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Abstract. In the present study, high order compact finite difference methods are used to solve one-dimensional Bratu-
type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical 
order of the methods are consistent with their numerical rate of convergence. The maximum absolute errors in the 
solution at grid points are calculated and it is shown that the presented methods are efficient and applicable for lower 
and upper solutions. 
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1. Introduction 

     In this study, the following one-dimensional classical nonlinear Bratu-type equation is considered:  
 

 𝑢 (𝑥) + 𝜆𝑒 ( ) = 0,      0 ≤ 𝑥 ≤ 1,    𝜆 > 0, (1)  
 
subjecting to the homogeneous Dirichlet boundary conditions as 
 

 𝑢(0) = 𝑢(1) = 0.  (2)  
 
for problem (1) with boundary conditions (2), the exact solution is given by [1-4] 

 𝑢(𝑥) = −2 ln
cosh(

𝜃
2

(𝜒 − 0.5))

cosh (
𝜃
4

)
 ,   (3)  

where θ satisfies 𝜃 = √2𝜆 cosh( ). Bratu problem has no solution, one solution, and two solutions when 𝜆 > 𝜆 , 𝜆 = 𝜆 , and 

𝜆 < 𝜆 , respectively. The critical value 𝜆 ≈ 3.513830719 can be computed from 1 = 2𝜆 sinh( ). The exact solution given 

by (3) is symmetric about 𝑥 = . 

     The Bratu problem has a scientific importance and several chemical and physical processes in science and engineering can 
be modelled using Bratu-type equation. The Bratu-type equation is also used in a large variety of applications such as the 
modelling of thermal reaction process in combustible non-deformable materials, including the solid fuel ignition model, the 
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electrospinning process for the production of ultra-fine polymer fibers, the modelling of some chemical reaction-diffusion, 
questions in geometry and relativity about the Chandrasekhar model, radiative heat transfer, and nanotechnology [5-13]. The 
Bratu problem simulates a thermal reaction process in a rigid material where the process depends on the balance between the 
chemically generated heat and the heat transferred by conduction. 
     Several numerical methods have been developed to approximate the solution of Bratu-type equation, but most of these 
methods converge only to the lower solution. A Laplace transform decomposition numerical algorithm was proposed in Ref. 
[14]. Remero [15] introduced the efficient fourth-order iterative method for the upper and lower solution. Finite difference 
methods were studied in Refs. [16] and [17]. For instance in Ref. [16] and based on the Newton-Raphson-Kantorovich 
approximation method, an iterative finite difference scheme was proposed for the lower solution.For lower and upper solutions, 
a nonstandard finite difference method with a simple sinusoidal starting function was recommended. Ragb and et al. proposed a 
numerical scheme for the lower and upper solution [18] based on the differential quadrature methods. Also, Caglar et al. 
suggested the B-spline method [19]. The non-polynomial spline method was applied in Ref. [20] and recently, the block Nystr�̈�m 
method to obtain the lower solution was introduced [21]. The other methods that were applied for Bratu problem are the 
Chebyshev polynomial expansions method [4], the multigrid-based methods [22], the Lie group shooting method [23], the 
perturbation-iteration method [24], the decomposition method [15], the differential transformation method [25] and the modified 
wavelet Galerkin method [26]. 
     The main motive of this study is to obtain numerical solutions for the one-dimensional Bratu problem using high order 
compact finite difference methods that converge to both upper and lower solutions. 
     The present study is organized as follows: In section 2, the compact finite difference method is applied for solving Eqs. (1) 
and (2) and its convergence is discussed. Then we try to improve the accuracy of method. In section 3, the numerical results of 
applying the methods of this study are presented. Finally, the conclusion is drawn in Section 4. 

2. Numerical Method 

     To approximate the solution, first, the range of 0 ≤ 𝑥 ≤ 1 is subdivided into 𝑁 subintervals of width ℎ =  , and 𝑥 = 𝑖ℎ, 𝑖 =

0, … , 𝑁 is used to denote the points of subdivision. Moreover, the quantity 𝑢  represents the numerical solution at 𝑥 . 
 
2.1 Compact finite difference method 

    The standard compact finite difference formula for the first derivatives is 
 

 𝑢′ + 4𝑢′ + 𝑢′ =
3

ℎ
(−𝑢 + 𝑢 ),    𝑖 = 2, … , 𝑁 − 2,  (4)  

 
where the truncation error for equation (4) is 𝑂(ℎ ). The coefficients of the standard compact finite difference formula are 
determined by Taylor expansion so that the formula can yield high accuracy. For more details on how to generate the compact 
finite difference formula, refer to [24, 27, 28]. 
    The standard fourth-order compact finite difference formula (4) is used for interior points. Since the boundary conditions are 
known, it is required to adjust the compact finite difference formula to the boundary points. For 𝑖 = 1, we use 
 

 4𝑢′ + 𝑢′ =
1

ℎ
−

11

12
𝑢 − 4𝑢 + 6𝑢 −

4

3
𝑢 +

1

4
𝑢 , (5)  

 
and when 𝑖 = 𝑁 − 1, we use 
 

 𝑢′ + 4𝑢′ =
1

ℎ
−

1

4
𝑢 +

4

3
𝑢 − 6𝑢 + 4𝑢 +

11

12
𝑢 .  (6)  

 
Equations (5) and (6) have the accuracy of 𝑂(ℎ ). Therefore, the following system is obtained: 
 

 

⎩
⎪
⎨

⎪
⎧4𝑢′ + 𝑢′ =

1

ℎ
−

11

12
𝑢 − 4𝑢 + 6𝑢 −

4

3
𝑢 +

1

4
𝑢 ,                                         

𝑢′ + 4𝑢′ + 𝑢′ =
3

ℎ
(−𝑢 + 𝑢 ),                           𝑖 = 2, … , 𝑁 − 2,     

𝑢′ + 4𝑢′ =
1

ℎ
−

1

4
𝑢 +

4

3
𝑢 − 6𝑢 + 4𝑢 +

11

12
𝑢 .            

