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Abstract. Optimization concept in the context of shear deformation theories was born for the development of 
accurate models to study the bending problem of structures. The present study seeks to extend such an approach to 
the dynamic analysis of plates. A compact and unified formulation with non-polynomial shear strain shape functions 
(SSSFs) is employed to develop a static and free vibration analysis of simply supported functionally graded plates. 
In this context, three new non-polynomial displacement fields are proposed using trigonometric and hyperbolic 
SSSFs. Then, the non-polynomial SSSFs are optimized by varying the arguments of the trigonometric and hyperbolic 
functions. Additionally, the Mori-Tanaka approach is used to estimate the effective properties of the functionally 
graded plates. The Principle of Virtual Displacement (PVD) and the Hamilton’s Principle along with the Navier 
closed-form solution technique are used to obtain exact results. The obtained numerical results are in a good 
agreement with 3D and 2D higher order shear deformation theory solutions available in the literature. 

Keywords: Static analysis; Free vibration; Shear strain shape function; Functionally graded materials; Unified formulation. 
 
1. Introduction 

    Laminated composites are gaining more and more protagonist as a solution to engineering applications in which classic 
materials are not able to satisfy stiffness and strength requirements. Some of these applications are commonly found in nuclear 
reactors as well as aircraft, spacecraft, biomechanical, shipbuilding, and other industries. However, laminated composites suffer 
from discontinuity at layer interfaces producing several challenging problems to solve up to date, one of which can be the 
initiation of cracks or the presence of residual stresses produced by the difference in the thermal coefficient at layer interfaces. 
Functionally graded materials (FGMs), initially proposed by Bever and Duwez [1], can be a solution to avoid such mechanical 
problems. 
    The functionally graded materials (FGMs) could be defined as a composite in which the material properties are gradually 
varied along a certain direction as a function of the position coordinates to achieve desired strength and stiffness. In a typical 
functionally graded plate, the material properties continuously vary over the thickness direction by mixing two different 
materials. Additionally, there are many ways to fabricate FGMs, for instance Miyamoto et al. [2] and Kieback [3] suggest some 
of the most common production methods.  
    So far, several research works were performed to study the behavior of FG beams, shells, and plates. In particular, 
Swaminathan et al. [4] presented an interesting review on the static, vibration, and buckling analysis of FG plates.  The study of 
such mechanical problems can be performed using analytical or numerical methods. A starting point for the analytical methods 
in vibration analysis was introduced by Reddy and Cheng [5]. They developed a three-dimensional (3D) asymptotic theory 
formulated in terms of the transfer matrix. Moreover, Vel and Batra [6] carried out a three-dimensional exact solution for the 
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free and forced vibration of a simply supported FG rectangular plate using the power series expansion method and Mori-Tanaka 
technique to homogenize material properties [7-8]. Interestingly, it was found that the outcomes obtained from the first order 
shear deformation theory (FSDT) perform better than the third order shear deformation theory (TSDT), and the classic plate 
theory (CPT) provides unreliable results. In fact, the analytical methods based on 3D elasticity theories are the most accurate 
techniques to solve static and dynamic problems, therefore, their results are considered as benchmarks for studies conducted 
based on two-dimensional (2D) analytical and numerical methods.  
    Additionally, other research works were presented to address dynamic problems of FG plates by employing analytical methods 
and using 2D elasticity theory. For example, Zenkour [9] proposed trigonometric series representation through the plate thickness 
to express displacement components of simply supported FG thick plates. Zenkour [10, 11] employed a sinusoidal shear 
deformation plate theory (SSDT) to analyze bending, vibration, and buckling behavior of the simply supported FG sandwich 
plate. In addition, Matsunaga [12] developed a buckling and free vibration analysis of FG plates by taking into account the effects 
of transverse shear and normal deformations along with rotatory inertia. Fares et al. [13] handed over a refined equivalent single-
layer (ESL) shear deformation theory for an orthotropic FG plate by a modified version of mixed variational principle of Reissner 
(RMVT). Likewise, Cinefra et al. [14], using the RMVT and Carrera Unified Formulation (CUF), performed a dynamic analysis 
of FG shells. Lastly, Hadji et al. [15] used Shimpi’s four variable refined plate theory for the free vibration analysis of FG 
sandwich plates, concluding that the notwithstanding refined plate theory is simple and able to predict accurate outcomes. 
    On the other hand, numerical methods were extensively used to analyze bending, vibration, and buckling of FG plates. Qian 
and Batra [16] performed a free and forced vibration analysis using high-order shear deformation theories (HSDTs) and meshless 
local Petrov–Galerkin (MLPG) method. Besides, the global collocation method along with the FSDT and TSDT, and Mori-
Tanaka approach were employed by Ferreira et al. [17] in order to find the natural frequencies of FG plates. Neves et al. [18-19] 
used the principle of virtual displacements (PVD) under CUF and a meshless technique based on the collocation with radial basis 
functions to address the thickness stretching issue on the static, free vibration, and buckling analysis of FG plates by employing 
a quasi-3D SSDT [18] and a quasi-3D HSDT [19]. 
    Likewise, using PVD and CUF to obtain both closed-form and finite element (FE) solutions, Carrera and Brischetto [20] 
addressed the static analysis of functionally graded plates subjected to transverse mechanical loadings using FSDT and HSDT. 
Carrera et al. [21] presented results using RMVT for bending analysis of FG plate by considering both displacements and 
transverse shear/normal stresses as primary variables. In addition, Carrera et al. [22] considered the effect of transverse normal 
strain in FG plates and shells. Mantari et al. [23-26] proposed a normal and optimized HSDT solution using Navier’s solution to 
get closed to 3D solution by properly selecting the arguments of the proposed SSSFs. Overall, several shear deformation theories 
can be evaluated by the compact and unified formulation as described in this section, and it is possible to have at one glance their 
performance. However, few researchers were concerned with theories that consider both non-polynomial shear strain functions 
and low number unknown variables at the same time, which is addressed in the present study. 
    The aim of the current research is to extend the work performed by Mantari et al. [26] which is related to the bending analysis 
and investigate the static and free vibration of advanced composites by employing an optimization process to obtain the most 
accurate outcomes for the eigenvalue problem of a simply supported FG rectangular plate. The present formulation follows the 
compactness presented by the Carrera’s Unified Formulation (CUF) along with the Principle of Virtual Work (PVD) and the 
Hamilton Principle to find the governing equations. The static and dynamic problem is solved by the closed-form Navier’s 
solution. Furthermore, three non-polynomial displacement fields are proposed. The obtained results demonstrate that the 
optimized HSDTs shows a good agreement with respect to the 3D elasticity solution by performing a proper selection of the 
arguments of the non-polynomial SSSFs. 

2. Analytical Modelling 

    The static analysis of the present research has been developed using a rectangular FG plate made of Aluminium (Al) and 
Alumina (Al2O3). For the vibration analysis, a FG plate made of Aluminium and Zirconia (ZrO2) is considered. In both cases, 
different values of p = {1, 2, 3, 5} are taken into consideration. Moreover, Table 1 provides the mechanical properties of the 
constituents. 

2.1. Functionally graded plates 

    Consider a single rectangular plate with the uniform thickness “h”, length “a”, and wide “b” (see Fig.1). The middle plane of 
the plate has been chosen as the plane xy of the Cartesian coordinate system while X-axis and Y-axis parallels to edges of the 
plate. The plate is made of a FGM having two distributed isotropic constituents. In addition, it is assumed that the Volume 
fraction of one of the plate constituents follows the powder law distribution as: 

𝑉ଶ(௭) = 𝑉ଶ
ି + (𝑉ଶ

ା − 𝑉ଶ
ି) ൬

𝑧

ℎ
+

1

2
൰

௣

,         −
ℎ

2
≤ 𝑧 ≤

ℎ

2
 (1) 

Table 1. Material properties of FG plate. 

Material 
Properties 

E (GPa) ν ρ (kg/m3) 
Aluminium (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 
Zirconia (ZrO2) 200 0.3 5700 
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    Therefore, 𝑉ଶ
ିand 𝑉ଶ

ାdenotes the volume fraction related to the faces of the plate, bottom and top, respectively. Additionally, 
the exponent “p” provides the material variation profile through the thickness (See Fig. 2). 

