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Abstract. In the present study, high order compact finite difference methods are used to solve one-dimensional Bratu-
type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical
order of the methods are consistent with their numerical rate of convergence. The maximum absolute errors in the
solution at grid points are calculated and it is shown that the presented methods are efficient and applicable for lower
and upper solutions.
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1. Introduction
In this study, the following one-dimensional classical nonlinear Bratu-type equation is considered:
u'(x) +2e*® =0, 0<x<1, 1>0, )
subjecting to the homogeneous Dirichlet boundary conditions as
u(0) = u(1) = 0. 2)
for problem (1) with boundary conditions (2), the exact solution is given by [1-4]

cosh(% (x —0.5))

u(x) =—-21In ]
cosh(z)

, 3

where 0 satisfies 8 = V21 cosh(%). Bratu problem has no solution, one solution, and two solutions when 1 > A.,4 = 4., and
A < A, respectively. The critical value A, = 3.513830719 can be computed from 1 = %\/2_/1C sinh(%). The exact solution given
by (3) is symmetric about x = %

The Bratu problem has a scientific importance and several chemical and physical processes in science and engineering can

be modelled using Bratu-type equation. The Bratu-type equation is also used in a large variety of applications such as the
modelling of thermal reaction process in combustible non-deformable materials, including the solid fuel ignition model, the
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High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations 92

electrospinning process for the production of ultra-fine polymer fibers, the modelling of some chemical reaction-diffusion,
questions in geometry and relativity about the Chandrasekhar model, radiative heat transfer, and nanotechnology [5-13]. The
Bratu problem simulates a thermal reaction process in a rigid material where the process depends on the balance between the
chemically generated heat and the heat transferred by conduction.

Several numerical methods have been developed to approximate the solution of Bratu-type equation, but most of these
methods converge only to the lower solution. A Laplace transform decomposition numerical algorithm was proposed in Ref.
[14]. Remero [15] introduced the efficient fourth-order iterative method for the upper and lower solution. Finite difference
methods were studied in Refs. [16] and [17]. For instance in Ref. [16] and based on the Newton-Raphson-Kantorovich
approximation method, an iterative finite difference scheme was proposed for the lower solution.For lower and upper solutions,
a nonstandard finite difference method with a simple sinusoidal starting function was recommended. Ragb and et al. proposed a
numerical scheme for the lower and upper solution [18] based on the differential quadrature methods. Also, Caglar et al.
suggested the B-spline method [19]. The non-polynomial spline method was applied in Ref. [20] and recently, the block Nystrom
method to obtain the lower solution was introduced [21]. The other methods that were applied for Bratu problem are the
Chebyshev polynomial expansions method [4], the multigrid-based methods [22], the Lie group shooting method [23], the
perturbation-iteration method [24], the decomposition method [15], the differential transformation method [25] and the modified
wavelet Galerkin method [26].

The main motive of this study is to obtain numerical solutions for the one-dimensional Bratu problem using high order
compact finite difference methods that converge to both upper and lower solutions.

The present study is organized as follows: In section 2, the compact finite difference method is applied for solving Egs. (1)
and (2) and its convergence is discussed. Then we try to improve the accuracy of method. In section 3, the numerical results of
applying the methods of this study are presented. Finally, the conclusion is drawn in Section 4.

2. Numerical Method

To approximate the solution, first, the range of 0 < x < 1 is subdivided into N subintervals of width h = % ,and x; = ih,i =
0, ..., N is used to denote the points of subdivision. Moreover, the quantity u; represents the numerical solution at X;.

2.1 Compact finite difference method
The standard compact finite difference formula for the first derivatives is

3
u'l-_l + 4u'i + u'i+1 = E (—ui_l + ui+1), i= 2, ,N - 2, (4)

where the truncation error for equation (4) is O(h*). The coefficients of the standard compact finite difference formula are
determined by Taylor expansion so that the formula can yield high accuracy. For more details on how to generate the compact
finite difference formula, refer to [24, 27, 28].