 (7)  

 
    The system (7) can be written in a matrix form as: 
 

 𝐴 𝑈 = 𝐵 𝑈 + 𝐻 ,  (8)  
 
where 
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𝛢 =

⎝

⎜
⎛

 4   1   0   …   0
1   4   1         ⋮
0   ⋱   ⋱   ⋱   0
⋮            1   4   1
0   …   0   1    4⎠

⎟
⎞

( )×( )

, 𝐵 =
3

ℎ

⎝

⎜
⎜
⎜
⎜
⎛

2        0 … 0

−1 0    1 0    0    ⋮
0 −1    0 1    0 … 0

 ⋱    ⋱ ⋱       

⋮      0 −1    0 1 0
      0 0    −1 0 1

0 …    0     −2 ⎠

⎟
⎟
⎟
⎟
⎞

( )×( )

, 

𝑈 =

⎝

⎜
⎛

𝑢

𝑢
⋮

𝑢

𝑢 ⎠

⎟
⎞

( )×

,  𝑈 =

⎝

⎜
⎛

𝑢
𝑢
⋮

𝑢
𝑢 ⎠

⎟
⎞

( )×

and  𝐻 =

⎝

⎜
⎛

−𝑢
0
⋮
0

𝑢 ⎠

⎟
⎞

( )×

. 

 
Based on the boundary condition (2), 𝑢 = 𝑢 = 0, therefore,  𝐻 = 0⃗. 
 
Lemma 2.1. [29] The coefficient matrix 𝐴  is invertible. 

    According to the above-mentioned lemma, 𝑈 = 𝐴 𝐵 𝑈. Similarly, for the second derivatives, the following finite difference 
schemes are obtained: 
 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

                     

14𝑢 − 5𝑢 + 4𝑢 − 𝑢 =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),                                     

𝑢 + 10𝑢 + 𝑢 =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),       𝑖 = 2, … , 𝑁 − 2,

−𝑢 + 4𝑢 − 5𝑢 + 14𝑢 =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ).      

 (9)  

 
All the above-mentioned relations have fourth order accuracy. The matrix form for Eq. (9) is 
 

 𝐴 𝑈 = 𝐵 𝑈 + 𝐻 ,  (10)  
 
where 
 

𝐴 =

⎝

⎜
⎜
⎜
⎛

14 −5    4 −1    0 … 0
1 10    1 0    0  0

0 1    10 1    0  … 0
  ⋱    ⋱ ⋱       

⋮      0 1    10 1 0
      0 0    1 10 1

0 …    0 −1    4 −5 14⎠

⎟
⎟
⎟
⎞

( )×( )

, 𝐵 =

⎝

⎜
⎛

−2   1   0   …   0
1  − 2   1         ⋮
0   ⋱   ⋱   ⋱   0

⋮            1  − 2   1
0   …   0  1  − 2 ⎠

⎟
⎞

( )×( )

, 

 
 

𝑈 =

⎝

⎜
⎛

𝑢
𝑢
⋮

𝑢
𝑢 ⎠

⎟
⎞

( )×

,  𝑈 =

⎝

⎜
⎛

𝑢

𝑢
⋮

𝑢

𝑢 ⎠

⎟
⎞

( )×

and  𝐻 =

⎝

⎜
⎛

𝑢
0
⋮
0

𝑢 ⎠

⎟
⎞

( )×

. 

 
Again for boundary condition (2), we have 𝐻 = 0⃗. 
 
2.2 Compact finite difference method for Bratu-type equations 

    By inserting the relation 𝑢 = −𝜆𝑒  in the system (9), the following nonlinear system is obtained: 
 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

                     

−𝜆(14𝑒 − 5𝑒 + 4𝑒 − 𝑒 ) =
12

ℎ
(−2𝑢 + 𝑢 ),                                     

−𝜆(𝑒 + 10𝑒 + 𝑒 ) =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),   𝑖 = 2, … , 𝑁 − 2,

−𝜆(−𝑒 + 4𝑒 − 5𝑒 + 14𝑒 ) =
12

ℎ
(𝑢 − 2𝑢 ).          