 

Fig. 1. Geometry of functionally graded single plate 

 

Fig. 2. Functionally graded function 𝑉𝑐 along the thickness of a FG plate (Al/Al2O3) for a set of values of “p”. 

    According to the law-of-mixture, the properties of the plate are calculated as follows: 

𝑃(௭) = (𝑃ଶ − 𝑃ଵ) × 𝑉ଶ(௭) + 𝑃ଵ (2) 

    where, P denotes a material property such as Young’s Modulus (E), Shear Modulus (G), density (ρ) and so on.   
    Moreover, the Mori-Tanaka homogenization method is used to estimate the effective bulk modulus “K” and the effective shear 
modulus G by using the following equations: 

𝐾 − 𝐾ଵ

𝐾ଶ − 𝐾ଵ

=
𝑉ଶ

1 + (1 − 𝑉ଶ)
𝐾ଶ − 𝐾ଵ

𝐾ଵ −
4
3

𝐺ଵ

 
(3a) 

𝐺 − 𝐺ଵ

𝐺ଶ − 𝐺ଵ

=
𝑉ଶ

1 + (1 − 𝑉ଶ)
𝐺ଶ − 𝐺ଵ

𝐺ଵ − 𝑓ଵ

 (3b) 

    where 𝑓ଵ =
(ଽ௄భା଼ீభ)ீభ

଺(௄భାଶ భீ)
. Therefore, the effective Young’s modulus “E” and Poisson’s ratio “𝝂”  are calculated using the 

following equations: 

𝐸 =
9𝐾𝐺

3𝐾 + 𝐺
 (4a) 

𝜈 =
3𝐾 − 2𝐺

2(3𝐾 + 𝐺)
 (4b) 

2.2. Displacement based field 

    For an Equivalent Single Layer (ESL) plate, the Carrera’s Unified Formulation assumes the following form of the 
displacement field: 
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𝒖 = 𝐹ఛ𝑢ఛ        𝜏 = 0,1,2 … . 𝑁 (5a) 

    where, 𝐹ఛ depends on z and 𝑢ఛ is a function of x, y, and time t. In this study, for the optimizing procedure, 𝐹ఛ is assumed to 
be: 

𝐹ఛ = ቎

𝐹௠,ఛ 0 0

0 𝐹௠,ఛ 0

0 0 𝐹௡,ఛ

቏ (5b) 

and 

𝑢ఛ = ൥

𝑢௫,ఛ

𝑢௬,ఛ

𝑢௭,ఛ

൩ (5c) 

    Using the Einstein notation, 

𝑢ఛ = 𝐹௠,ఛ × 𝑢௫,ఛ (6) 

    In expanded form, 

𝒖𝒙(𝑥, 𝑦, 𝑧, 𝑡) = 𝐹௠,଴𝑢௫଴ + 𝐹௠,ଵ𝑢௫ଵ + 𝐹௠,ଶ𝑢௫ଶ + 𝐹௠,ଷ𝑢௫ଷ + ⋯ 

𝒖𝒚(𝑥, 𝑦, 𝑧, 𝑡) = 𝐹௠,଴𝑢௬଴ + 𝐹௠,ଵ𝑢௬ଵ + 𝐹௠,ଶ𝑢௬ଶ + 𝐹௠,ଷ𝑢௬ଷ + ⋯ 

𝒖𝒛(𝑥, 𝑦, 𝑧, 𝑡) = 𝐹௡,଴𝑢௭଴ + 𝐹௡,ଵ𝑢௭ଵ + 𝐹௡,ଶ𝑢௭ଶ + 𝐹௡,ଷ𝑢௭ଷ + ⋯ 

(7a-c) 

    where 𝐹௠,௜ , 𝐹௡,௜  are non-polynomial functions of z and m and n refer to the SSSF arguments, respectively. The SSSFs are of 
trigonometrical and hyperbolic in nature.  

2.3. Elastic stress-strain relation 

    Employing CUF, the stresses (𝜎௄) and strains (𝜖௄) can be grouped as follows: 

𝜎௣
௄ = ൣ𝜎௫௫

௄ 𝜎௬௬
௄ 𝜎௫௬

௄൧
்
 

𝜎௡
௄ = ൣ𝜎௫௭

௄ 𝜎௭௬
௄ 𝜎௭௭

௄൧
்
 

𝜖௣
௄ = ൣ𝜖௫௫

௄ 𝜖௬௬
௄ 𝜖௫௬

௄൧
்
 

𝜖௡
௄ = ൣ𝜖௫௭

௄ 𝜖௭௬
௄ 𝜖௭௭

௄൧
்
 

(8a-d) 

    where k-th represent layers, the subscript n means in-plane components, and p means out-of-plane components. Assuming a 
normal or lineal strain, 

𝜺௣
௞ = 𝑫௣𝒖௞ 

𝜺௡
௞ = 𝑫௡𝒖௞ = ൫𝑫௡௣ + 𝑫௡௭൯𝒖௞ 

(9a-b) 

Therefore, 
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 (10a-c) 

    Moreover, Hooke’s law provides the stress-strain relationship as 

𝝈௄ = 𝑪௄𝝐௄ (11a) 

⎣
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 (11b) 

    The components 𝐶௜௝
௞  of the matrix 𝑪௄  are given as follows: 



285 D.A. Ramirez et. al., Vol. 5, No. 2, 2019 
 

Journal of Applied and Computational Mechanics, Vol. 5, No. 2, (2019), 281-298   

𝐶ଵଵ
௞ (𝑧) = 𝐶ଶଶ

௞ (𝑧) = 𝐶ଷଷ
௞ (𝑧) =

𝐸(𝑧) (1 − 𝜈)

(1 − 2𝜈)(1 + 𝜈)
 

𝐶ଵଷ
௞ (𝑧) = 𝐶ଶଷ

௞ (𝑧) = 𝐶ଵଶ
௞ (𝑧) =

𝐸(𝑧) 𝜈

(1 − 2𝜈)(1 + 𝜈)
 

𝐶ହହ
௞ (𝑧) = 𝐶ସସ

௞ (𝑧) = 𝐶଺଺
௞ (𝑧) =

𝐸(𝑧)

2(1 + 𝜈)
 

(12a-c) 

    According to Eq. (11a), Eqs. (8a-b) can be rewritten as: 

𝝈௣
௞ = ൫𝑪௣௣

௞ 𝜺௣
௞ + 𝑪௣௡

௞ 𝜺௡
௞൯ 

𝝈௡
௞ = ൫𝑪௡௣

௞ 𝜺௣
௞ + 𝑪௡௡

௞ 𝜺௡
௞൯ 

(13a-b) 

where 

𝑪௣௣
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(14a-d) 

2.4. Principle of virtual displacements 

    Hamilton’s principle can be expressed as: 

𝛿 ∫ (𝑈 + 𝑉௘ − 𝑇)𝑑𝑡
௧మ

௧భ
=0 (15) 

    where U is the strain energy, 𝑉௘ is the potential energy of the elastic foundation, and 𝑇 is the kinetic energy. Neglecting the 
potential energy, Eq. (15) can be rewritten as: 

෍ න න ቄ𝛿𝜺௣
௞்

𝝈௣
௞ + 𝛿𝜺௡

௞ ்
𝝈௡

௞ ቅ

஺ೖΩೖ

ே೗

௞ୀଵ

𝑑Ω௞𝑑𝑧 = ෍ න න 𝛿𝒖௞𝝆𝒖̈௞

஺ೖΩೖ

𝑑Ω௞𝑑𝑧

ே೗

௞ୀଵ

 (16) 

    where 𝜺௣
௞ or 𝝈௣

௞ are the stress and the strain vectors of the k-th layer, 𝑁௟ stands for the number of layers, and 𝛿𝐿௜௡௘
௞  is the 

external virtual work. 
    Using the previous equations in (16), it yields: 

න න ൜൫𝑫௣𝛿𝒖௞൯
்

ൣ𝑪௣௣
௞ 𝑫௣ + 𝑪௣௡

௞ ൫𝑫௡௣ + 𝑫௡௭൯൧𝒖௞

஺ೖΩೖ

+ ቀ൫𝑫௡௣ + 𝑫௡௭൯𝛿𝒖௞ቁ
்

ൣ𝑪௡௣
௞ 𝑫௣ + 𝑪௡௡

௞ ൫𝑫௡௣ + 𝑫௡௭൯൧𝒖௞ൠ 𝑑Ω௞𝑑𝑧

= ෍ න න 𝛿𝒖௞𝝆𝒖̈௞

஺ೖΩೖ

𝑑Ω௞𝑑𝑧

ே೗

௞ୀଵ

 

