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Abstract. A model of fractional-order of thermoelasticity is applied to study a 2D problem of mode-I crack in a fibre-
reinforced thermal environment. The crack is under prescribed distributions of heat and pressure. The normal mode 
analysis is applied to deduce exact formulae for displacements, stresses, and temperature. Variations of field 
quantities with the axial direction are illustrated graphically. The results regarding the presence and absence of fiber 
reinforcement and fractional parameters are compared. Some particular cases are also investigated via the generalized 
thermoelastic theory. The presented results can be applied to design different fibre-reinforced isotropic thermoelastic 
elements subjected to the thermal load in order to meet special technical requirements. 

Keywords: Mode-I crack; Fractional-order theory; Thermoelasticity; Fibre-reinforced; Normal mode analysis. 

1. Introduction 

     The theory of thermoelasticity has been well embedded to include the effect of temperature change. Accordingly, the 
temperature should be coupled with the elastic strain. The classic heat transfer, Fourier equation, is widely applied in various 
engineering applications. The classical theory of thermoelasticity (see Nowacki [1, 2]) is based on the Fourier hypothesis of 
thermal conductivity. In this theory, the temperature distribution is regulated by a partial differential equation of a parabolic type. 
Conceptually, it predicts that the thermal signal is immediately felt in the body. This reveals an infinite speed of propagation of 
a thermal signal that is physically impractical, especially for a short time. Therefore, using the Fourier equation can lead to 
discrepancies in certain particular conditions, such as heat transfer at low temperature, high frequency heat transfer or very high 
heat flux, and so on. 

Generalized thermoelasticity, which allows a finite speed of propagation of thermoelastic perturbations, has gained a lot of 
attention in recent years. The theories of Lord and Shulman [3] (LS) and Green and Lindsay [4] (GL) expanded the coupled one 
by inserting thermal relaxation times in their constitutive equations. These generalized thermoelasticity theories eliminated the 
paradox of infinite velocity of heat propagation. Green and Naghdi [5] (GN) formulated another generalized theory which is said 
to be the theory of thermoelasticity without energy dissipation. It contains "thermal displacement gradient" amidst its independent 
constitutive variables, and varies from LS and GL theories in that it does not allow the thermal energy to dissipate (Ignaczak and 
Ostoja-Starzewski [6]). 

An idea of inserting a continuous self-reinforcement at each point of the elastic medium was presented by Belfield et al. [7] 
and this technique was used by Verma and Rana [8] to study rotation of circular cylindrical tubes. Different problems of surface 
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waves in fiber-reinforced anisotropic elastic solids were discussed by many investigators (Sengupta and Nath [9]; Hashin and 
Rosen [10]; Singh and Singh [11]; Singh [12, 13]; Kumar and Gupta [14]; Abbas and Abd-Alla [15]; Ailawalia and Budhiraja 
[16]). The effects of anisotropy, hydrostatic initial stress, and magnetic field on the incompressible and thermoelastic fibre-
reinforced solid were investigated. Prabhakar et al. [17] analyzed the influence of magneto-thermo-electromechanical effects on 
band structure calculations by using the fully coupled model. Recently, El-Naggar et al. [18] studied the effect of thermomagnetic 
field, rotation, initial stress, and voids on reflection of P-wave with one relaxation time. Abd-Alla et al. [19] investigated Love 
waves in an inhomogeneous orthotropic magneto-elastic layer subjected to an initial stress overlying a semi-infinite solid. 

The fractional calculus is a natural extension of classical mathematics. Many definitions of fractional derivative have been 
presented and are demonstrated to be equivalent (Podlubny [20]). Recently, fractional calculus has been involved in field of 
thermoelasticity [21-27]. Othman et al. [21] presented the effect of fractional parameter on the plane waves of magneto-thermo-
elastic diffusion with room temperature-dependent elastic solid. Povstenko [22] organized a quasi-static uncoupled 
thermoelasticity model based on the heat conduction equation with a fractional-order time derivative. In fact, he applied Caputo 
fractional derivative (Caputo [28]) to obtain the stresses corresponding to fundamental solution of Cauchy problem for the 
fractional-order heat conduction equation in both 1D and 2D situations. Youssef [23] presented a new generalized 
thermoelasticity model by considering the heat conduction with a fractional-order. Sherief et al. [24] organized another theory 
in generalized thermoelasticity via the use of fractional time derivatives. Ezzat and El Karamany [25] constructed a new 
mathematical two-temperature magneto-thermoelasticity theory by considering the fractional-order heat conduction law. 
Abouelregal [26] proposed the generalized thermoelasticity theory based on a fractional-order model to solve a 1D boundary 
value problem of a semi-infinite piezoelectric solid. Recently, Zenkour and Abouelregal [27] presented the state-space approach 
for an infinite solid with a spherical cavity based on the two-temperature generalized thermoelasticity theory and the fractional 
heat conduction. In addition, Abbas and Zenkour [29] presented the two-temperature generalized thermoelastic interaction in an 
infinite fiber-reinforced anisotropic plate with a circular hole and two relaxation times. 