 

 

(11)  
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This technique transforms the problem into a system of nonlinear equations and the resulting nonlinear system can be solved by 
using an appropriate nonlinear solver. This nonlinear system can be written as 
 

 −𝜆𝐴 𝑒 =
1

ℎ
𝑀 𝑈,   (12)  

 
where 𝑒 = [𝑒 , … , 𝑒 ]  and  
 

𝑀 =

⎝

⎜
⎛

−24   12   0   …     0
12  − 24   12        ⋮

0      ⋱      ⋱      ⋱      0
⋮            12  − 24   12

0   …   0  12  − 24 ⎠

⎟
⎞

( )×( )

. 

 
where ‖𝑀 ‖ ≤ 𝑐 and 𝑐 is a fixed number. Next, the convergence analysis is going to be conducted. For this purpose, let 𝑈 =

[𝑢(𝑥 ), … , 𝑢(𝑥 )]  be the vector of exact solution . Moreover, consider ‖. ‖ as ‖. ‖ , 𝑠 = max
,…,

( )

: 𝑥 = 𝑥  and 𝐸 =

𝑈 − 𝑈. 
 
Theorem 2.2.  Let 𝑈 = [𝑢(𝑥 ), … , 𝑢(𝑥 )]  and 𝑈 = [𝑢 , … , 𝑢 ] be the vectors of exact solution of the boundary-value 
problem (1), (2), and the numerical solution obtained by solving the nonlinear system (12), respectively. Then, provided 
𝜆ℎ 𝑠‖𝑀 ‖‖𝐴 ‖ ≤ 1, we have 
 

 ‖𝐸‖ ≤ 𝑂(ℎ ). (13)  
 
Proof. According to Eq. (12), 
 

 M U + ℎ 𝜆𝐴 𝑒 = 0,⃗   (14)  
 
and for the exact solution, 
 

 M U + h λA e = T,    (15)  
 
where 
 

 𝑇 =
ℎ

20
[−19𝑢( )(𝑥 ), 𝑢( )(𝑥 ), … , 𝑢( )(𝑥 ), −19𝑢( )(𝑥 )] ,  (16)  

 
is the vector of local truncation error. By using Eqs. (14) and (15), 
 

M (U − U) + h λA (e − e ) = T, 
 

(M + λh A J)E = T, 
where  
 

E = U − U, e − e = JE, 

and J = diag
( )

: x = x , i = 1, … , N − 1  is a diagonal matrix of order N − 1. Now if 𝜆ℎ 𝑠‖𝑀 ‖‖𝐴 ‖ ≤ 1, then (I +

h λM A J) is invertible and 
 

E = (I + h λM A J) M T, 
 

‖𝐸‖ ≤ ‖(I + h λM A J) ‖‖M ‖‖𝑇‖. 
 

It follows that 
 

 ‖E‖ ≤
‖M ‖‖T‖

1 − λh ‖M ‖‖A ‖‖J‖
,   (17)  

 
From Eq. (16), we have 
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 ‖T‖ ≤
ℎ 𝑀

20
,   (18)  

 
where 𝑀 = max 𝑢( )(𝜉) . 

According to Eqs. (17), (18), ‖M ‖ ≤ 𝑐, ‖J‖ ≤ 𝑠 = max
,…,

( )

: 𝑥 = 𝑥  and ‖A ‖ ≤ 24, one can obtain 

 

‖E‖ ≤
ℎ 𝑀 𝑐

20(1 − 24λh 𝑐𝑠)
≡

𝑂(ℎ )

𝑂(ℎ )
≡ 𝑂(ℎ ). 

 
 
2.3 Fifth-order compact finite difference method for the Bratu-type equations 

    In this section, we try to improve the results of the pervious method by applying the compact finite difference method. The 
system of equations (9) are considered and the sides of the equations are extended by using the Taylor expansion at point 𝑥 , 𝑖 =
1, … , 𝑁 − 1. Therefore, the following system is obtained: 
 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

                     

14𝑢 − 5𝑢 + 4𝑢 − 𝑢 + 𝜏 =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),                                         

𝑢 + 10𝑢 + 𝑢 + 𝜏 =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ), 𝑖 = 2, … , 𝑁 − 2,

−𝑢 + 4𝑢 − 5𝑢 + 14𝑢 + 𝜏 =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),      

 (19)  

 
where 
 

 

⎩
⎪
⎨

⎪
⎧𝜏 = −

19 

20
ℎ 𝑢

( )
+ 𝑂(ℎ ),                                                    

𝜏 =
1

20
ℎ 𝑢

( )
+ 𝑂(ℎ ),         𝑖 = 2, … , 𝑁 − 2                  

𝜏 = −
19 

20
ℎ 𝑢

( )
+ 𝑂(ℎ ).                                             

 (20)  

 

Now, 𝑢( )
, 𝑘 = 3,4,5,6 can be obtained with a derivative from 𝑢 = −𝜆𝑒  as follows: 

 

 

⎩
⎪
⎨

⎪
⎧

𝑢 = 𝑢 𝑢 ,                                                    

𝑢
( )

= (𝑢 ) + (𝑢 ) 𝑢 ,                           

 𝑢
( )

= 4𝑢 (𝑢 ) + (𝑢 ) 𝑢 ,                    

𝑢
( )

= 4(𝑢 ) + 11(𝑢 𝑢 ) + (𝑢 ) 𝑢  

 (21)  

 
Therefore, the following system is obtained: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

                     