The standard fourth-order compact finite difference formula (4) is used for interior points. Since the boundary conditions are
known, it is required to adjust the compact finite difference formula to the boundary points. For i = 1, we use

L, 111 4 1
4u1 +u2=ﬁ<_ﬁu0_4u1+6u2_§u3 +Zu4), (5)
and when i = N — 1, we use
, , 1/ 1 4 11
u N-2 + 4’u N-1 = E(_ZuN_4_ + §uN_3 - 6uN_2 + 4'uN_1 + EuN). (6)

Equations (5) and (6) have the accuracy of O (h*). Therefore, the following system is obtained:

(w2, 1711 4 1
4u1+u2=_< —4u1+6u2——u3+—u4>,

R\ 12 337
r r ! 3 .
wigt4u;Hu, = E(_ui—l + Ujy1), i=2,.,N=-2 (7
, , 1/ 1 4 11
u N-2 + 4’u N-1 = E(_ZuN_4_ + §uN_3 - 6uN_2 + 4'uN_1 + EuN).

The system (7) can be written in a matrix form as:

AU’ = B,U + H,, (®)
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—4 -4 1
/? 2 - 50 0\
410 0 -1 01 0 0 :
141 3| 0 -1 010 o|
Al =]0 0 'Bl = EI I ,
: 1 4 1 | : 0 -1 0 1 O |
0 . 0 1 4‘ (N 1)X(N 1) \ O 0 _1 0 1 /
0 -1 f 4
9 (N-1)x(N-1)

u’l ul
u', uz
v=| | ,

) )
U N-1/ (N-1)x1 (N-1)x1

Based on the boundary condition (2), uy = uy = 0, therefore, H; = 0.

and H1—1—h|\ P

Lemma 2.1. /29] The coefficient matrix A, is invertible.
According to the above-mentioned lemma, U’ = A71B; U. Similarly, for the second derivatives, the following finite difference

schemes are obtained:

12
14uy’ — 5uf + 4uf —uy = 7 (uo — 2uqy + uy),
12
L+ 10w +ul, = v (Wig — 2u; + Ujyq), i=2,..,N—=2, ©)
n n n 12
(—uN-4 +4uy_3 —Suy_, + 1duy 4 = 5 (uy_y — 2uy_q1 + uy).
All the above-mentioned relations have fourth order accuracy. The matrix form for Eq. (9) is
AzU” = Bzu + Hz, (10)
where
14 -5 4 0
/110100 0\ -2 ...0
|011010...0| 121—2
A, =] R I .Bzzh_2| 0 - "-0 | )
| 011010| \ 1—21/
\ 0 01 10 1 / 0 .. 01 =2/ w_pxw-1)
0 0 _1 4 —5 14‘ (N—I)X(N—l)
uy uy Up
U, uy . 0
U= : , U’ = : andH2=h—2 :
Uy-2 Uy_p 0
N1/ g Un-1/ (y-1yx1 UN/ (n-1yxa
Again for boundary condition (2), we have H, = 0.
2.2 Compact finite difference method for Bratu-type equations
By inserting the relation u;’ = —Ae™t in the system (9), the following nonlinear system is obtained:
—A(14e%1 — 5e¥2 4 4e¥s — et4) = ﬁ(—Zu1 +u,),
12
—A(e%i-1 + 10e%i 4 eti+1) = ﬁ(ui_l —2u;+ujyq), L=2,..,N—-2, (11)

12
| —A(—e"N=* + 4e™N-3 — Se'N-2 + 14e¥N-1) = F (Uy_z — 2Upy_1)-
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This technique transforms the problem into a system of nonlinear equations and the resulting nonlinear system can be solved by
using an appropriate nonlinear solver. This nonlinear system can be written as

1
—1A,eY = MoU, (12)

where eV = [e*1, ..., e"N-1]T and

12 —24 12 :
\z 12 —24 12 /
0 .. 012 =24 / y_pxw-1)
where ||Mj||e < c and c is a fixed number. Next, the convergence analysis is going to be conducted. For this purpose, let U =

det(®)
eax X = xi}andE =

-24 12 0 .. 0\
I

[u(xy), ..., u(xy—1)]" be the vector of exact solution . Moreover, consider ||. || as ||. ||co, § = max 1{
i=1,.., -
U-U.