The aim of this study is to determine normal distributions of displacement, stress, and temperature in a fibre-reinforced 
generalized thermoelastic solid via the effect of fractional-order thermoelasticity. The normal mode analysis is used to get exact 
formulae of displacements, stresses, and temperatures. The variations of the considered field quantities with the axial direction 
are illustrated graphically. The results with the inclusion and absence of fiber-reinforcing and fractional parameter are compared. 
The results are reduced to the corresponding classical ones when the reinforced elastic parameters tend to zero and the medium 
became isotropic. 

2. Basic Equations 

   Consider a homogeneous transversely isotropic fiber-reinforced solid without heat sources. The linear equations governing 
thermoelastic interactions via generalized thermoelasticity with fractional-order may be expressed in the following forms: 

1. The equations of motion 

𝜎௜௝,௝ + 𝐹௜ = 𝜌𝑢̈௜ , (1) 

   where 𝜎௜௝ represent components of stress tensor, 𝐹௜ denote body forces, 𝜌 represents material density, and u୧ denote 
displacements. 

2. The modified fractional order heat conduction equation has the following form [24]: 

𝐾𝑇,௜௜ = 𝜌𝐶ா ൬𝛿 + 𝑡଴

𝜕ఔ

𝜕𝑡ఔ
൰ 𝑇̇ + 𝛾𝑇଴ ൬1 + 𝑡଴

𝜕ఔ

𝜕𝑡ఔ
൰ 𝑢̇௜,௜ ,   0 < 𝜈 ≤ 1, (2) 

   where 𝐾 represents thethermal conductivity, 𝑡଴ denotes a constant with dimension of time that acts as a relaxation time, 𝜈 
denotes the fractional parameter, 𝐶ா represents the specific heat at a uniform strain, 𝑇଴ represents temperature of the medium in 
its natural state, supposed to be such as |(𝑇 − 𝑇଴)/𝑇| = 1 and 𝛾 = (3𝜆 + 2𝜇)𝛼௧ in which 𝛼௧ denotes thermal expansion 
coefficient, and 𝜆, 𝜇 are Lamé constants. 

In the case that any function 𝑓(𝑡) is absolutely continuous, then 

lim
ఔ→ଵ

d஝

d𝑡஝
𝑓(𝑡) = 𝑓ᇱ(𝑡). (3) 

   As stated by Kimmich [30], Eq. (2) depicts different cases of diffusion as follows: 

 weak diffusion (sub-diffusion): 0 < 𝜈 < 1, 
 normal diffusion: 𝜈 = 1, 
 strong diffusion (super-diffusion): 0 < 𝜈 < 2, 
 ballistic diffusion: 𝜈 = 2. 

3. The constitutive relations for fibre-reinforced linearly elastic anisotropic medium with respect to the reinforcement direction 

𝑏ሬ⃗ = (𝑏ଵ, 𝑏ଶ, 𝑏ଷ), with 𝑏ଵ
ଶ + 𝑏ଶ

ଶ + 𝑏ଷ
ଶ = 1 , are 
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𝜎௜௝ = 𝜆𝑒௞௞𝛿௜௝ + 2𝜇்𝑒௜௝ + 𝛼(𝑏௞𝑏௠𝑒௞௠𝛿௜௝ + 𝑏௜𝑏௝𝑒௞௞) + 2(𝜇௅ − 𝜇்)൫𝑏௞𝑏௜𝑒௞௝ + 𝑏௞𝑏௝𝑒௞௜൯ + 𝛽𝑏௞𝑏௠𝑒௞௠𝑏௜𝑏௝

− 𝛾(𝑇 − 𝑇଴), 
(4) 

    where 𝑒௜௝ =
ଵ

ଶ
൫𝑢௜,௝ + 𝑢௝,௜  ൯ denote strain components, 𝜇் and 𝜇௅ denote elastic constants, 𝛼, 𝛽, and 𝜉 = 𝜇௅ − 𝜇் represents 

reinforcement parameters.  
    The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and the generalized theory 
without energy dissipation follow as limited cases depending on the value of 𝛿, 𝑡଴, and 𝜈. 