14𝑢 − 5𝑢 + 4𝑢 − 𝑢 −
19 

20
ℎ (11(𝑢 𝑢 ) + 4(𝑢 ) + (𝑢 ) 𝑢 ) =

12

ℎ
(−2𝑢 + 𝑢 ),                                                                                   

𝑢 + 10𝑢 + 𝑢 +
1

20
ℎ (11(𝑢 𝑢 ) + 4(𝑢 ) + (𝑢 ) 𝑢 ) =

12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),                                                                                 

   𝑖 = 2, … , 𝑁 − 2,                                                                                                                                                                                                                      

−𝑢 + 4𝑢 − 5𝑢 + 14𝑢 −
19 

20
ℎ (11(𝑢 𝑢 ) + 4(𝑢 ) + (𝑢 ) 𝑢 )                                                                              

=
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ).                                                                                                                                                                (22) 

 

 

By replacing 𝑢 = −𝜆𝑒  in 𝑢( ), it can be written as: 
 

 𝑢
( )

= 11𝜆 (𝑒 ) (𝑢 ) − 4𝜆 (𝑒 ) − 𝜆(𝑢 ) 𝑒 ,   (23)  
 
Finally, the following nonlinear system is obtained: 
 

 −𝜆𝐴 𝑒 =
1

ℎ
𝑀 𝑈 + ℎ 𝐶𝑈( ),   (24)  
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where 

C =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−
19

20
   0   0   …     0

0  
1

20
   0       ⋮

0      ⋱      ⋱      ⋱      0

⋮            0  
1

20
   0

0   …   0  0  −
19

20 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

( )×( )

, 

 
and 
 

 𝑈( ) =
𝑢

( )

⋮

𝑢
( )

= 11𝜆
(𝑒 𝑢 )

⋮
(𝑒 𝑢 )

− 4𝜆
(𝑒 )

⋮
(𝑒 )

− 𝜆
𝑒 (𝑢 )

⋮
𝑒 (𝑢 )

.  (25)  

 
For the convergence analysis of the above-mentioned method, the first-order derivative error is obtained in the following lemma: 
 
Lemma 2.3. Let 𝑈 = [𝑢(𝑥 ), … , 𝑢(𝑥 )]  and 𝑈 = [𝑢 , … , 𝑢 ]  be the vectors of exact solution of the problem (1) with the 
boundary condition (2) and the numerical solution obtained by solving the nonlinear system (8), respectively. If we let 𝐸 =
𝑈 − 𝑈 , then we have 
 

 ‖𝐸 ‖ ≤ 𝑂(ℎ ).   (26)  
 
Proof. According to Eq. (8), one can conclude  
 
 

 𝐴 𝑈 = 𝐵 𝑈,   (27)  
 
and for the exact solution, it can be written as 
 

 𝐴 𝑈 = 𝐵 𝑈 + 𝑇 ,     (28)  
 
where 𝑇 =  𝑂(ℎ ) is the vector of local truncation error. By using Eqs. (27) and (28), one can drive 
 

𝐴 (𝑈 − 𝑈 ) = 𝐵 (𝑈 −  𝑈) + 𝑇 ,    𝐴 𝐸 = 𝐵 𝐸 + 𝑇 .   
 
Therefore, 

𝐸 = 𝐴 𝐵 𝐸 + 𝐴 𝑇 , 
 

‖𝐸 ‖ ≤ ‖𝐴 ‖‖𝐵 ‖‖𝐸‖ + ‖𝐴 ‖‖𝑇 ‖ ≡ 𝑂(ℎ )𝑂(ℎ ) + 𝑂(ℎ ) ≡ 𝑂(ℎ ). 
 

 
Theorem 2.4. Let 𝑈 = [𝑢(𝑥 ), … , 𝑢(𝑥 )]  and 𝑈 = [𝑢 , … , 𝑢 ]  be the vectors of exact solution of the boundary-value 
problem (1), (2), and the numerical solution obtained by solving the nonlinear system (24), respectively. Then, provided 
‖𝜆ℎ 𝑀 𝐴 𝐽 + ℎ 𝑀 𝐶𝑀 + ℎ 𝑀 𝐶𝑀 𝐴 𝐵 ‖ < 1, we have 
 

 ‖𝐸‖ ≤ 𝑂(ℎ ),   (29)  
 
where 
 

𝑀 = 𝑑𝑖𝑎𝑔{22𝜆 𝑒 (𝑈 ) − 12𝜆 𝑒 − 𝜆𝑒 (𝑈 ) }, 
 

𝑀 = 𝑑𝑖𝑎𝑔{22𝜆 𝑒 𝑈 − 4𝜆𝑒 (𝑈 ) }     𝑎𝑛𝑑   𝐸 = 𝑈 − 𝑈. 
 