Theorem 2.2. Let U = [u(xy), ..., u(xy_1)]" and U = [uy, ..., uy_,] The the vectors of exact solution of the boundary-value
problem (1), (2), and the numerical solution obtained by solving the nonlinear system (12), respectively. Then, provided
ARZs|[MG L[| ALl < 1, we have

IEI < 0(h™). (13)
Proof. According to Eq. (12),
M0U+hZAAzeU =6: (14)
and for the exact solution,
M()U + hz)kAzeU = T, (15)
where
hﬁ
T = S [=19u® ), w6 (1), o u® (), =190 Gy, (16)

is the vector of local truncation error. By using Eqs. (14) and (15),
Mo(U — U) + h2AA,(e" —eY) =T,

(MO + Athzl)E = T,
where

E=0-UeV —eY = JE,
u(x)
and | = diag{ aeax x=x;,i=1,..,N— 1} is a diagonal matrix of order N — 1. Now if AhZs||My2|[||4,]l < 1, then (I+
h?AMy1A,]) is invertible and

E = (I + h2AM A, )" IMy T,
IEN < 1+ h2AMg A~ MG HHITII.
It follows that

[IMg Il
1 — Ah?|IMg 1A I

IEN < (17)

From Eq. (16), we have
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T|| < 3 18
IT < 20 (18)
- 6
where Mg [Psqfasx1|u (f)|.
. 1 9™ .
According to Eqgs. (17), (18), Mgl < ¢, [l <5 = max 1{ X = xz} and ||A, ]| < 24, one can obtain
i=1,.., -
h®M,c 0(h®
IE] < of 90U _ e,
20(1 — 24Ah%¢cs)  0(h?)
O

2.3 Fifth-order compact finite difference method for the Bratu-type equations

In this section, we try to improve the results of the pervious method by applying the compact finite difference method. The
system of equations (9) are considered and the sides of the equations are extended by using the Taylor expansion at point x;, i =
1, ..., N — 1. Therefore, the following system is obtained:

(

j 14uy —5uy +4uy —uw, + 17, = = (U — 2uy +uy),

1
h?

" " " 1 . (19)
g + 10w +uhy + 17 = ﬁ(ui—l = 2u; + Uipq), i=2.,N=-2

12
l—ul’\}_4 +4uy_s —Suy, + 14uyy + Ty = " (Uy-2 — 2uy-1 + uy),

where
19
_ (6)
T, = —%h‘*ul + O(hs),
1
T = %h”‘ul@ +0(h®, i=2,..,N-2 (20)
19
_ (6
TN—I - _%h‘luN_l + O(hs).
Now, ui(k), k = 3,4,5,6 can be obtained with a derivative from u;’ = —Aei as follows:
uy” =,

4 " ’ "
uLF D= )+ W)y,

5 |7 I i
uE ) = aul(ul)? + (u)ul,

u® = 4)’ + 1)) + ()]

@1

Therefore, the following system is obtained:
12

19
14uy’ — 5uf + 4uf —uy — %h‘*(ll(u{ui’ 244w+ WD) = e (—2u; +uy),

n n n 1 1,1 n ! n 12
ufly + 10u) +ujl, + %h“(ll(uiui )2+ 4w+ (w)htu) = F(ui_l = 2u; + Ujyq),
{ i=2..,N-2
" " " " 19 4 ! " 2 " 3 ! 4. .11
—uUy_q4 +4uy_3 — Suy_, + 14u1v—1_ﬁh (11(uy—_quy-1)* + 4(uy_1)® + (uy_1)*uy_4

12
= ﬁ(uzv—z — 2uy-_q +uy). (22)

(6)

By replacing u;" = —Aeiinu; ~, it can be written as:
u® = 1122 (e)2 (u))? — 423(e™)3 — A(u))*e", (23)
Finally, the following nonlinear system is obtained:
1
—AAyeY = 7z MU + h*CU®, (24)
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where
19 00 0
50
0 ! 0
20
cC=1]0 DU 0 ,
0 ! 0
20
0 00 19
20 7 (v-px(n-1)
and
(6) U1, 71\2 u1y3 U1 ()4
' (e“1u}) (e"1) e"1(uy)
u® = : |=1122 : — 423 : -1 : . (25)
u®, (e*N-1uy_;)? (e*n-1)3 e*N=1 (uy_y)*

For the convergence analysis of the above-mentioned method, the first-order derivative error is obtained in the following lemma:

Lemma 2.3. Let U = [u(xy), ..., u(xy_1)]" and U = [uy, ..., uy_1] T be the vectors of exact solution of the problem (1) with the
boundary condition (2) and the numerical solution obtained by solving the nonlinear system (8), respectively. If we let E' =
U' —U', then we have

IE'Il < O(R®). (26)

Proof. According to Eq. (8), one can conclude
AU = B,U, (27)

and for the exact solution, it can be written as
AU =B U+T,, (28)

where T; = 0(h*) is the vector of local truncation error. By using Eqgs. (27) and (28), one can drive
Al(U’_U,):Bl(U_ U)+T1, AlElzBlE‘l'Tl.

