperforms the
state-of-the-art methods.
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