Proof. By using the relation Eq. (23), one can obtain: 
 

𝑢
( )

− 𝑈
( )

= 11𝜆 (𝑒 (𝑢 ) − 𝑒 (𝑈 ) ) − 4𝜆 (𝑒 − 𝑒 ) − 𝜆(𝑒 (𝑢 ) − 𝑒 (𝑈 ) ) 
 

                 = 11𝜆 (2𝑒 (𝑈 ) 𝐸 + 2𝑒 𝑈 𝐸 ) − 4𝜆 (3𝑒 𝐸 ) − 𝜆(𝑒 (𝑈 ) 𝐸 + 4𝑒 (𝑈 ) 𝐸 ) 
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          = (22𝜆 𝑒 (𝑈 ) − 12𝜆 𝑒 − 𝜆𝑒 (𝑈 ) )𝐸 + (22𝜆 𝑒 𝑈 − 4𝜆𝑒 (𝑈 ) )𝐸 , 

 
where 𝐸 = 𝑢 − 𝑈  and 𝐸 = 𝑢 − 𝑈 . By considering 𝑀  and 𝑀 , we have  
 

 𝑢
( )

− 𝑈
( )

= 𝑀 𝐸 + 𝑀 𝐸 . (30)  
 
On the other hand, according to Eq. (24), it can be driven as 
 

 ℎ 𝜆𝐴 𝑒 + 𝑀 𝑈 + ℎ 𝐶𝑈( ) = 0,  (31)  
 
and for the exact solution, we have 
 

 ℎ 𝜆𝐴 𝑒 + 𝑀 𝑈 + ℎ 𝐶𝑈( ) = 𝑇ℎ ,   (32)  
 
where the vector 𝑈 = 𝑢(𝑥 ), 𝑖 = 1, … , 𝑁 − 1 is the exact solution and 𝑇 = 𝑂(ℎ ) is the local truncation error. By using Eqs. (31) 
and (32) the following relation is obtained 
 

ℎ 𝜆𝐴 𝑒 − 𝑒 + 𝑀 (𝑈 − 𝑈) + ℎ 𝐶 𝑈( ) − 𝑈( ) = 𝑇ℎ , 
 

where 𝑒 − 𝑒 = 𝐽𝐸, and  J = diag
( )

: x = x , i = 1, … , N − 1  is a diagonal matrix of order 𝑁 − 1. Therefore, 

 
 ℎ 𝜆𝐴 𝐽𝐸 + 𝑀 𝐸 + ℎ 𝐶(𝑀 𝐸 + 𝑀 𝐸 ) = 𝑇ℎ .  (33)  

 
By replacing 𝐸 = 𝐴 𝐵 𝐸 + 𝐴 𝑇  in Eq. (33), one can conclude 
 

(ℎ 𝜆𝐴 𝐽 + ℎ 𝐶𝑀 + ℎ 𝐶𝑀 𝐴 𝐵 + 𝑀 )𝐸 = 𝑇ℎ − ℎ 𝐶𝑀 𝐴 𝑇 ,    𝑜𝑟 
 
 

𝑀 (𝐼 + ℎ 𝜆𝑀 𝐴 𝐽 + ℎ 𝑀 𝐶𝑀 + ℎ 𝑀 𝐶𝑀 𝐴 𝐵 )𝐸 = 𝑇ℎ − ℎ 𝐶𝑀 𝐴 𝑇 . 
 
Now, if  ‖𝜆ℎ 𝑀 𝐴 𝐽 + ℎ 𝑀 𝐶𝑀 + ℎ 𝑀 𝐶𝑀 𝐴 𝐵 ‖ < 1, then, (𝐼 + ℎ 𝜆𝑀 𝐴 𝐽 + ℎ 𝑀 𝐶𝑀 + ℎ 𝑀 𝐶𝑀 𝐴 𝐵 ) is 
invertible and  
 

‖𝐸‖ ≤
‖𝑀 ‖(ℎ ‖𝑇‖ + ℎ ‖𝐶‖‖𝑀 ‖‖𝐴 ‖‖𝑇 ‖)

1 − ℎ 𝜆‖𝑀 𝐴 𝐽‖ − ℎ ‖𝑀 𝐶𝑀 ‖ − ℎ ‖𝑀 𝐶𝑀 𝐴 𝐵 ‖
≡

𝑂(ℎ )

𝑂(ℎ )
≡ 𝑂(ℎ ). 

 
 

2.4 Sixth-order compact finite difference method for the Bratu-type equation 

    In this section, the compact finite difference method of the sixth order is obtained for the Bratu problem. The system of linear 
Eqs. (9)  is considered and sentences to the seventh derivative of the Taylor expansion are added at point 𝑥 , 𝑖 = 1, … , 𝑁 − 1 
relative to ℎ. For inner points 𝑥 , 𝑖 = 2, … , 𝑁 − 2, the seventh derivative is deleted. Therefore, the following relations are obtained  
 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

                     

14𝑢 − 5𝑢 + 4𝑢 − 𝑢 + 𝜏 =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),                                   

𝑢 + 10𝑢 + 𝑢 + 𝜏 =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),     𝑖 = 2, … , 𝑁 − 2,

−𝑢 + 4𝑢 − 5𝑢 + 14𝑢 + 𝜏 =
12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),

 

 

(34)  

 
where 
 

 

⎩
⎪
⎨

⎪
⎧ 𝜏 = −

19 

20
ℎ 𝑢

( )
− ℎ 𝑢

( )
+ 𝑂(ℎ ),                           

𝜏 =
1

20
ℎ 𝑢

( )
+ 𝑂(ℎ ),         𝑖 = 2, … , 𝑁 − 2            

𝜏 = −
19 

20
ℎ 𝑢

( )
+ ℎ 𝑢

( )
+ 𝑂(ℎ ).                   