Therefore,
E' = AT'B.E + ATy,

NEI < AT HIBLNEN + NATHIITL = 0(R=H)O(R*) + 0(h*) = 0(R%).
O

Theorem 2.4. Let U = [u(x;), ..., u(xy_)]" and U = [ug, ..., uy_1] T be the vectors of exact solution of the boundary-value
problem (1), (2), and the numerical solution obtained by solving the nonlinear system (24), respectively. Then, provided
[IAR2MG1A,] + ROMGIC M, + h®My1CM,AT B, || < 1, we have

IEIl < 0(h®), (29)
where

M; = diag{224?e?Vi(U})? — 1223e3Yi — 2eVi(U))*},
M, = diag{222%e?ViU} — 42eVi(U})*} and E=U-U.

Proof. By using the relation Eq. (23), one can obtain:

ui(6) _ Ui(ﬁ) — 1112(621”(11;)2 _ eZUi(UiI)Z) — 423 (e3ui — g3Ui) — l(e“i(u{)“ _ eUi(U{)4)

= 1122(2e?Vi(U}))%E; + 2e?YViU/E]) — 423(3e3ViE) — A(eVi(U)*E; + 4eYi(U))3E))
e @@ Journal of Applied and Computational Mechanics, Vol. 5, No. 1, (2019), 91-102
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= (222%e?Vi(U))? — 1223e3Vi — 2eVi(UDME; + (224%e?ViU] — 42eVi(U])?)E],
where E; = u; — U; and E] = uj — U;. By considering M; and M,, we have
u® —ul® = MyE + M,E'. (30)
On the other hand, according to Eq. (24), it can be driven as
h?A4,eV + MU + heCU® = 0, (31)
and for the exact solution, we have
h?1A,eV + MyU + hCU® = Th?, (32)

where the vector U = u(x;),i = 1,..., N — 1is the exact solution and T = O(h®) is the local truncation error. By using Eqs. (31)
and (32) the following relation is obtained

h224,(e¥ — V) + Mo(U — U) + hoC(U©® — U©®) = Th?,

9eu®)
ox

where e? — eV = JE, and | = diag{

x=x;,i=1,..,N— 1} is a diagonal matrix of order N — 1. Therefore,
hzlAz_]E + M()E + h6C(M1E + MzE,) = Thz. (33)
By replacing E' = A7'B,E + A7T, in Eq. (33), one can conclude

(h?AA,] + h®CM, + h®CM,A7 B, + M,)E = Th? — hSCM,AT'T,, or

My(I + h*AMg1A,] + hOMGICM, + h®My1CM,AT B,)E = Th? — h®CM,ATT,;.

Now, if [[Ah2MG1A,] + RMG CM, + h® My CM,AT B, || < 1, then, (I + h?AMG*A,] + h®Mg*CM, + h®My*CM,AT*B,) is
invertible and

M5 ICRZITI + RENCIHIM INIAT T 1D _ 0@

IEN < 2 -1 6N -1 6|1 -1 = 2
1—h22lIMg A ]|l — hO|IMg *CM, || — hS[IMg *CM AT By |l O(h?)

= 0(h®).