    The heat conduction equation, given in Eq. (2), in limiting case 𝜈 → 1 and 𝛿 = 1 transforms to: 

𝐾𝑇,௜௜ = ቆ
𝜕

𝜕𝑡
+ 𝑡଴

𝜕ଶ

𝜕𝑡ଶ
ቇ ൫𝜌𝐶ா𝑇 + 𝛾𝑇଴𝑒௞,௞൯, (5) 

    which is the same equation derived by the generalized theory with one relaxation time. While in a limiting case, when 𝜈 → 1, 
𝑡଴ = 1, and 𝛿 = 0, it transforms to: 

𝐾𝑇,௜௜ =
𝜕ଶ

𝜕𝑡ଶ
൫𝜌𝐶ா𝑇 + 𝛾𝑇଴𝑒௞,௞൯, (6) 

   which is the same equation of generalized theory without energy dissipation introduced by Green and Naghdi. The coupled 
theory of thermoelasticity can be obtained from Eq. (2) in the limiting case 𝜈 → 0, 𝑡଴ → 0, and 𝛿 = 1, as 

𝐾𝑇,௜௜ =
𝜕

𝜕𝑡
൫𝜌𝐶ா𝑇 + 𝛾𝑇଴𝑒௞,௞൯. (7) 

3. Theoretical Formulation 

    In the present study, a problem of a fibre-reinforced anisotropic half-space (𝑥 ≥ 0) with a mode-I crack which is defined by 
|𝑥| ≤ 2𝑙 is considered. All functions depend on time 𝑡 and coordinates (𝑥, 𝑦, 𝑧). In this problem, it is assumed that the plane 
boundary of the crack is subjected to a prescribed normal point load, and a thermal source as shown in Fig. 1. 
 

 

Fig. 1. Displacement of an external mode-I crack. 

    For the 2D problem, the displacements are considered in the following form: 

𝑢ଵ = 𝑢(𝑥, 𝑦, 𝑡),     𝑢ଶ = 𝑣(𝑥, 𝑦, 𝑡),     𝑢ଷ = 0, (8) 

    and all solutions are supposed to be independent of 𝑧 i.e., 𝜕( )/𝜕𝑧 = 0. 

    The fibre-direction as 𝑏ሬ⃗ = (1,0,0) are chosen, so that the prioritized direction is 𝑥-axis, then Eq. (4) yields 

𝜎௫௫ = 𝐴ଵଵ

𝜕𝑢

𝜕𝑥
+ 𝐴ଵଶ

∂𝑣

∂𝑦
− 𝛾(𝑇 − 𝑇଴), (9) 

𝜎௬௬ = 𝐴ଵଶ

𝜕𝑢

𝜕𝑥
+ 𝐴ଶଶ

∂𝑣

∂𝑦
− 𝛾(𝑇 − 𝑇଴), (10) 

𝜎௭௭ = 𝐴ଵଶ

𝜕𝑢

𝜕𝑥
+ 𝜆

∂𝑣

∂𝑦
− 𝛾(𝑇 − 𝑇଴), (11) 

𝜎௫௬ = 𝜇௅ ൬
𝜕𝑢

𝜕𝑦
+

∂𝑣

∂𝑥
൰,     𝜎௫௭ = 𝜎௬௭ = 0, (12) 

where 

𝐴ଵଵ = 𝜆 + 2(𝛼 + 𝜇்) + 4(𝜇௅ − 𝜇்) + 𝛽,     𝐴ଵଶ = 𝛼 + 𝜆,     𝐴ଶଶ = 𝜆 + 2𝜇் . (13) 
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    Using the summation convection, from Eqs. (9)-(12), the equations of motion, with neglecting the body forces, become 

𝐴ଵଵ

𝜕ଶ𝑢

𝜕𝑥ଶ
+ 𝐵ଵ

𝜕ଶ𝑢

𝜕𝑦ଶ
+ 𝐵ଶ

𝜕ଶ𝑣

𝜕𝑥𝜕𝑦
− 𝛽ଵ

𝜕𝑇

𝜕𝑥
= 𝜌

𝜕ଶ𝑢

𝜕𝑡ଶ
, (14) 

𝐴ଶଶ

𝜕ଶ𝑢

𝜕𝑦ଶ
+ 𝐵ଵ

𝜕ଶ𝑢

𝜕𝑥ଶ
+ 𝐵ଶ

𝜕ଶ𝑢

𝜕𝑥𝜕𝑦
− 𝛽ଶ

𝜕𝑇

𝜕𝑦
= ρ

∂ଶ𝑣

∂𝑡ଶ
, (15) 

where 

𝐵ଵ = 𝜇௅ ,     𝐵ଶ = 𝛼 + 𝜆 + 𝜇௅ . (16) 

    For further considerations, it is convenient to introduce the dimensionless variables defined by 

{𝑥ᇱ, 𝑦ᇱ, 𝑢ᇱ, 𝑣ᇱ} = 𝑐଴𝜂{𝑥, 𝑦, 𝑢, 𝑣},     {𝑡ᇱ, 𝑡଴
ᇱ } = 𝑐଴

ଶ𝜂{𝑡, 𝑡଴},

𝜃 =
𝛾(𝑇 − 𝑇଴)