 (35)  
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Therefore, the following system is obtained: 
 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

                     

14𝑢 − 5𝑢 + 4𝑢 − 𝑢 −
19 

20
ℎ 𝑢

( )
− ℎ 𝑢

( )
=

12

ℎ
(−2𝑢 + 𝑢 ),                                             

𝑢 + 10𝑢 + 𝑢 +
1

20
ℎ 𝑢

( )
=

12

ℎ
(𝑢 − 2𝑢 + 𝑢 ),          𝑖 = 2, … , 𝑁 − 2,               

−𝑢 + 4𝑢 − 5𝑢 + 14𝑢 −
19 

20
ℎ 𝑢

( )
+ ℎ 𝑢

( )
=

12

ℎ
(𝑢 − 2𝑢 ).               

 

 

(36)  

Now, 𝑢( ) is obtained as 
 

 𝑢
( )

= 34𝑢 (𝑢 ) + 26(𝑢 ) (𝑢 ) + (𝑢 ) 𝑢 ,  (37)  
 

by replacing 𝑢 = −𝜆𝑒  in 𝑢( ),  
 

 𝑢
( )

= 26𝜆 (𝑒 ) (𝑢 ) − 34𝜆 (𝑒 ) 𝑢 − 𝜆𝑒 (𝑢 ) .  (38)  
 
Finally, by replacing 𝑢 = −𝜆𝑒  in the system (36), the following nonlinear system is obtained: 
 

 −𝜆𝐴 𝑒 =
1

ℎ
𝑀 𝑈 + ℎ 𝐶𝑈( ) + ℎ 𝐷𝑈( ),  (39)  

 
where 
 

D =

⎝

⎜
⎛

−1   0   0   …     0
0  0   0       ⋮

0      ⋱      ⋱      ⋱      0
⋮            0  0   0
0   …   0  0  1 ⎠

⎟
⎞

( )×( )

 

 
and 
 

 
𝑈( ) =

𝑢
( )

⋮

𝑢
( )

= 26𝜆
(𝑒 ) (𝑢 )

⋮
(𝑒 ) (𝑢 )

− 34𝜆
(𝑒 ) 𝑢

⋮
(𝑒 ) 𝑢

− 𝜆
𝑒 (𝑢 )

⋮
𝑒 (𝑢 )

. 

  

(40)  

 
Theorem 2.5. Let 𝑈 = [𝑢(𝑥 ), … , 𝑢(𝑥 )]  and 𝑈 = [𝑢 , … , 𝑢 ] be the vectors of exact solution of the boundary-value 
problem (1), (2), and numerical solution obtained by solving the nonlinear system (39), respectively. Then provided 
‖𝜆ℎ 𝑀 𝐴 𝐽 + ℎ 𝑀 𝐶𝑀 + ℎ 𝑀 𝐶𝑀 𝐴 𝐵 + ℎ 𝑀 𝐷𝑁 + ℎ 𝑀 𝐷𝑁 𝐴 𝐵 ‖ < 1, we have 
 

 ‖𝐸‖ ≤ 𝑂(ℎ ),  (41)  
 
where 
 

⎩
⎪
⎨

⎪
⎧𝑀 = 𝑑𝑖𝑎𝑔{22𝜆 𝑒 (𝑈 ) − 12𝜆 𝑒 − 𝜆𝑒 (𝑈 ) },                                 

𝑀 = 𝑑𝑖𝑎𝑔{22𝜆 𝑒 𝑈 − 4𝜆𝑒 (𝑈 ) },                                                          

𝑁 = 𝑑𝑖𝑎𝑔{52𝜆 𝑒 (𝑈 ) − 102𝜆 𝑒 𝑈 − 𝜆𝑒 (𝑈 ) },                           

𝑁 = 𝑑𝑖𝑎𝑔{78𝜆 𝑒 (𝑈 ) − 34𝜆 𝑒 − 5𝜆𝑒 (𝑈 ) } 𝑎𝑛𝑑  𝐸 = 𝑈 − 𝑈.

 

 
Proof. The proof is similar to that of theorem 2.4. 

 

3. Numerical results 

    In this section, the numerical results of the new proposed method are presented for various values of 𝜆 and 𝑁. By adopting a 
simple approach, similar to what used by Body [4], it was found that it is appropriate to consider 𝑢 (𝑥) = asin(𝜋𝑥) as initial 
guess; because it satisfies the boundary conditions. The upper and lower numerical solutions of the systems (12), (24), and (39) 
were compared with the exact solution to the boundary-value problem (1) and (2) for the values of 𝜆 = 0.5, 1, 2, 3, 3.51 and 𝑁 =
10, 20, 40, 80 and the maximum error was calculated. Finally, the numerical rate of convergence using the following formula 
was calculated: 
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𝑅𝑂𝐶 = log
𝐸𝑟𝑟𝑜𝑟

𝐸𝑟𝑟𝑜𝑟
, 

where 𝐸𝑟𝑟𝑜𝑟  is the error obtained using the step size ℎ. Tables 1 and 2 explain the maximum error and the rate of convergence 
of the upper and lower solutions for the Bratu problem using the method (12) versus various 𝜆 and 𝛮, respectively. Also Tables 
3 and 4 show the maximum error and the rate of convergence of the upper and lower solutions for the Bratu problem using the 
method (24) versus various 𝜆 and 𝛮, respectively. In Tables 5 and 6 one can see the maximum error and the rate of convergence 
of the upper and lower solutions for the Bratu problem using the method (39) versus various 𝜆 and 𝛮, respectively. In Tables 7 
and 8, the absolute errors between lower solutions of method (39) for 𝑁 = 10 are compared with the Lie-group shooting, the 
Laplace, the B-spline, and the decomposition methods. Moreover, the computed and exact solutions of Bratu problem for 𝜆 =
0.0001 are compared in Fig. 1 (lower solution) and Fig. 2 (upper solution). The Bifurcated nature of the computed solution to 
Bratu problem for different values of 𝜆 ∈ (0,3.513830719] is plotted in Figure 3, for all values of 𝜆, 𝛮 is 20. Finally, the absolute 
errors between lower solutions of method (24) for 𝑁 = 10 are compared with the Lie-group shooting and the B-spline methods 
in Table 9. 