O
2.4 Sixth-order compact finite difference method for the Bratu-type equation

In this section, the compact finite difference method of the sixth order is obtained for the Bratu problem. The system of linear
Egs. (9) is considered and sentences to the seventh derivative of the Taylor expansion are added at point x;,i =1,..., N — 1
relative to h. For inner points x;,i = 2, ..., N — 2, the seventh derivative is deleted. Therefore, the following relations are obtained

14uy —5uf +4uf —uy + 1, =

n n n 12 .
u; , + 10w +uj + 1 = ﬁ(ui_l —2u;+uyyq), i=2,.,N-2 (34)

12
k_ull\;_‘l_ + 4‘u1,\;_3 - 5u1,\;_2 + 14‘u1,\;_1 + TN_]_ = ﬁ(ulv_z - ZuN_l + uN),

2 (ug — 2uq + uy),

where

19
(v, = —5ghu” b + o),

1

T = %mug@ +0(h®, i=2,.,N-2 (35)
I 19
ltv-1 = =55 rul? |+ hul’, + 0(h®).
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Therefore, the following system is obtained:

19 12
'(14u1’ —5uy +4uf —uy — 20 h4u§6) - h5u§7) =z (—2u; +uy),
é " " " 1 4. (6) 12 .
u;_, + 10w +uilq + %h u; = ﬁ(ui_l = 2u; + Ujyq), i=2,.,N-2 (36)

" " " " 19 4, (6) 5.,(7) 12
_uN_4 + 4’uN_3 - 5uN_2 + 14uN_1_%h uN_l + h uN_l = ﬁ(uN_z - ZuN_l).

Now, ul.m is obtained as
w” = 34uj(u))? + 26w (w)? + w)uy, (37)
. 0wy (D)
by replacing u;' = —Ae*t inu; ",
ulm = 26A%(e")%(u})® — 3423 (e*)3u] — Aeti(u))®. (38)
Finally, by replacing u;’ = —Ae™i in the system (36), the following nonlinear system is obtained:
1
—AAyeY = 7z MoU + h*cU® + DU, (39)
where
-100 .. 0
000 :
D=|0 =~ ~ -~ 0]
\ ; 000 /
0 ..001 (N-D)x(N-1)
and
uy” (e")?(w)? (e")%u; et (up)®
UMD = : |=262° : — 3423 : -2 : (40)
u?, (e"N-1)? (uy-1)° (e*N-1)%uy 4 N1 (uy_y)°

Theorem 2.5. Let U = [u(xy), ..., u(xy_1)]" and U = [uy, ..., uy_,] The the vectors of exact solution of the boundary-value
problem (1), (2), and numerical solution obtained by solving the nonlinear system (39), respectively. Then provided
[IAR2MGtA,] + ROMGIC M, + h® My 1CM,AT B, + K’ Mg DN, + h’ My 'DN,AT B, || < 1, we have

IE]| < O(h®), (41)
where

(M, = diag{2222e2Vi(U})? — 122%e3Vi — 2eVi(UD*},
M, = diag{222?e?ViU} — 42eYi(U})3},
N, = diag{52A2e2Vi(U})® — 10223e3ViU} — 2eVi(U})"},
\N, = diag{7822e2Vi(U})? — 3423e3Vi — 5)eVi(U))*} and E = U — U.

Proof. The proof is similar to that of theorem 2.4.

3. Numerical results

In this section, the numerical results of the new proposed method are presented for various values of A and N. By adopting a
simple approach, similar to what used by Body [4], it was found that it is appropriate to consider uy(x) = asin(mx) as initial
guess; because it satisfies the boundary conditions. The upper and lower numerical solutions of the systems (12), (24), and (39)
were compared with the exact solution to the boundary-value problem (1) and (2) for the values of A = 0.5,1,2,3,3.51and N =
10, 20,40, 80 and the maximum error was calculated. Finally, the numerical rate of convergence using the following formula
was calculated:

& @@ Journal of Applied and Computational Mechanics, Vol. 5, No. 1, (2019), 91-102
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ROC =log, (

Error?

5

Errorh

where Error” is the error obtained using the step size h. Tables 1 and 2 explain the maximum error and the rate of convergence
of the upper and lower solutions for the Bratu problem using the method (12) versus various A and N, respectively. Also Tables
3 and 4 show the maximum error and the rate of convergence of the upper and lower solutions for the Bratu problem using the
method (24) versus various A and N, respectively. In Tables 5 and 6 one can see the maximum error and the rate of convergence
of the upper and lower solutions for the Bratu problem using the method (39) versus various A and N, respectively. In Tables 7
and 8, the absolute errors between lower solutions of method (39) for N = 10 are compared with the Lie-group shooting, the
Laplace, the B-spline, and the decomposition methods. Moreover, the computed and exact solutions of Bratu problem for A =
0.0001 are compared in Fig. 1 (lower solution) and Fig. 2 (upper solution). The Bifurcated nature of the computed solution to
Bratu problem for different values of 1 € (0,3.513830719] is plotted in Figure 3, for all values of A, N is 20. Finally, the absolute
errors between lower solutions of method (24) for N = 10 are compared with the Lie-group shooting and the B-spline methods