𝐴ଶଶ

,     𝜎௜௝
ᇱ =

𝜎௜௝

𝛾𝑇଴

,     𝜂 =
𝜌𝐶ா

𝐾
,     𝑐଴

ଶ =
𝐴ଶଶ

𝜌
.
 (17) 

    The above-mentioned governing equations, with the help of Eq. (17), can be transformed into the dimensionless form after 
deleting the primes as: 

𝑙ଵ

𝜕ଶ𝑢

𝜕𝑥ଶ
+ ℎଵ

𝜕ଶ𝑢

𝜕𝑦ଶ
+ ℎଶ

𝜕ଶ𝑣

𝜕𝑥𝜕𝑦
−

𝜕𝜃

𝜕𝑥
=

𝜕ଶ𝑢

𝜕𝑡ଶ
, (18) 

𝑙ଶ

𝜕ଶ𝑢

𝜕𝑦ଶ
+ ℎଵ

𝜕ଶ𝑢

𝜕𝑥ଶ
+ ℎଶ

𝜕ଶ𝑢

𝜕𝑥𝜕𝑦
−

𝜕𝜃

𝜕𝑦
=

𝜕ଶ𝑣

𝜕𝑡ଶ
, (19) 

𝜕ଶ𝜃

𝜕𝑥ଶ
+

𝜕ଶ𝜃

𝜕𝑦ଶ
= ൬𝛿 + 𝑡଴

𝜕ఔ

𝜕𝑡ఔ
൰

𝜕𝜃

𝜕𝑡
+ 𝜀

𝜕

𝜕𝑡
൬1 + 𝑡଴

𝜕ఔ

𝜕𝑡ఔ
൰ ൬

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
൰, (20) 

𝜇்𝜎௫௫ = 𝐴ଵଵ

𝜕𝑢

𝜕𝑥
+ 𝐴ଵଶ

∂𝑣

∂𝑦
− 𝐴ଶଶ𝜃, (21) 

𝜇்𝜎௬௬ = 𝐴ଵଶ

𝜕𝑢

𝜕𝑥
+ 𝐴ଶଶ ൬

∂𝑣

∂𝑦
− 𝜃൰, (22) 

𝜇்𝜎௭௭ = 𝐴ଵଶ

𝜕𝑢

𝜕𝑥
+ 𝜆

∂𝑣

∂𝑦
− 𝐴ଶଶ𝜃, (23) 

𝜇்𝜎௫௬ = 𝜇௅ ൬
𝜕𝑢

𝜕𝑦
+

∂𝑣

∂𝑥
൰,     𝜎௫௭ = 𝜎௬௭ = 0, (24) 

where 

𝑙ଵ =
𝐴ଵଵ

𝐴ଶଶ

,     𝑙ଶ =
𝜇௅

𝐴ଶଶ

,     ℎଵ =
𝐵ଵ

𝐴ଶଶ

,     𝜀 =
𝛾ଶ𝑇଴

𝜌𝐶ா𝐴ଶଶ

. (25) 

4. Normal Mode Analysis 

    The normal mode expansion method was supposed by Cheng and Zhang [31] to model the thermoelastic process of generation 
of elastic waveforms in an isotropic plate. Allam et al. [32] applied the normal mode analysis to discuss the 2D problem of the 
electromagnetic-thermal elasticity for a homogeneously isotropic perfectly conductive thick plate subjected to a time-dependent 
heat source in the context of Green and Naghdi thermoelasticity theory. 
    The solution of the temperature, displacements, and stresses can be become spoiled in terms of normal modes by 

൛𝑢, 𝑣, 𝜃, 𝜎௜௝ൟ(𝑥, 𝑦, 𝑡) = ൛𝑢∗, 𝑣∗, 𝜃∗, 𝜎௜௝
∗ ൟ(𝑥)eఠ௧ା௜௔௬ , (26) 

    where 𝜔 represents the (complex) frequency constant, 𝑖 = √−1, 𝑎 denotes the wave number in 𝑦 direction, and 𝑢∗(𝑥), 𝑣∗(𝑥), 
𝜃∗(𝑥), and 𝜎௜௝

∗ (𝑥) denote the amplitudes of the field quantities. Using Eq. (26), Eqs. (18)-(24) take the forms 

[𝑙ଵ𝐷ଶ − 𝐴ଵ]𝑢∗ + 𝑖𝑎ℎଶ𝐷𝑣∗ = 𝐷𝜃∗, (27) 