(17) 

    Moreover, considering Eq. (5a), Eq. (17) becomes: 

න න ቄ൫𝑫௣𝑭ఛ𝛿𝒖ఛ
௞൯

்
ൣ𝑪௣௣
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௞ + 𝑪௡௡
௞ 𝑭ௌ,௭𝒖ௌ

௞൧ቅ 𝑑Ω௞𝑑𝑧
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஺ೖΩೖ

𝑑Ω௞𝑑𝑧
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(18) 

    where the subscript 𝑧 indicates the partial derivative with respect to 𝑧. Through the thickness, the integration of Eq. (18) yields: 

൫𝑬ఛ௦௣௣
௞ , 𝑬ఛ௦௣௡

௞ , 𝑬ఛ௦,೥௣௡
௞ ൯ = න(𝐹௠,ఛ𝐹௠,௦𝑪௣௣

௞ , 𝐹௠,ఛ𝐹௡,௦𝑪௣௡
௞ , 𝐹௠,ఛ𝑪௣௡

௞ 𝑭𝒔,𝒛
)𝑑𝑧

஺ೖ

 (19) 
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௞ 𝑭𝒔,𝒛
)𝑑𝑧

஺ೖ

 

൫𝑬ఛ,೥௦௡௣
௞ , 𝑬ఛ,೥௦௡௡

௞ , 𝑬ఛ,೥௦,೥௡௡
௞ ൯ = න(𝑭𝝉,𝒛

𝐹௠,௦𝑪௡௣
௞ , 𝑭𝝉,𝒛

𝐹௡,௦𝑪௡௡
௞ , 𝑭𝝉,𝒛

𝑪௡௡
௞ 𝑭𝒔,𝒛

)𝑑𝑧

஺ೖ

 

    Now, by performing the integration of parts and using the following expression, 

න(𝑫ఆ𝛿𝒂ఛ
௞)்𝒂ௌ

௞𝑑Ω௞

Ωೖ

= − න 𝛿𝒂ఛ
௞்

(𝑫ఆ𝒂ௌ
௞)𝑑Ω௞

Ωೖ

+ න 𝛿𝒂ఛ
௞்

(𝑰ఆ𝒂ௌ
௞)𝑑Ω௞

Гೖ

 (20) 

    and Eq. (15) is rewritten as follows: 

න{(𝛿𝒖ఛ
௞)்𝑲௨௨

௞ఛ௦𝒖௦
௞}

Ωೖ

 𝑑Ω௞ + න{(𝛿𝒖ఛ
௞)்𝜫௨௨

௞ఛ௦𝒖௦
௞}

௰ೖ

 𝑑𝛤௞ = ෍ න න 𝛿𝒖௞𝝆𝒖̈௞

஺ೖΩೖ

𝑑Ω௞𝑑𝑧

ே೗

௞ୀଵ

 (21) 

    where 

𝑲௨௨
௞ఛ௦ = −൫𝑫௣൯

்
ൣ𝑬ఛ௦௣௣

௞ 𝑫௣ + 𝑬ఛ௦௣௡
௞ 𝑫௡௣ + 𝑬ఛ௦,೥௣௡

௞ ൧ − ൫𝑫௡௣൯
்

ൣ𝑬ఛ௦௡௣
௞ 𝑫௣ + 𝑬ఛ௦௡௡

௞ 𝑫௡௣ + 𝑬ఛ௦,೥௡௡
௞ ൧

+ ൣ𝑬ఛ,೥௦௡௣
௞ 𝑫௣ + 𝑬ఛ,೥௦௡௡

௞ 𝑫௡௣ + 𝑬ఛ,೥௦,೥௡௡
௞ ൧ 

(22) 

    Finally, the following compact differential equations can be achieved: 

(𝛿𝒖ఛ
௞)்:               𝑲௨௨

௞ఛ௦𝒖௦
௞ = 𝑴௨௨

௞ఛ௦𝒖̈௦
௞ (23) 

3. Naviers’ Solution 

    Assuming that the FG plate is simply supported (see Refs. [27, 28] to consider other boundary conditions), the Navier closed 
form solution is chosen as a solution as follows: 

𝑢௫
௄ = ෍ 𝑒௜ఠ௧𝑈௫

௄cos (𝛼𝑥)sin (𝛽𝑦)
௥,௦

 

𝑢௬
௄ = ෍ 𝑒௜ఠ௧𝑈௬

௄sin  (𝛼𝑥)sin (𝛽𝑦)
௥,௦

 

𝑢௭
௄ = ෍ 𝑒௜ఠ௧𝑈௭

௄sin (𝛼𝑥)sin (𝛽𝑦)
௥,௦

 

(24a-c) 

    where 𝛼 = 𝑟𝜋/𝑎  and 𝛽 = 𝑠𝜋/b . 𝑈௫ೞ
௞ , 𝑈௬ೞ

௞ , 𝑈௭ೞ
௞  are amplitudes, and 𝑟 and 𝑠 are the number of semi-waves. 

቎

𝐾ഥ௨௨ଵଵ 𝐾ഥ௨௨ଵଶ 𝐾ഥ௨௨ଵଷ

𝐾ഥ௨௨ଶଵ 𝐾ഥ௨௨ଶଶ 𝐾ഥ௨௨ଶଷ

𝐾ഥ௨௨ଷଵ 𝐾ഥ௨௨ଷଶ 𝐾ഥ௨௨ଷଷ

቏ ൦

𝑈௫ೞ
௞

𝑈௬ೞ
௞

𝑈௭ೞ
௞

൪ = ቎

𝑀ഥ௨௨ଵଵ 0 0

0 𝑀ഥ௨௨ଶଶ 0

0 0 𝑀ഥ௨௨ଷଷ

቏ ൦

𝑈̈௫ೞ
௞

𝑈̈௬ೞ
௞

𝑈̈௭ೞ
௞

൪ (25) 

where 

𝐾ഥ௨௨ଵଵ = න൫𝐶ହହ(𝑧)𝐹௠,ఛ,೥
𝐹௠,௦,೥

+ 𝛼ଶ𝐶ଵଵ(𝑧)𝐹௠,ఛ𝐹௠,௦ + 𝛽ଶ𝐶଺଺(𝑧)𝐹௠,ఛ𝐹௠,௦൯𝑑𝑧

௭

 

𝐾ഥ௨௨ଵଶ = න ൫𝛼𝛽𝐶ଵଶ(𝑧)𝐹௠,ఛ𝐹௠,௦ + 𝛼𝛽𝐶଺଺(𝑧)𝐹௠,ఛ𝐹௠,௦൯𝑑𝑧

௭

 

𝐾ഥ௨௨ଵଷ = න൫−𝛼𝐶ଵଷ(𝑧)𝐹௠,ఛ𝐹௡,௦,೥
+ 𝛼𝐶ହହ(𝑧)𝐹௠,ఛ,೥

𝐹௡,௦൯𝑑𝑧

௭

 

𝐾ഥ௨௨ଶଵ = න ൫𝛼𝛽𝐶ଵଶ(𝑧)𝐹௠,ఛ𝐹௠,௦ + 𝛼𝛽𝐶଺଺(𝑧)𝐹௠,ఛ𝐹௠,௦൯𝑑𝑧

௭

 

𝐾ഥ௨௨ଶଶ = න൫𝐶ସସ(𝑧)𝐹௠,ఛ,೥
𝐹௠,௦,೥

+ 𝛽ଶ𝐶ଶଶ(𝑧)𝐹௠,ఛ𝐹௠,௦ + 𝛼ଶ𝐶଺଺(𝑧)𝐹௠,ఛ𝐹௠,௦൯𝑑𝑧

௭

 

(26a-i) 
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𝐾ഥ௨௨ଶଷ = න൫−𝛽𝐶ଶଷ(𝑧)𝐹௠,ఛ𝐹௡,௦,೥
+ 𝛽𝐶ସସ(𝑧)𝐹௠,ఛ,೥