Table 1. Observed absolute error and ROC of upper solution for method (12) 

λ N MaxError ROC λ N MaxError ROC 
 10 3.72 × 10  -  10 1.56 × 10  - 
 20 1.65 × 10  4.49  20 8.11 × 10  4.26 

0.5 40 1.03 × 10  4.00 1 40 5.14 × 10  3.98 
 80 6.41 × 10  4.00  80 3.22 × 10  3.99 
 10 2.14 × 10  -  10 2.23 × 10  - 
 20 3.16 × 10  6.08  20 2.25 × 10  6.63 

2 40 1.99 × 10  3.98 3 40 1.02 × 10  4.46 
 80 1.26 × 10  3.98  80 6.40 × 10  3.99 
 10 7.87 × 10  -  20 1.63 × 10  5.59 

3.51 40 5.93 × 10  4.78 3.51 80 3.22 × 10  4.20 

Table 2. Observed absolute error and ROC of lower solution for method (12) 

λ N MaxError ROC λ N MaxError ROC 
 10 3.05 × 10  -  10 2.31 × 10  - 
 20 1.36 × 10  4.49  20 1.54 × 10  3.90 

0.5 40 1.12 × 10  3.60 1 40 1.13 × 10  3.77 
 80 7.36 × 10  3.92  80 7.15 × 10  3.98 
 10 1.67 × 10  -  10 5.97 × 10  - 
 20 2.63 × 10  2.67  20 3.11 × 10  4.26 

2 40 1.58 × 10  4.05 3 40 1.47 × 10  4.39 
 80 9.58 × 10  4.04  80 8.40 × 10  4.13 
 10 5.95 × 10  -  20 1.38 × 10  5.42 

3.51 40 5.22 × 10  4.72 3.51 80 2.87 × 10  4.19 

Table 3. Observed absolute error and ROC of upper solution for method (24) 

λ N MaxError ROC λ N MaxError ROC 
 10 1.26 × 10  -  10 2.90 × 10  - 
 20 2.22 × 10  5.83  20 7.59 × 10  8.57 

0.5 40 1.27 × 10  7.44 1 40 6.90 × 10  6.78 
 80 1.47 × 10  6.43  80 6.24 × 10  6.79 
 10 2.70 × 10  -  10 1.47 × 10  - 
 20 4.74 × 10  9.15  20 8.34 × 10  7.45 

2 40 9.65 × 10  8.94 3 40 4.11 × 10  7.66 
 80 1.29 × 10  6.22  80 2.50 × 10  7.66 
 10 7.61 × 10  -  20 2.40 × 10  4.98 

3.51 40 1.84 × 10  7.03 3.51 80 1.33 × 10  7.11 

Table 4. Observed absolute error and ROC of lower solution for method (24) 

λ N MaxError ROC λ N MaxError ROC 
 10 7.17 × 10  -  10 1.39 × 10  - 
 20 1.29 × 10  5.80  20 1.14 × 10  6.92 

0.5 40 6.63 × 10  7.60 1 40 9.18 × 10  6.96 
 80 4.52 × 10  7.20  80 7.30 × 10  6.97 
 10 3.67 × 10  -  10 4.11 × 10  - 
 20 2.31 × 10  7.31  20 8.50 × 10  8.91 

2 40 1.59 × 10  7.18 3 40 8.47 × 10  9.97 
 80 1.08 × 10  7.20  80 2.34 × 10  5.17 
 10 2.80 × 10  -  20 1.57 × 10  0.83 

3.51 40 1.32 × 10  6.89 3.51 80 9.78 × 10  7.07 



High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations 100 
 

Journal of Applied and Computational Mechanics, Vol. 5, No. 1, (2019), 91-102 

 
Fig. 1. Comparison of 𝑢(𝑥) and exact solution of lower solutions for 𝜆 = 0.0001 of method (39) 

Table 5. Observed absolute error and ROC of upper solution for method (39) 

λ N MaxError ROC λ N MaxError ROC 
 10 3.98 × 10  -  10 3.67 × 10  - 
 20 7.69 × 10  9.01  20 2.89 × 10  10.30 

0.5 40 9.79 × 10  6.29 1 40 3.27 × 10  6.46 
 80 1.64 × 10  5.90  80 5.44 × 10  5.91 
 10 1.93 × 10  -  10 2.38 × 10  - 
 20 4.00 × 10  8.91  20 2.64 × 10  6.48 

2 40 1.35 × 10  8.16 3 40 9.42 × 10  8.13 
 80 1.29 × 10  6.75  80 4.41 × 10  7.73 
 10 2.30 × 10  -  20 4.71 × 10  12.25 