[ℎଵ𝐷ଶ − 𝐴ଶ]𝑣∗ + 𝑖𝑎ℎଶ𝐷𝑢∗ = 𝑖𝑎𝜃∗, (28) 
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[𝐷ଶ − 𝐴ଷ]𝜃∗ = 𝐴ସ(𝐷𝑢∗ + 𝑖𝑎𝑣∗), (29) 

𝜇்𝜎௫௫
∗ = 𝐴ଵଵ𝐷𝑢∗ + 𝑖𝑎𝐴ଵଶ𝑣∗ − 𝐴ଶଶ𝜃∗, (30) 

𝜇்𝜎௬௬
∗ = 𝐴ଵଶ𝐷𝑢∗ + 𝑖𝑎𝐴ଶଶ𝑣∗ − 𝐴ଶଶ𝜃∗, (31) 

𝜇்𝜎௭௭
∗ = 𝐴ଵଶ𝐷𝑢∗ + 𝑖𝑎𝜆𝑣∗ − 𝐴ଶଶ𝜃∗, (32) 

𝜇்𝜎௫௬
∗ = 𝜇௅(𝑖𝑎𝑢∗ + 𝐷𝑣∗), (33) 

where 

𝐴ଵ = 𝜔ଶ − 𝑎ଶℎଵ,     𝐴ଶ = 𝜔ଶ − 𝑎ଶ𝑙ଶ,

𝐴ଷ = 𝑎ଶ + 𝜔(𝛿 + 𝑡଴𝜔ఔ),     𝐴ସ = 𝜀𝜔(𝛿 + 𝑡଴𝜔ఔ).
     (34) 

    Eliminating 𝜃∗(𝑥) and 𝑣∗(𝑥) in Eqs. (27)-(29), one gets 

[𝐷଺ − 𝐴𝐷ସ + 𝐵𝐷ଶ − 𝐶]𝑢∗(𝑥) = 0, (35) 

in which 

𝐴 =
𝐴ଶ

ℎଵ

+
𝐴ଵ + 𝐴ସ

𝑙ଵ

−
ℎଶ

ଶ𝑎ଶ

ℎଵ𝑙ଵ

+ 𝐴ଷ,     𝐶 =
𝐴ଵ𝐴ଶ𝐴ଷ + 𝐴ଵ𝐴ସ𝑎ଶ

ℎଵ𝑙ଵ

,

𝐵 =
𝐴ଵ𝐴ଶ + 𝐴ଷ(𝑙ଵ𝐴ଶ + ℎଵ𝐴ଵ − ℎଶ

ଶ𝑎ଶ) + 𝐴ସ(𝑙ଵ𝑎ଶ + 𝐴ଶ − 2ℎଶ
ଶ𝑎ଶ)

ℎଵ𝑙ଵ

.

 (36) 

    Equation (35) can be factorized as 

(𝐷ଶ − 𝑘ଵ
ଶ)(𝐷ଶ − 𝑘ଶ

ଶ)(𝐷ଶ − 𝑘ଷ
ଶ)𝑢∗(𝑥) = 0, (37) 

    where 𝑘௜
ଶ, 𝑖 = 1,2,3 represent the roots of the characteristic equation 

𝑘଺ − 𝐴𝑘ସ + 𝐵𝑘ଶ − 𝐶 = 0. (38) 

 
    The solution of Eq. (37), which is bounded at 𝑥 → ∞, is represented by 

𝑢∗(𝑥) = ෍ 𝑀௡(𝑎, 𝜔)eି௞೙௫

ଷ

௡ୀଵ

. (39) 

    In a similar manner, we get 

[𝐷଺ − 𝐴𝐷ସ + 𝐵𝐷ଶ − 𝐶]{𝑣∗, 𝜃∗}(𝑥) = 0. (40) 

Similarly 

{𝑣∗, 𝜃∗}(𝑥) = ෍{𝑀௡
ᇱ , 𝑀௡

ᇱᇱ}(𝑎, 𝜔)eି௞೙௫

ଷ

௡ୀଵ

, (41) 

   where 𝑀௡, 𝑀௡
ᇱ , and 𝑀௡

ᇱᇱ denote some parameters depending on 𝑎 and 𝜔. By substituting Eqs. (29)-(41) into Eqs. (27)-(29), the 
following relations are obtaind: 

𝑀௡
ᇱ (𝑎, 𝜔) = 𝐻ଵ௡𝑀௡(𝑎, 𝜔),     𝑀௡

ᇱᇱ(𝑎, 𝜔) = 𝐻ଶ௡𝑀௡(𝑎, 𝜔),   𝑛 = 1,2,3, (42) 

where 

𝐻ଵ௡ =
𝑖𝑎(ℎଶ − 𝑙ଵ)𝑘௡

ଶ + 𝑖𝑎𝐴ଵ + 2𝜔𝛺𝑘௡

𝑘௡
ଶ − 𝐴ଷ

,     𝐻ଶ௡ =
𝐴ସ(−𝑘௡ + 𝑖𝑎𝐻ଵ௡)