𝐹௡,௦൯𝑑𝑧

௭

 

𝐾ഥ௨௨ଷଵ = න ൫𝛼𝐶ହହ(𝑧)𝐹௡,ఛ𝐹௠,௦,೥
− 𝛼𝐶ଵଷ(𝑧)𝐹௡,ఛ,೥

𝐹௠,௦൯𝑑𝑧

௭

 

𝐾ഥ௨௨ଷଶ = න ൫𝛽𝐶ସସ(𝑧)𝐹௡,ఛ𝐹௠,௦,೥
− 𝛽𝐶ଶଷ(𝑧)𝐹௡,ఛ,೥

𝐹௠,௦൯𝑑𝑧

௭

 

𝐾ഥ௨௨ଷଷ = න൫𝐶ଷଷ(𝑧)𝐹௡,ఛ,೥
𝐹௡,௦,೥

+ 𝛽ଶ𝐶ସସ(𝑧)𝐹௠,ఛ𝐹௠,௦ + 𝛼ଶ𝐶ହହ(𝑧)𝐹௠,ఛ𝐹௠,௦൯𝑑𝑧

௭

 

Finally 

𝑀ഥ௨௨ଵଵ = න൫𝜌(𝑧)𝐹௠,ఛ𝐹௠,௦൯𝑑𝑧

௭

 

𝑀ഥ௨௨ଶଶ = න ൫𝜌(𝑧)𝐹௠,ఛ𝐹௠,௦൯𝑑𝑧

௭

 

𝑀ഥ௨௨ଷଷ = න൫𝜌(𝑧)𝐹௡,ఛ𝐹௡,௦൯𝑑𝑧

௭

 

(27a-c) 

4. Results and discussions 

    Two issues related to the behavior of FG plates are addressed in the present study. Firstly, a static analysis of a simply 
supported FG square plate is performed using the CUF framework and employing a set of non-polynomial displacement fields 
to predict accurately the plate’s displacements and stresses when the plate is subjected to the bi-sinusoidal pressure load (𝑞଴), 
normal to the top face. The proposed displacement fields are given in Table 2. 

𝑞଴ = 𝑄଴sin(𝛼𝑥)sin (𝛽𝑦) (28) 

    where 𝑄଴ = 1. The results are presented in terms of the following non-dimensional parameters: 

𝑢ത = 𝑢௫ ൬0,
𝑏
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(29a-f) 

Table 2. SSSFs proposed in this paper. 

Field i 𝐹௜,଴ 𝐹௜,ଵ 𝐹௜,ଶ 𝐹௜,ଷ 𝐹௜,ସ 
Polynomial -- 1 𝑧 𝑧ଶ 𝑧ଷ 𝑧ସ 

F1 
m 1 𝑧 sin (𝑚𝑧 ℎ⁄ ) cos (𝑚𝑧 ℎ⁄ ) sin (2𝑚𝑧 ℎ⁄ ) 
n 1 𝑧 z. sin (𝑛𝑧 ℎ⁄ ) z. cos (𝑛𝑧 ℎ⁄ ) z. sin (2 𝑛𝑧 ℎ⁄ ) 

F2 
m 1 𝑧 cos (𝑚𝑧 ℎ⁄ ) sin (𝑚𝑧 ℎ⁄ ) cos(2 𝑚𝑧 ℎ⁄ ) 
n 1 𝑧 sin (𝑛𝑧 ℎ⁄ ) cos (𝑛𝑧 ℎ⁄ ) sin (2 𝑛𝑧 ℎ⁄ ) 

F3 
m 1 𝑧 tanh (𝑚𝑧 ℎ⁄ ) sech (𝑚𝑧 ℎ⁄ ) tanh (2 𝑚𝑧 ℎ⁄ ) 
n 1 𝑧 cosh (𝑛𝑧 ℎ⁄ ) sinh(𝑛𝑧 ℎ⁄ ) cosh (2𝑛𝑧 ℎ⁄ ) 

    Secondly, a free vibration analysis of a FG square plate (Al/ZrO2) is performed employing an expansion order N=3 for the 
displacement fields. The results are given in terms of the following dimensionless frequencies: 

𝜔௥,௦
(௞) = 𝜔௥,௦

𝑎ଶ

ℎ
ඨ

𝜌௠

𝐸௠

 (30) 

    where r and s are the wave numbers. In addition, the subscripts “m” and “c” denote metallic and ceramic, respectively. Finally, 
to ensure the validity of the presented outcomes, they are compared with the exact solutions found in the literature. 
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4.1. Static results 

    A FG square plate with the thickness, h, and the side-to-thickness ratio, 
௔

௛
= 10, is considered. The plate is graded from 

aluminium at the bottom to alumina at the top. The Young’s modulus and density are estimated by the law-of-mixtures (See Eq. 
2). Figure 2 shows the ceramic volume fraction for different values of the exponent p. 
    As shown in Table 2, the displacement fields proposed in the current research use non-polynomial SSSF, more specifically, 
trigonometric and hyperbolic functions. Moreover, the SSSF are defined in terms of “m” and “n” parameters that could be varied. 
Therefore, the first analysis is performed using an expansion order, N=4, by assuming the arguments equal to one (m=n=1). 
Table 3 presents the obtained results of displacements and stresses of the simply supported FG square plate for a set of values of 
p = {1, 2, 3, 5}. It can be noticed that the results are in a good agreement with 2D analytical solution by Carrera et al. [20]. Then, 
a second analysis is performed using the expansion order, N=2. The obtained outcomes are compared with respect to the 
referential solution to check accuracy. Fortunately, it is possible to improve accuracy with a fixed number of variables, i.e., fixed 
N, as shown in Ref. [26]. To this end, it is necessary to develop a process of optimization in which the arguments (m, n) are 
varied to find the best match with 3D elasticity solution or referential solution. The Optimization 1 (Opt. 1) model is defined to 
get a couple of m and n parameters that allows obtaining good results (minimum error) for displacements. Other optimization 
models are also explored and they are presented as follows:  

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 1 𝑓𝑜𝑟 min [
%𝐸𝑟𝑟௨ + %𝐸𝑟𝑟௩ + %𝐸𝑟𝑟௪

3
] 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 2 𝑓𝑜𝑟 min [
%𝐸𝑟𝑟ఙ೤೤

+ %𝐸𝑟𝑟ఙ೤೥
+ %𝐸𝑟𝑟ఙೣ೤

3
] 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 3 𝑓𝑜𝑟 min [
%𝐸𝑟𝑟௨ + %𝐸𝑟𝑟௩ + %𝐸𝑟𝑟௪ + %𝐸𝑟𝑟ఙ೤೤

+ %𝐸𝑟𝑟ఙ೤೥
+ %𝐸𝑟𝑟ఙೣ೤

6
] 

(31a-c) 

where 

%𝐸𝑟𝑟௨ =
𝑢௣௥௘௦௘௡௧ − 𝑢௘௫௔௖௧

𝑢௘௫௔௖௧

× 100% (32) 

    Equation 32 allows obtaining the accuracy of the results by comparing the obtained results and the exact solution or the 
referential solution. 
    Figures 3 to 5 illustrate the correspondence between the arguments (m, n) with the accuracy of the outcomes for p=5. For 
example, Fig. 3 shows three graphics, each one corresponds to an optimization process (mentioned in Eq. 31). Furthermore, the 
case of study is solved using the proposed first displacement field (see Table 1). Analyzing results reported in Fig. 3, it is possible 
to observe the variation of errors (obtained in Eq. 32) as a function of “m” and “n” parameters. Therefore, at one glance, the first 
graph (Optimization 1) shows that the region with low level of error is in the neighborhood of the point (1, 1); whereas, for 
Optimization 2 and 3, good results are found in the neighborhood of the point (0, 0). The same analysis is presented in Figs. 4 
and 5.  
    In addition, the optimum values of the arguments are presented in Table 4. Then, using these optimum values, the FG plate’s 
displacements and stresses are calculated and presented in Table 5. Again, the obtained outcomes are compared with 2D 
analytical solutions given by Carrera [20].  