in Table 9.
Table 1. Observed absolute error and ROC of upper solution for method (12)
A N MaxError ROC A N MaxError ROC
10 3.72x1073 - 10 1.56x 1073 -
20 1.65x107* 449 20 8.11x107° 4.26
0.5 40 1.03x1075 4.00 1 40 514x107% 3.98
80 6.41x1077 4.00 80 3.22x1077 399
10 214x1073 - 10 2.23x1073 -
20 3.16x107°  6.08 20 225%107°  6.63
2 40 199x107¢ 3.98 3 40 1.02x107°% 4.46
80 1.26x1077 398 80 6.40x107% 399
10 787x103% - 20 1.63x10* 559
351 40 593x107% 478 351 80 3.22x1077 420
Table 2. Observed absolute error and ROC of lower solution for method (12)
A N MaxError ROC A N MaxError ROC
10 3.05x 1078 - 10 231x1077 -
20 1.36x107° 449 20 1.54x107%  3.90
0.5 40 112x1071° 3.60 1 40 113x107° 3.77
80 736x107% 392 80 7.15x1071* 398
10 1.67x107° - 10 597x1075 -
20 2.63x 1077 2.67 20 3.11x10°° 4.26
2 40 1.58x107% 405 3 40 1.47x1077  4.39
80 9.58x107° 404 80 840x107° 4.13
10 595x1073 - 20 1.38x107* 542
351 40 522x10°°% 472 351 80 287x1077 419
Table 3. Observed absolute error and ROC of upper solution for method (24)
A N MaxError ROC A N MaxError ROC
10 1.26x1073 - 10 290x 1073 -
20 2.22x10°5 5.83 20 7.59x10°° 8.57
0.5 40 127x1077 744 1 40 690x107% 6.78
80 1.47x107° 643 80 6.24x1071° 6,79
10 2.70x 1073 - 10 1.47x1073 -
20 4.74%x107%  9.15 20 834x107% 7.45
2 40 9.65x107° 894 3 40 411x107%  7.66
80 1.29x107° 622 80 2.50x107° 7.66
10 7.61x107* - 20 2.40x 1075 4.98
351 40 1.84x107 703 351 80 133x10° 7.1
Table 4. Observed absolute error and ROC of lower solution for method (24)
A N MaxError ROC A N MaxError ROC
10 7.17x107° - 10 1.39x1077 -
20 1.29x 107 5380 20 1.14x107° 6.92
0.5 40 6.63x1071 7.60 1 40 9.18x 1072  6.96
80 4.52x107* 7.20 80 7.30x107 697
10 3.67x10°° - 10 4.11x107° -
20 231x107® 7.31 20 850x107% 891
2 40 1.59x1071 718 3 40 847x1071 997
80 1.08x107'2 720 80 234x107'?2 517
10 2.80x107° - 20 1.57x107° 0.83
351 40 132x1077 689 351 80 9.78x107° 707
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Fig. 1. Comparison of u(x) and exact solution of lower solutions for 2 = 0.0001 of method (39)

Table 5. Observed absolute error and ROC of upper solution for method (39)

A N MaxError ROC A N MaxError ROC
10 3.98x 1073 - 10 3.67x1073 -
20 7.69%x107¢ 9.0l 20 2.89x10°° 10.30

05 40 9.79x107% 6.29 1 40 3.27x 1078 6.46
80 1.64x10™° 590 80 5.44x1071% 591

10 193x1073 - 10 238x107* -
20 4.00x107¢ 891 20 264x107°  6.48
2 40 135x107% 8.16 3 40 9.42x107° 8.13
80 1.29x10710  6.75 80 4.41x107 773

10 230x1073 - 20 471x1077 1225
351 40 556x107° 640 3.51 80 9.83x107'2 9.14

Table 6. Observed absolute error and ROC of lower solution for method (39)
A N MaxError ROC A N MaxError ROC