𝑘௡
ଶ − 𝐴ଷ

. (43) 

   Thus, we have 

{𝑣∗, 𝜃∗}(𝑥) = ෍{𝐻ଵ௡ , 𝐻ଶ௡}𝑀௡(𝑎, 𝜔)eି௞೙௫

ଷ

௡ୀଵ

. (44) 

    Substituting Eqs. (39) and (44) into Eqs. (30)-(33), one obtains 

൛𝜎௫௫
∗ , 𝜎௬௬

∗ , 𝜎௭௭
∗ , 𝜎௫௬

∗ ൟ(𝑥) = ෍{𝐻ଷ௡ , 𝐻ସ௡ , 𝐻ହ௡ , 𝐻଺௡}𝑀௡(𝑎, 𝜔)eି௞೙௫

ଷ

௡ୀଵ

. (45) 
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    where 

𝜇் ൝

𝐻ଷ௡

𝐻ସ௡

𝐻ହ௡

ൡ = ൥

−𝐴ଵଵ 𝑖𝑎𝐴ଵଶ −𝐴ଶଶ

−𝐴ଵଶ 𝑖𝑎𝐴ଶଶ −𝐴ଶଶ

−𝐴ଵଶ 𝑖𝑎𝜆 −𝐴ଶଶ

൩ ൝
𝑘௡

𝐻ଵ௡

𝐻ଶ௡

ൡ,     𝜇்𝐻଺௡ = 𝜇௅(𝑖𝑎 − 𝑘௡𝐻ଵ௡). (46) 

    To get 𝑀௡, the following boundary conditions at the vertical plane 𝑦 = 0 and in the beginning of the crack at 𝑥 = 0 are 
considered: 

𝜎௫௫(𝑥, 𝑦, 𝑡) = −𝑝,     𝜃(𝑥, 𝑦, 𝑡) = 𝑞,     𝜎௫௬(𝑥, 𝑦, 𝑡) = 0,    
𝜕𝜃(𝑥, 𝑦, 𝑡)

𝜕𝑦
= 0, (47) 

    where 𝑝 and 𝑞 denote the magnitudes of mechanical force and thermal source. Using Eqs. (44) and (45) in the above-mentioned 
boundary condition, three equations with three unknown parameters 𝑀௡ are obtained as 

෍{𝐻ଷ௡ , 𝐻ଶ௡ , 𝐻଺௡}𝑀௡(𝑎, 𝜔)

ଷ

௡ୀଵ

= {−𝑝∗, 𝑞∗, 0}. (48) 

    Solving the above-mentioned equations after applying the inverse of the matrix method, the parameters 𝑀௡ are derived as 
𝑀௡ = ∆௡/∆ where 

∆ଵ= 𝑝∗(𝐻ଶଶ𝐻଺ଷ − 𝐻ଶଷ𝐻଺ଶ) + 𝑞∗(𝐻ସଶ𝐻଺ଷ − 𝐻ସଷ𝐻଺ଶ),

∆ଶ= 𝑝∗(𝐻ଶଷ𝐻଺ଵ − 𝐻ଶଵ𝐻଺ଷ) + 𝑞∗(𝐻ସଶ𝐻଺ଵ − 𝐻ସଵ𝐻଺ଷ),

∆ଷ= 𝑝∗(𝐻ଶଵ𝐻଺ଶ − 𝐻ଶଶ𝐻଺ଵ) + 𝑞∗(𝐻ସଵ𝐻଺ଶ − 𝐻ସଶ𝐻଺ଵ),

∆= 𝐻ଶଵ(𝐻ସଶ𝐻଺ଷ − 𝐻ସଷ𝐻଺ଶ) + 𝐻ଶଶ(𝐻ସଷ𝐻଺ଵ − 𝐻ସଵ𝐻଺ଷ) + 𝐻ଶଷ(𝐻ସଵ𝐻଺ଶ − 𝐻ସଶ𝐻଺ଵ).

 (49) 

    Therefore, all expressions for displacements, temperature, and another physical quantities of the plate muscles are obtained. 

5. Particular and Special Cases 

 The equations of coupled thermoelasticity (CTE) theory are derived when 𝜈 → 0, 𝑡଴ = 1, and 𝛿 = 0. 
 The equations of Lord-Shulman (LS) theory are retrieved when ν → 1 and δ = 1. 
 The equations of the generalized thermoelasticity without energy dissipation (the linearized GN theory of type II) are derived 

when ν → 1, t଴ → 0, and δ = 1. 