Table 3. Comparison of non-dimensional 2D analytical solution of displacements and stress of a FG square plate (Al/Al2O3) (𝑁 = 4, 𝑎 =
𝑏, 𝑎 ℎ⁄ = 10 , 𝑚 = 1 & 𝑛 = 1 ). 

p Theory 𝑢ത  𝑣̅ 𝑤ഥ  𝜎ത௬௬ 𝜎ത௬௭ 𝜎ത௫௬ 

1 

Nml = 100(PVD) [20] 0.6436 0.4970 0.5875 1.5062 0.2510 0.6081 
Polynomial (N=4) 0.6435 0.4981 0.5875 1.5064 0.2508 0.6112 

F1 (N=4) 0.6429 0.4976 0.5865 1.3965 0.2523 0.6105 
F2 (N=4) 0.6437 0.4981 0.5875 1.5057 0.2546 0.6114 
F3 (N=4) 0.6437 0.4981 0.5875 1.5059 0.2539 0.6114 

2 

Nml = 100(PVD) [20] 0.9012 0.7149 0.7570 1.4147 0.2496 0.5421 
Polynomial (N=4) 0.9012 0.7162 0.7570 1.4140 0.2514 0.5437 

F1 (N=4) 0.9009 0.7154 0.7554 1.2864 0.2615 0.5437 
F2 (N=4) 0.9021 0.7161 0.7568 1.4119 0.2641 0.5445 
F3 (N=4) 0.9020 0.7161 0.7569 1.4124 0.2622 0.5444 

3 

Nml = 100(PVD) [20] 1.0106 0.8065 0.8381 1.2948 0.2420 0.5515 
Polynomial (N=4) 1.0111 0.8086 0.8381 1.2936 0.2447 0.5522 

F1 (N=4) 1.0106 0.8069 0.8361 1.1599 0.2600 0.5525 
F2 (N=4) 1.0119 0.8076 0.8377 1.2911 0.2626 0.5534 
F3 (N=4) 1.0119 0.8077 0.8378 1.2918 0.2599 0.5533 

5 

Nml = 100(PVD) [20] 1.0716 0.8506 0.9118 1.1233 0.2324 0.5761 
Polynomial (N=4) 1.0724 0.8540 0.9116 1.1219 0.2270 0.5763 

F1 (N=4) 1.0707 0.8511 0.9099 0.9899 0.2390 0.5762 
F2 (N=4) 1.0719 0.8518 0.9117 1.1201 0.2414 0.5771 
F3 (N=4) 1.0719 0.8517 0.9117 1.1208 0.2390 0.5770 
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Table 4. Optimum values of arguments (m, n) of the non-polynomial SSSFs for the bending analysis (𝑁 = 2). 

 F1 (N=2) F2 (N=2) F3 (N=2) 
p=1 m n m n m n 

Optimization 1st 1 0.8 0.1 0.1 0.1 0.3 
Optimization 2nd 7.4 0.1 7 0.1 3.9 0.7 
Optimization 3rd 0.1 0.1 7 0.1 3.9 0.7 

p=2 m n m n m n 
Optimization 1st 0.2 0.1 0.1 0.1 0.1 0.4 
Optimization 2nd 0.1 0.6 7 0.1 5 0.9 
Optimization 3rd 0.1 0.1 7 0.1 5 0.9 

p=3 m n m n m n 
Optimization 1st 0.7 0.3 0.1 0.1 0.1 0.5 
Optimization 2nd 0.1 0.3 7 0.1 5.3 1 
Optimization 3rd 0.1 0.1 7 0.1 5.3 1 

p=5 m n m n m n 
Optimization 1st 0.3 0.2 0.2 0.1 0.1 0.7 
Optimization 2nd 0.1 0.2 7 0.1 4.3 1.4 
Optimization 3rd 0.1 0.1 7 0.1 4.3 1.4 

 

Fig. 3. Error (%) obtained from optimization procedures on the first SSSFs (𝐴𝑙 𝐴𝑙ଶ𝑂ଷ⁄ , 𝑎 = 𝑏, 𝑎 ℎ⁄ = 10 & 𝑝 = 5). 

 

Fig. 3. (continued) 

 

 

 

Fig. 4. Error (%) obtained from optimization procedures on the second SSSFs (𝐴𝑙 𝐴𝑙ଶ𝑂ଷ⁄ , 𝑎 = 𝑏, 𝑎 ℎ⁄ = 10 & 𝑝 = 5). 
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Fig. 5. Error (%) obtained from optimization procedures on the third SSSFs (𝐴𝑙 𝐴𝑙ଶ𝑂ଷ⁄ , 𝑎 = 𝑏, 𝑎 ℎ⁄ = 10 & 𝑝 = 5). 

Table 5. Comparison of non-dimensional displacements and stress of a FG square plate (Al/Al2O3) (𝑁 = 2, 𝑎 = 𝑏, 𝑎 ℎ⁄ = 10 ). 

p Theory 𝑢ത  𝑣̅ 𝑤ഥ  𝜎ത௬௬ 𝜎ത௬௭ 𝜎ത௫௬ 

1 

Nml = 100(PVD) [20] 0.6436 0.4970 0.5875 1.5062 0.2510 0.6081 
Polynomial (N=2) 0.6463 0.5012 0.5853 1.5099 0.1997 0.6121 
F1 (N=2) Opt 1st 0.6436 0.4971 0.5875 1.4905 0.2672 0.6123 
F1 (N=2) Opt 2nd 0.6117 0.4716 0.5592 1.5065 0.2552 0.5833 
F1 (N=2) Opt 3rd 0.6432 0.4969 0.5872 1.5010 0.2674 0.6119 
F2 (N=2) Opt 1st 0.6432 0.4969 0.5872 1.5011 0.2674 0.6119 
F2 (N=2) Opt 2nd 0.6428 0.4960 0.5867 1.5028 0.2581 0.6122 
F3 (N=2) Opt 1st 0.6432 0.4969 0.5872 1.5016 0.2674 0.6119 
F3 (N=2) Opt 2nd 0.6429 0.4959 0.5867 1.5060 0.2510 0.6124 

2 

Nml = 100(PVD) [20] 0.9012 0.7149 0.7570 1.4147 0.2496 0.5421 
Polynomial (N=2) 0.9066 0.7213 0.7533 1.4166 0.2001 0.5454 
F1 (N=2) Opt 1st 0.9030 0.7149 0.7570 1.4021 0.2824 0.5465 
F1 (N=2) Opt 2nd 0.8960 0.7095 0.7524 1.4093 0.2822 0.5421 
F1 (N=2) Opt 3rd 0.9007 0.7132 0.7555 1.4053 0.2824 0.5451 
F2 (N=2) Opt 1st 0.9007 0.7132 0.7555 1.4053 0.2824 0.5451 
F2 (N=2) Opt 2nd 0.8997 0.7114 0.7549 1.4069 0.2742 0.5452 
F3 (N=2) Opt 1st 0.9007 0.7132 0.7555 1.4064 0.2824 0.5451 
F3 (N=2) Opt 2nd 0.9002 0.7111 0.7543 1.4148 0.2499 0.5456 

3 

Nml = 100(PVD) [20] 1.0106 0.8065 0.8381 1.2948 0.2420 0.5515 
Polynomial (N=2) 1.0192 0.8158 0.8316 1.2961 0.1852 0.5549 
F1 (N=2) Opt 1st 1.0130 0.8064 0.8376 1.2729 0.2781 0.5553 
F1 (N=2) Opt 2nd 1.0064 0.8013 0.8335 1.2865 0.2779 0.5515 
F1 (N=2) Opt 3rd 1.0101 0.8042 0.8359 1.2830 0.2780 0.5537 
F2 (N=2) Opt 1st 1.0101 0.8042 0.8359 1.2831 0.2780 0.5537 
F2 (N=2) Opt 2nd 1.0083 0.8014 0.8353 1.2840 0.2730 0.5538 
F3 (N=2) Opt 1st 1.0101 0.8042 0.8359 1.2848 0.2781 0.5537 
F3 (N=2) Opt 2nd 1.0090 0.8007 0.8342 1.2879 0.2412 0.5543 

5 

Nml = 100(PVD) [20] 1.0716 0.8506 0.9118 1.1233 0.2324 0.5761 
Polynomial (N=2) 1.0833 0.8643 0.9001 1.1244 0.1529 0.5796 
F1 (N=2) Opt 1st 1.0723 0.8505 0.9112 1.1068 0.2500 0.5780 
F1 (N=2) Opt 2nd 1.0682 0.8473 0.9085 1.1115 0.2494 0.5757 
F1 (N=2) Opt 3rd 1.0708 0.8494 0.9102 1.1093 0.2494 0.5772 
F2 (N=2) Opt 1st 1.0705 0.8492 0.9106 1.1089 0.2520 0.5771 
F2 (N=2) Opt 2nd 1.0678 0.8451 0.9096 1.1090 0.2470 0.5772 
F3 (N=2) Opt 1st 1.0708 0.8494 0.9102 1.1125 0.2495 0.5772 
F3 (N=2) Opt 2nd 1.0681 0.8443 0.9092 1.1234 0.2327 0.5775 
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4.2. Free vibration results 

    The first nine thickness mode frequencies corresponding to wave numbers r=s=1 is studied in this section. A FG square plate 
with the thickness, h, and the side-to-thickness ratio, 𝑎/ℎ = 5, is selected. The plate is graded from aluminum (bottom) to 
zirconia (top), and the Mori-Tanaka method is used to calculate the effective properties of the FG plate. Figure 6 depicts the 
volume fraction, Poisson’s ratio, Young’s modulus, and density of the plate estimated by the Mori-Tanaka approach. 