3.51 40 5.56 × 10  6.40 3.51 80 9.83 × 10  9.14 

Table 6. Observed absolute error and ROC of lower solution for method (39) 

λ N MaxError ROC λ N MaxError ROC 
 10 1.91 × 10  -  10 6.87 × 10  - 
 20 2.57 × 10  9.53  20 2.32 × 10  8.20 

0.5 40 6.50 × 10  8.62 1 40 3.65 × 10  5.99 
 80 1.98 × 10  5.03  80 4.69 × 10  6.28 
 10 5.88 × 10  -  10 2.57 × 10  - 
 20 3.80 × 10  7.27  20 8.81 × 10  8.18 

2 40 2.26 × 10  7.39 3 40 3.44 × 10  8.00 
 80 1.65 × 10  7.09  80 2.24 × 10  7.26 
 10 1.94 × 10  -  20 1.74 × 10  10.12 

3.51 40 9.17 × 10  10.89 3.51 80 2.88 × 10  5.00 

 
Fig. 2. Comparison of 𝑢(𝑥) and exact solution of upper solutions for 𝜆 = 0.0001 of method (39) 

 



101 Raziyeh Gharechahi et. al., Vol. 5, No. 1, 2019 
 

Journal of Applied and Computational Mechanics, Vol. 5, No. 1, (2019), 91-102   

 

Table 7. Comparison of the absolute error of different methods for 𝜆 = 1 

x Method (39) LGSM [23] B-spline [19] Laplace [14] Decomposition [15] 
0.1 6.87 × 10  7.51 × 10  2.98 × 10  1.98 × 10  2.68 × 10  
0.2 6.83 × 10  1.02 × 10  5.46 × 10  3.94 × 10  2.02 × 10  
0.3 6.75 × 10  9.05 × 10  7.33 × 10  5.85 × 10  1.52 × 10  
0.4 6.64 × 10  5.24 × 10  8.50 × 10  7.07 × 10  2.20 × 10  
0.5 6.71 × 10  5.07 × 10  8.89 × 10  9.47 × 10  3.01 × 10  
0.6 6.64 × 10  5.14 × 10  8.50 × 10  1.11 × 10  2.20 × 10  
0.7 6.75 × 10  8.95 × 10  7.33 × 10  1.26 × 10  1.52 × 10  
0.8 6.83 × 10  1.01 × 10  5.46 × 10  1.35 × 10  2.02 × 10  
0.9 6.87 × 10  7.42 × 10  2.98 × 10  1.20 × 10  2.68 × 10  

Table 8. Comparison of the absolute error of different methods for 𝜆 = 2 

x Method (39) LGSM [23] B-spline [19] Laplace [14] Decomposition [15] 
0.1 4.53 × 10  4.03 × 10  1.72 × 10  2.13 × 10  1.52 × 10  
0.2 4.98 × 10  5.70 × 10  3.26 × 10  4.21 × 10  1.47 × 10  
0.3 5.49 × 10  5.22 × 10  4.49 × 10  6.19 × 10  5.89 × 10  
0.4 5.73 × 10  3.07 × 10  5.28 × 10  8.00 × 10  3.25 × 10  
0.5 5.88 × 10  1.45 × 10  5.56 × 10  9.60 × 10  6.98 × 10  
0.6 5.73 × 10  3.05 × 10  5.28 × 10  1.09 × 10  3.25 × 10  
0.7 5.49 × 10  5.19 × 10  4.49 × 10  1.19 × 10  5.89 × 10  
0.8 4.98 × 10  5.68 × 10  3.26 × 10  1.24 × 10  1.47 × 10  
0.9 4.53 × 10  4.01 × 10  1.72 × 10  1.09 × 10  1.52 × 10  

Table 9. Comparison of the absolute error of present method with two other method for 𝜆 = 3.51 

x Present method (24) LGSM [23] B-spline [19] 
0.1 9.41 × 10  4.45 × 10  3.84 × 10  
0.2 1.77 × 10  7.12 × 10  7.48 × 10  
0.3 2.51 × 10  7.30 × 10  1.06 × 10  
0.4 3.07 × 10  4.47 × 10  1.27 × 10  
0.5 3.28 × 10  6.76 × 10  1.35 × 10  
0.6 3.07 × 10  4.56 × 10  1.27 × 10  
0.7 2.51 × 10  7.20 × 10  1.06 × 10  
0.8 1.77 × 10  7.05 × 10  7.48 × 10  
0.9 9.41 × 10  4.41 × 10  3.84 × 10  

 
Fig. 3. The Bifurcated of the computed solution to Bratu problem for different values of 𝜆 ∈ (0,3.513830719) 

4. Conclusion 

     In the present study, a high order compact finite difference method for Bratu problem was proposed and the convergence 
analysis was discussed. As pointed, many existing numerical methods for Bratu problem failed to compute the upper solution 
and the lower solution for 𝜆 = 𝜆 , but it was observed that the proposed methods of this study are in an excellent agreement with 
the exact values. The numerical results presented in Tables 1, 2, 3, 4, 5, 6, 7, 8, and 9 showed that the method is very accurate 
and the numerical experiment is extremely consistent with the theoretical analysis results of the present study. 
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