    In addition, all results are reduced to classical isotropic results when the anisotropic parameters for fibre-reinforced medium 
tend to zero (if necessary writing 𝛼 = 0, 𝛽 = 0, and setting |𝜉| → 0). 

6. Numerical Results and Discussions 

    The composite reinforced materials are used in fibers in a variety of structures because of their high strength and low weight. 
The continuous models are used to explain the thermal and mechanical properties of this materials. Therefore, characterization 
of their thermal and mechanical behavior is particularly important in the structural designs utilizing these materials. 

    The aim of this study is to support the information about the propagation of thermal waves in a layer of fiber-reinforced 
isotopic and transversely thermo-elastic material. This study has many applications in several fields of technology and science, 
namely, industrial engineering, atomic physics, thermal power plants, pressure vessel, submarine structures, chemical pipes, 
aerospace, and metallurgy. 

    To discuss the effect of reinforcement and fractional on the wave propagation, the physical constants for generalized fibre-
reinforced thermoelastic material at 𝑇଴ = 293 K are applied: 

𝜆 = 7.59 × 10ଽ N/mଶ,    𝜇 = 3.86 × 10ଵ଴ N/mଶ, 
𝜇் = 1.89 × 10ଽ N/mଶ,    𝜇௅ = 2.45 × 10ଽ N/mଶ, 

𝛼 = −1.28 × 10ଽ N/mଶ,    𝛽 = 0.32 × 10ଽ N/mଶ,    𝜌 = 7800 kg/mଷ, 

𝛼௧ = 1.78 × 10ିହ(1/K),    𝐶ா = 383.1 J/(kg K),    𝐾 = 386 J/(msK), 

𝑡଴ = 0.02,    𝑎 = 1,    𝑝∗ = 2,    𝑞∗ = 1,    𝜔 = 𝜔଴ + 𝑖𝜁 ,    𝜔଴ = 2,    𝜁 = 1. 

 

    The calculations are carried out for 𝑡 = 0.15, and all variables are taken in the non-dimensional forms. Figures 2-7 describe 
the variation of the values of real part of temperature 𝜃, displacement component components u, v, and the stresses against the 
thickness x for the absence (𝜈 = 1) and the presence (𝜈 = 0.25, 0.75) of the fractional at 𝑦 = 1. The different values of the 
parameter ν with a wide range (0 < 𝜈 ≤ 1) cover the two cases of the conductivity; 0 < 𝜈 < 1 for the weak conductivity and 
𝜈 = 1 for the normal conductivity (ordinary heat conduction equation). The field quantities including temperature 𝜃, 
displacements 𝑢 and 𝑣, and stresses 𝜎௫௫, 𝜎௬௬, and 𝜎௫௬ depend not only on space 𝑥 and time 𝑡, but also on fractional order 𝜈. 
    Figure 2 shows the variation of temperature 𝜃 along the distance 𝑥. It is indicated that 𝜃 has the maximum value at the boundary 
𝑥 = 0 and then it is directly decreasing to get vanish. Therefore, the temperature 𝜃 begins with its maximum value at the 
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beginning of the crack, and it is sooth reducing to fall just near the crack. The amplitude of temperature 𝜃 is affected by the 
variation of fractional order parameter 𝜈. 
    As shown in Fig. 3, the horizontal displacement u starts with negative values and terminates at the zero value. The fraction 
theory with 𝜈 = 0.25 gives the smallest horizontal displacement while LS theory gives the greatest one. Figure 4 shows that 
vertical displacement 𝑣 always starts from a negative value and also terminates at the zero value. The vertical displacement 𝑣 is 
no longer increasing and reaches the maximum value at different position according the value of 𝜈. 

 

Fig. 2. Dependence of temperature 𝜃 on distance for different values of fractional order parameter.  
 

 

Fig. 3. Dependence of horizontal displacement distribution 𝑢 on distance for different values of fractional order parameter.  
 
    Figure 5 shows that the stress 𝜎௫௫ increases in the domain 0 ≤ 𝑥 ≤ 1 and ultimately goes to zero for 𝑥 > 1. Figure 6 shows 
the same behavior of the stress 𝜎௬௬ as that found in Figure 5. Both stresses reach the  minimum values near the end of the crack 
and converge to zero with the increasing distance 𝑥. The fractional order 𝜈 decreases the amplitudes of the stresses. The fraction 
theory with 𝜈 = 0.25 gives the greatest stress while LS theory gives the smallest ones. 

 

Fig. 4. Dependence of vertical displacement 𝑣 on distance for different values of fractional order parameter  
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Fig. 5. Dependence of stress 𝜎௫௫ on distance for different values of fractional order parameter 

 

Fig. 6. Dependence of stress 𝜎௬௬ on distance for different values of fractional order parameter. 