      
(a) (b) 

Fig. 6. Through the thickness distribution of (a) ceramic volume faction, (b) density, (c) Young’s modulus and (d) Poisson ratio ( 𝑎 ℎ⁄ = 5 
& 𝑝 = 3). 

  
(c) (d) 

Fig. 6. (continued) 

    A free vibration analysis is performed for the expansion N=3 along with the arguments given by the following optimization 
model: 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 4 𝑓𝑜𝑟 min [%𝐸𝑟𝑟ఠଵ =
𝜔ଵ

௣௥௘௦௘௡௧ − 𝜔ଵ
௘௫௔௖௧

𝜔ଵ
௘௫௔௖௧

× 100%] (33) 

   Therefore, the optimum values of the arguments are given in Table 6 for the expansion N=3. In addition, Fig. 7 shows three 
graphics, each one corresponds to a displacement field presented in Table 1, and likewise Fig. 3, it shows the accuracy of the 
results using the error given in Eq. 33. 

  
(a) (b) 

Fig. 7. Variations of dimensionless first thickness frequency (Opt. 4) with parameters “m” and “n”. (a) First displacement field, (b) 
Second displacement field, (c) Third displacement field (𝑁 = 3, 𝑎 ℎ⁄ = 5 & 𝑝 = 3). 
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(c) 

Fig. 7. (continued) 

Table 6. Optimum values of arguments (m, n) of the non-polynomial displacement fields proposed for the vibration analysis (𝑁 = 3). 

 F1 (N=3) F2 (N=3) F3 (N=3) 
Optimization 4th m n m n m n 

p=1 1.3 1.3 0.3 1.9 0.7 0.9 
p=2 2.1 0.5 0.7 1.3 0.3 1.1 
p=3 0.7 0.7 4.1 1.1 0.9 2.5 
p=5 1.9 0.9 0.9 0.5 0.7 0.5 

Optimization 5th m n m n m n 
p=1 5.7 3.7 5.7 5.1 2.1 4.1 
p=2 5.7 3.7 5.7 5.1 2.3 3.1 
p=3 5.7 3.7 5.9 5.1 2.3 0.5 
p=5 5.5 3.9 5.7 4.5 2.5 5.5 

    Moreover, Table 7 presents the comparison between the obtained results using values presented in Table 6 and the exact 
solution presented by Vel [6]. Additionally, this table exhibits the frequencies obtained by a polynomial displacement field for 
the expansion N=50. Evidently, the outcomes obtained for an expansion N=3 are in an excellent agreement with Vel’s outcomes 
for the first five thickness mode frequencies. However, the situation is completely different for the remaining frequencies. In 
order to overcome this inconvenient, an Optimization 5 (Opt. 5) model is used. 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 5 𝑓𝑜𝑟 min [%𝐸𝑟𝑟ఠ଺ =
𝜔଺

௣௥௘௦௘௡௧ − 𝜔଺
௘௫௔௖௧

𝜔଺
௘௫௔௖௧

× 100%] (34) 

Table 7. Comparison of non-dimensional natural thickness frequencies for a FG (Al/ZrO2) square plate (𝑁 = 3, 𝑎 = 𝑏, 𝑎 ℎ⁄ = 5), Opt.4. 

Theory 𝜔ଵ,ଵ
(ଵ) 𝜔ଵ,ଵ

(ଶ) 𝜔ଵ,ଵ
(ଷ) 𝜔ଵ,ଵ

(ସ) 𝜔ଵ,ଵ
(ହ) 𝜔ଵ,ଵ

(଺) 𝜔ଵ,ଵ
(଻) 𝜔ଵ,ଵ

(଼) 𝜔ଵ,ଵ
(ଽ) 

𝑎 ℎ⁄ = 5  𝑝 = 1 
Vel [6] 5.4806 14.558 24.381 53.366 57.620 90.993 102.97 109.37 152.63 

Poly (N=5) 5.4772 14.549 24.366 53.330 57.581 91.015 103.47 109.81 151.19 
Poly (N=4) 5.4772 14.549 24.366 53.349 57.609 91.289 104.34 110.61 188.78 
F1* (N=3) 5.4806 14.588 24.366 53.506 57.823 93.589 123.90 127.69 216.29 
F2* (N=3) 5.4806 14.549 24.366 53.521 57.826 93.685 125.27 129.35 217.97 
F3* (N=3) 5.4806 14.549 24.369 53.629 57.975 93.487 116.39 121.10 217.53 

𝑎 ℎ⁄ = 5  𝑝 = 2 
Vel [6] 5.4923 14.278 23.909 50.376 54.685 86.190 99.921 105.66 148.97 

Poly (N=5) 5.4897 14.271 23.898 50.345 54.652 86.235 100.76 106.45 151.04 
Poly (N=4) 5.4898 14.271 23.898 50.390 54.709 86.520 101.45 107.09 184.55 
F1* (N=3) 5.4924 14.271 23.898 50.511 55.112 88.011 120.95 124.97 217.91 
F2* (N=3) 5.4923 14.271 23.899 50.552 54.947 88.564 124.49 128.31 221.58 
F3* (N=3) 5.4923 14.271 23.904 50.588 54.989 88.832 120.42 124.32 220.83 

𝑎 ℎ⁄ = 5  𝑝 = 3 
Vel [6] 5.5285 14.150 23.696 48.825 53.179 83.700 98.730 104.17 147.53 

Poly (N=5) 5.5265 14.145 23.688 48.790 53.139 83.755 99.771 105.16 149.29 
Poly (N=4) 5.5268 14.145 23.688 48.861 53.227 84.046 100.23 105.60 182.82 
F1* (N=3) 5.5285 14.145 23.688 48.949 53.399 85.823 124.76 128.45 220.57 
F2* (N=3) 5.5283 14.145 23.689 48.836 53.276 84.824 110.22 115.05 206.25 
F3* (N=3) 5.5285 14.145 23.692 48.970 53.468 85.733 115.53 119.69 216.66 
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Table 7. (continued) 
𝑎 ℎ⁄ = 5  𝑝 = 5 

Vel [6] 5.5632 14.026 23.494 47.687 52.068 81.825 97.384 102.71 146.02 
Poly (N=5) 5.5618 14.022 23.489 47.640 52.005 81.854 98.823 104.09 145.56 
Poly (N=4) 5.5624 14.022 23.486 47.735 52.122 82.161 98.955 104.24 181.08 
F1* (N=3) 5.5632 14.022 23.489 47.720 52.286 83.577 121.47 125.27 219.16 
F2* (N=3) 5.5632 14.022 23.489 47.737 52.215 83.764 124.17 127.81 219.96 
F3* (N=3) 5.5632 14.022 23.494 47.729 52.210 83.757 117.30 121.22 217.67 

                *Optimization 4th. 