10 191x107° - 10 6.87x107° -
20 2.57x107'2 9,53 20 232x107 820
0.5 40 650x1071% 8.62 1 40 3.65x1071 599
80 1.98x1071% 503 80 4.69x107% 6.28
10 5.88x1077 - 10 257x107° -
20 3.80x107° 7.27 20 8.81x1078 8.18
2 40 226x1071t  7.39 3 40 3.44x1071°  8.00
80 1.65x1071%  7.09 80 2.24x107'%2 726
10 194x1073 - 20 1.74x107% 10.12

351 40 9.17x107'° 10.89 3.51 80 2.88x107'* 5.00

upper solution
o]
T

0 L L . L
0 0.2 0.4 0.6 0.8 1
X

Fig. 2. Comparison of u(x) and exact solution of upper solutions for 2 = 0.0001 of method (39)
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Table 7. Comparison of the absolute error of different methods for 1 = 1
x  Method (39) LGSM [23] B-spline[19] Laplace [14] Decomposition [15]

0.1 6.87x107° 751x1077 298x107¢® 198x107° 2.68x 1073
0.2 683x107° 1.02x107°® 546x107® 3.94x107° 2.02x1073
03 675x107° 9.05x1077 733x107® 585x107° 1.52x 107*
04 664x107° 524x1077 850x107® 7.07%x107° 220x%x 1073
0.5 671x107° 507x107° 889x107® 9.47x107° 3.01x 1073
0.6 6.64x107° 514x1077 850x107® 1.11x107° 220%x1073
0.7 675x107° 895x1077 733x107® 126x107° 1.52x 107*
0.8 6.83x107° 1.01x10°® 546x107°® 135x107° 2.02x 1073
09 687x107° 742x1077 298x107° 120x107° 2.68 x 1073

Table 8. Comparison of the absolute error of different methods for 4 = 2
x  Method (39) LGSM [23] B-spline [19] Laplace [14] Decomposition [15]

0.1 453x1077 4.03x10° 1.72x1075 213x1073 1.52 x 1072
0.2 498x1077 570x107°% 326x1075 421x1073 1.47 x 1072
03 549x1077 522x107°® 449x1075 6.19%x1073 5.89x 1073
04 573x1077 3.07x107°® 528x1075 8.00x1073 3.25%x 1073
0.5 588x1077 145x107% 556x1075 9.60x1073 6.98 x 1073
0.6 573x1077 3.05x107° 528x107° 1.09 x 1073 3.25%x 1073
0.7 549x1077 519x107° 4.49x107° 1.19 x 1072 5.89 x 1073
0.8 498x1077 568x107°® 3.26x107° 1.24 x 1072 1.47 x 1072
09 453x1077 4.01x10°® 1.72x107° 1.09 x 1072 1.52 x 1072

Table 9. Comparison of the absolute error of present method with two other method for A = 3.51
x  Present method (24) LGSM [23] B-spline [19]

0.1 9.41 x 1076 4.45x 1075  3.84x 1072

0.2 1.77 x 1075 7.12x 1075  7.48x 1072

0.3 2.51x 1075 7301075  1.06x 1071

0.4 3.07 x 1075 447 %1075 127 x 107!

0.5 3.28 x 1075 6.76 x 1077 1.35x 107!

0.6 3.07 x 1075 456x1075  1.27x 107"

0.7 2.51x 1075 7.20x 1075 1.06x 107!

0.8 1.77 x 1075 7.05x 1075  7.48x 1072

0.9 9.41 x 1076 441x1075  3.84x 1072
16 T T T T T
14 1
12 -

-
o

infinity norm of u(x)
[e-]

0 0.5 1 1.5 2 25 3 35 4

Fig. 3. The Bifurcated of the computed solution to Bratu problem for different values of 1 € (0,3.513830719)

4. Conclusion

In the present study, a high order compact finite difference method for Bratu problem was proposed and the convergence
analysis was discussed. As pointed, many existing numerical methods for Bratu problem failed to compute the upper solution
and the lower solution for A = A, but it was observed that the proposed methods of this study are in an excellent agreement with
the exact values. The numerical results presented in Tables 1, 2, 3,4, 5, 6, 7, 8, and 9 showed that the method is very accurate
and the numerical experiment is extremely consistent with the theoretical analysis results of the present study.
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