Figure 7 shows that stress 𝜎௫௬ satisfies the boundary condition at 𝑥 = 0 and has a different behaviour compared to that of 𝜎௫௫ or 
𝜎௬௬. Once again, the fractional order 𝜈 decreases the amplitudes of the stresses. The fraction theory with 𝜈 = 0.25 gives the 
greatest stress 𝜎௫௬ while LS theory gives the smallest ones in the domain 0 ≤ 𝑥 ≤ 2 and vice versa for 𝑥 > 2. 
    It is concluded from Figs.2-7 that all variables like temperature, displacements, and stresses depend on time and space as well 
as the characteristic parameter ν of the fractional order thermoelasticity theory. It is noticed that the results of all variables in 
terms of the fractional order parameter included in the heat equation are distinctly different from those without the fractional 
order parameter. The important phenomenon of finite speeds of propagation is manifested in all these figures. 

 

Fig. 7. Dependence of stress 𝜎௫௬ on distance for different values of fractional order parameter. 

    Additional results are illustrated in Figs. 8-13 to show the variation of all variables with space 𝑥 under two types with (𝛼 ≠ 0, 
𝛽 ≠ 0 and 𝜉 ≠ 0) and without (𝛼 = 0, 𝛽 = 0 and 𝜉 = 0) the reinforcement.  
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    Fibre-reinforced materials have wide applications in the fields of automotive and aerospace as well as in schooners, especially 
in modern motorcycles and bicycles where their strength to weight is of great importance. Materials reinforced by strong 
symmetry fibers exhibit extremely elastic behavior in that their elastic coefficient for extension in the fiber direction is often 
more than of 50 times or more of their elastic coefficients in the transverse or shear extension. Therefore, the study of stresses 
and the displacements in addition to temperature is very important in such designs 
    The values of temperature 𝜃, horizontal displacement 𝑢, and stresses 𝜎௫௫ and 𝜎௬௬ are evidently smaller with the inclusion of 
the reinforcement when compared to those without the reinforcement. It is obvious that 𝜃, 𝑢, 𝜎௫௫ , and 𝜎௬௬ increase as the fraction 
parameter 𝜈 decreases. This is not the same for the vertical displacement 𝑣 and tangential stress 𝜎௫௬. In general, all variables are 
more sensitive to the variation of fractional parameter, especially with the inclusion of the reinforcement. Therefore, the surface 
waves in the fibre-reinforced medium are affected by the reinforced and fraction parameters. 

 

Fig. 8. Effect of fiber-reinforcement on the distribution of temperature 𝜃 for different values of fractional order parameter. 

 

Fig. 9. Effect of fiber-reinforcement on the distribution of displacement 𝑢 for different values of fractional order parameter. 

 

Fig. 10. Effect of fiber-reinforcement on the distribution of displacement 𝑣 for different values of fractional order parameter. 
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Fig. 11. Effect of fiber-reinforcement on the distribution of stress 𝜎௫௫ for different values of fractional order parameter. 

 

Fig. 12. Effect of fiber-reinforcement on the distribution of stress 𝜎௬௬ for different values of fractional order parameter. 

 

Fig. 13. Effect of fiber-reinforcement on the distribution of stress 𝜎௫௬ for different values of fractional order parameter. 

7. Conclusions 

    In this study, the analytical solutions for the themoelastic problem in solids are developed and utilized. A linear opening mode-
I crack is discussed for copper solid. The mechanical behavior of various fibrous composite materials is carefully designed by 
the linear elasticity theory of transverse isotropic materials, with the preferred direction that coincides with the direction of the 
fibers. The displacement and stress distributions as well as temperature are evaluated as the functions of distance from crack 
edge. The presence and absence of reinforcement cases are addressed. The method of normal mode analysis is proposed in the 
field of generalized thermoelasticity and applied to two specific problems in which displacements and stresses are coupled. 
    The following remarks based on the above-mentioned analysis are proposed: 
 A comparison with the effort of [33] indicates that the fibre-reinforcement plays an important role on distributions of all 

variables. It is also clear that the theories of coupled thermoelasticity and generalized thermoelasticity can be derived as 
limited cases. Therefore, the fiber-reinforcement of an anisotropic thermoelastic has a great effect on the field quantitiesn. 
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 The analytical solutions based on the normal mode method for a thermoelastic problem in solids are developed and utilized. 
 The method used here is applicable to a wide range of problems in thermodynamics and thermoelasticity. 
 The values of all field quantities converge to zero with increasing the distance 𝑥, and all functions are continuous. 
 The results carried out here can be applied to design different fibre-reinforced thermoelastic elements under the thermal load 

to meet special engineering requirements. 
 The field quantities are very sensitive to the variation of the fractional order parameter. 
 Physical applications are established in various applications in the fields of mechanics, geophysics, and industry. 
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