    The optimum values of the arguments are presented in Table 6 for each displacement field and different values of p, which 
confirms the case dependent problem between the selected theory and the case study. As expected, the results of the sixth, 
seventh, and eighth frequencies are in a close agreement with the exact solution (Table 8). 
    The second free vibration analysis for the expansion N=2 is performed while the first five obtained frequencies are in a good 
agreement with the reference values (Table 9). However, for the expansion N=2, it is not possible to predict high frequencies 
even when the Optimization 5 is used. Consequently, other non-polynomial SSSFs should be evaluated or a zigzag variable 
expansion term should be included. 

Table 8. Comparison of non-dimensional natural thickness frequencies for a FG (Al/ZrO2) square plate (𝑁 = 3, 𝑎 = 𝑏, 𝑎 ℎ⁄ = 5), Opt. 4 and 
5. 

Theory 𝜔ଵ,ଵ
(ଵ) 𝜔ଵ,ଵ

(ଶ) 𝜔ଵ,ଵ
(ଷ) 𝜔ଵ,ଵ

(ସ) 𝜔ଵ,ଵ
(ହ) 𝜔ଵ,ଵ

(଺) 𝜔ଵ,ଵ
(଻) 𝜔ଵ,ଵ

(଼) 𝜔ଵ,ଵ
(ଽ) 

𝑎 ℎ⁄ = 5  𝑝 = 1 
Vel [6] 5.4806 14.558 24.381 53.366 57.620 90.993 102.97 109.37 152.63 

Poly (N=5) 5.4772 14.549 24.366 53.330 57.581 91.015 103.47 109.81 151.19 
F1** (N=3) 5.4806 14.588 24.366 53.506 57.823 91.468 104.18 110.96 157.07 
F2** (N=3) 5.4806 14.549 24.366 53.521 57.826 91.096 104.18 110.94 187.03 
F3** (N=3) 5.4806 14.549 24.369 53.629 57.975 91.004 101.54 109.21 198.56 

𝑎 ℎ⁄ = 5  𝑝 = 2 
Vel [6] 5.4923 14.278 23.909 50.376 54.685 86.190 99.921 105.66 148.97 

Poly (N=5) 5.4897 14.271 23.898 50.345 54.652 86.235 100.76 106.45 151.04 
F1** (N=3) 5.4924 14.271 23.898 50.511 55.112 86.576 101.51 107.59 154.66 
F2** (N=3) 5.4923 14.271 23.899 50.552 54.947 86.269 101.51 107.65 185.57 
F3** (N=3) 5.4923 14.271 23.904 50.588 54.989 86.179 98.839 105.79 195.66 

𝑎 ℎ⁄ = 5  𝑝 = 3 
Vel [6] 5.5285 14.150 23.696 48.825 53.179 83.700 98.730 104.17 147.53 

Poly (N=5) 5.5265 14.145 23.688 48.790 53.139 83.755 99.771 105.16 149.29 
F1** (N=3) 5.5285 14.145 23.688 48.949 53.399 83.853 99.735 105.45 160.35 
F2** (N=3) 5.5283 14.145 23.689 48.836 53.276 83.731 100.49 106.35 184.95 
F3** (N=3) 5.5285 14.145 23.692 48.970 53.468 83.750 99.192 105.48 195.55 

𝑎 ℎ⁄ = 5  𝑝 = 5 
Vel [6] 5.5632 14.026 23.494 47.687 52.068 81.825 97.384 102.71 146.02 

Poly (N=5) 5.5618 14.022 23.489 47.640 52.005 81.854 98.823 104.09 145.56 
F1** (N=3) 5.5632 14.022 23.489 47.720 52.286 81.821 100.21 105.77 154.93 
F2** (N=3) 5.5632 14.022 23.489 47.737 52.215 81.823 99.200 104.99 187.23 
F3** (N=3) 5.5632 14.022 23.494 47.729 52.210 81.876 96.383 102.95 191.39 

                ** Optimization 4th is used for the first six frequencies and Optimization 5th for the remain. 

  
(a) (b) 

Fig. 8. Variations of dimensionless sixth thickness frequency (Opt. 5) with parameters “m” and “n”. (a) First displacement field, (b) 
Second displacement field, (c) Third displacement field (𝑁 = 3, 𝑎 ℎ⁄ = 5 & 𝑝 = 2). 
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(c) 

Fig. 8. (continued) 

Table 9. Optimum values of arguments (m, n) of the non-polynomial SSSFs for the vibration analysis (𝑁 = 2). 

 F1 (N=2) F2 (N=2) F3 (N=2) 
Optimization 4th m n m n m n 

p=1 0.9 0.7 0.3 0.1 0.3 2.1 
p=2 1.5 0.7 2.5 0.1 1.1 2.1 
p=3 0.9 0.7 0.3 0.3 0.3 2.1 
p=5 1.1 0.9 0.3 1.3 1.3 1.3 

Optimization 5th m n m n m n 
p=1 7.1 2.9 5.9 0.1 3.7 3.3 
p=2 7.1 2.9 5.9 0.1 3.5 4.1 
p=3 7.1 2.9 0.3 0.1 3.3 5.9 
p=5 7.1 2.9 0.3 0.1 0.1 2.3 

    In addition to the presented results, the free vibration analysis of advanced composites with law-of-mixtures is performed to 
estimate the properties of the plate. The results are compared with 2D analytical solutions given by Matsunaga [12] (Table 10). 
Table 11 represents that flexural free vibration frequency results are in a good agreement when compared with respect to 3D 
exact solution. Finally, the obtained flexural modes are shown in Figs. 9 to 11, which are comparable with modes presented by 
Neves [19]. 
    Overall, it is important to notice that the available benchmark examples in the literature use higher order expansion than those 
proposed in the present study. For instance, the exact solution for the vibration of FG plates presented by Vel [6] was obtained 
using fifty terms in the power series proposed as the displacement function, whereas Carrera [20] utilized an expansion order 
N=4 to develop the static analysis of functionally graded plates subjected to transverse mechanical loadings. 

Table 10. Comparison of non-dimensional natural thickness frequencies for a FG (Al/ZrO2) square plate (𝑁 = 2, 𝑎 = 𝑏, 𝑎 ℎ⁄ = 5) , Opt.4. 

Theory 𝜔ଵ,ଵ
(ଵ) 𝜔ଵ,ଵ

(ଶ) 𝜔ଵ,ଵ
(ଷ) 𝜔ଵ,ଵ

(ସ) 𝜔ଵ,ଵ
(ହ) 𝜔ଵ,ଵ

(଺) 𝜔ଵ,ଵ
(଻) 𝜔ଵ,ଵ

(଼) 𝜔ଵ,ଵ
(ଽ) 

𝑎 ℎ⁄ = 5  𝑝 = 1 
Vel [6] 5.4806 14.558 24.381 53.366 57.620 90.993 102.97 109.37 152.63 

F1** (N=2) 5.4807 14.549 24.422 53.730 58.117 103.92 175.50 175.73 253.45 
F2** (N=2) 5.4821 14.549 24.421 53.734 58.057 106.28 189.11 190.27 242.99 
F3** (N=2) 5.4820 14.549 24.421 53.716 58.063 106.24 178.61 180.13 263.29 

𝑎 ℎ⁄ = 5  𝑝 = 2 
Vel [6] 5.4923 14.278 23.909 50.376 54.685 86.190 99.921 105.66 148.97 

F1** (N=2) 5.4921 14.271 23.964 50.713 55.227 99.702 174.09 174.41 255.50 
F2** (N=2) 5.4958 14.271 23.964 50.688 55.086 102.24 188.67 189.86 241.95 
F3** (N=2) 5.4955 14.271 23.964 50.743 55.140 102.17 179.70 181.24 274.77 

𝑎 ℎ⁄ = 5  𝑝 = 3 
Vel [6] 5.5285 14.150 23.696 48.825 53.179 83.700 98.730 104.17 147.53 

F1** (N=2) 5.5289 14.145 23.759 49.039 53.534 97.535 173.29 173.61 255.43 
F2** (N=2) 5.5296 14.145 23.759 49.036 53.411 100.23 221.17 222.16 242.16 
F3** (N=2) 5.5296 14.145 23.759 49.004 53.506 100.06 181.54 183.10 309.21 

𝑎 ℎ⁄ = 5  𝑝 = 5 
Vel [6] 5.5632 14.026 23.494 47.687 52.068 81.825 97.384 102.71 146.02 

F1** (N=2) 5.5630 14.023 23.563 47.748 52.255 95.827 171.70 171.98 252.83 
F2** (N=2) 5.5633 14.023 23.563 47.658 52.124 98.676 218.24 218.19 239.64 
F3** (N=2) 5.5636 14.023 23.563 47.734 52.220 89.543 98.636 214.14 249.24 

                ** Optimization 4th is used for the first six frequencies and Optimization 5th for the remain. 
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𝜔ଵ,ଵ = 5.4305 𝜔ଵ,ଶ = 11.549 

  

  

Fig. 9. Dimensionless flexural mode natural frequencies 𝜔ଵ,ଵ y 𝜔ଵ,ଶ of square FG plate (Al/ZrO2) (𝑎 = 𝑏, 𝑎 ℎ⁄ = 5 & 𝑝 = 1). 

Table 11. Comparison of non-dimensional natural thickness frequencies for a FG (Al/ZrO2) square plate (𝑁 = 2, 𝑎 = 𝑏, 𝑎 ℎ⁄ = 5) , Opt. 4 
and 5. 

Theory 𝜔ଵ,ଵ
(ଵ) 𝜔ଵ,ଵ

(ଶ) 𝜔ଵ,ଵ
(ଷ) 𝜔ଵ,ଵ

(ସ) 𝜔ଵ,ଵ
(ହ) 𝜔ଵ,ଵ

(଺) 𝜔ଵ,ଵ
(଻) 𝜔ଵ,ଵ

(଼) 𝜔ଵ,ଵ
(ଽ) 

𝑎 ℎ⁄ = 5  𝑝 = 1 

Matsunaga [12] 5.7123 15.339 25.776 57.114 61.509 97.859 109.16 116.67 161.43 

Poly (N=5) 5.7123 15.341 25.776 57.108 61.503 97.937 109.63 117.08 161.64 

F1* (N=2) 5.7142 15.341 25.821 57.457 61.989 113.11 225.10 225.94 281.89 

F2* (N=2) 5.7163 15.341 25.821 57.459 61.941 113.22 225.75 225.85 252.86 

F3* (N=2) 5.7157 15.341 25.821 57.456 61.974 113.19 225.16 225.70 260.46 

𝑎 ℎ⁄ = 5  𝑝 = 2 

Matsunaga [12] 5.6599 14.970 25.140 53.188 57.576 91.483 104.82 111.22 155.99 

Poly (N=5) 5.6599 14.972 25.140 53.183 57.572 91.568 105.45 111.81 158.41 

F1* (N=2) 5.6638 14.972 25.190 53.811 58.423 106.63 225.03 226.24 354.18 

F2* (N=2) 5.6682 14.972 25.190 53.792 58.277 106.99 221.32 221.71 251.26 

F3* (N=2) 5.6673 14.972 25.190 53.783 58.307 106.99 219.11 219.91 259.40 

𝑎 ℎ⁄ = 5  𝑝 = 3 

Matsunaga [12] 5.6757 14.150 24.741 50.790 55.237 87.481 102.76 108.52 153.30 

Poly (N=5) 5.6757 14.743 24.741 50.782 55.229 87.561 103.60 109.32 155.95 

F1* (N=2) 5.6817 14.743 24.802 51.324 55.922 103.64 227.34 228.19 279.68 

F2* (N=2) 5.6839 14.743 24.802 51.329 55.880 103.75 228.02 228.07 251.17 

F3* (N=2) 5.6828 14.743 24.802 51.324 55.914 103.74 227.44 228.01 259.64 

𝑎 ℎ⁄ = 5  𝑝 = 5 

Matsunaga [12] 5.7020 14.026 24.278 48.772 53.288 83.914 100.24 105.63 150.24 

Poly (N=5) 5.7020 14.477 24.278 48.754 53.268 83.988 101.34 106.69 153.18 

F1* (N=2) 5.7053 14.477 24.353 49.005 53.659 101.09 227.16 227.82 266.97 

F2* (N=2) 5.7073 14.477 24.353 49.007 53.620 101.15 225.87 226.06 245.84 

F3* (N=2) 5.7050 14.477 24.353 48.930 53.573 101.10 216.99 217.70 251.97 

                 *Optimization 4th. 
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𝜔ଶ,ଵ = 11.549 𝜔ଶ,ଶ = 16.450 

  

  

Fig. 10. Dimensionless flexural mode natural frequencies 𝜔ଶ,ଵ y 𝜔ଶ,ଶ of square FG plate (Al/ZrO2) (𝑎 = 𝑏, 𝑎 ℎ⁄ = 5 & 𝑝 = 1). 

𝜔ଷ,ଷ = 28.767 𝜔ହ,ଷ = 42.905 

  

  

Fig. 11. Dimensionless flexural mode natural frequencies 𝜔ଷ,ଷ y 𝜔ହ,ଷ of square FG plate (Al/ZrO2) (𝑎 = 𝑏, 𝑎 ℎ⁄ = 5 & 𝑝 = 1). 
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Table 12. Comparison of non-dimensional flexural natural frequencies for a FG (Al/ZrO2) square plate (𝑁 = 2, 𝑎 = 𝑏, 𝑎 ℎ⁄ = 4 ). 

Theory 𝜔ଵ,ଵ 𝜔ଵ,ଶ 𝜔ଵ,ଷ 𝜔ଶ,ଶ 𝜔ଶ,ଷ 𝜔ଷ,ଷ 𝜔ସ,ଷ 𝜔ହ,ଷ 
𝑎 ℎ⁄ = 4  𝑝 = 1 

Matsunaga [12] 5.4276 --- --- 16.413 --- --- --- 42.499 
Poly (N=5) 5.4276 11.533 19.250 16.413 23.070 28.618 35.241 42.499 
F1* (N=2) 5.4305 11.549 19.305 16.450 23.157 28.767 35.493 42.905 
Err % F1 0.0534 --- --- 0.2254 --- --- --- 0.9553 

F2* (N=2) 5.4332 11.556 19.326 16.467 23.183 28.800 35.534 42.948 
Err % F2 0.1032 --- --- 0.3290 --- --- --- 1.0565 

F3* (N=2) 5.4319 11.552 19.309 16.454 23.162 28.772 35.498 42.906 
Err % F3 0.0792 --- --- 0.2498 --- --- --- 0.9577 

𝑎 ℎ⁄ = 4  𝑝 = 1 

Vel [6] 
5.1984 

--- --- 
15.611 

--- --- --- 
40.206 

Poly (N=5) 5.1952 10.990 18.278 15.602 21.879 27.105 33.344 40.189 
F1* (N=2) 5.2000 11.012 18.345 15.649 21.979 27.267 33.606 40.589 
Err % F1 0.0308 --- --- 0.2434 --- --- --- 0.9526 

F2* (N=2) 5.2022 11.019 18.357 15.661 21.994 27.284 33.619 40.591 
Err % F2 0.0731 --- --- 0.3203 --- --- --- 0.9576 

F3* (N=2) 5.2007 11.014 18.346 15.651 21.980 27.268 33.604 40.583 
Err % F3 0.0442 --- --- 0.2562 --- --- --- 0.9377 

                   *Optimization 4th. 

5. Conclusions 

    This study presents the bending and free vibration behavior of advanced composite plates via optimized higher order theories 
with non-polynomial SSSFs. Based on the results, it can be concluded that the accurate free vibration analysis of FG plates can 
be addressed by the displacement fields with expansion order N=3 as presented in this study. Additionally, the first five natural 
frequencies can be successfully estimated employing an expansion order, N=2. On the other hand, it is important to notice that 
the available benchmark examples in the literature use higher order expansion than those proposed in the present study.  
    The above-mentioned conclusion suggest that is possible to reduce the expansion order of the displacement field without 
affecting the accuracy of the results. Therefore, an optimization process of the non-polynomial SSSFs’ arguments is important 
and should be further explored. 
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Nomenclature 

SSSF  
FGM 
FSDT 

Shear strain shape function 
Functionally graded material 
First order shear deformation theory 

ESL  
CUF  
RMVT 

Equivalent single-layer  
Carrera Unified Formulation  
Reissner mixed variational theorem 

TSDT 
CPT  
SSDT 

Third order shear deformation theory 
Classic plate theory 
Shear deformation plate theory 

HSDT 
PVD 
FEM 

High-order shear deformation theory 
Principle of virtual displacements 
Finite element method 
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