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Abstract. This article investigates the static behavior of functionally graded plate under mechanical loads by using
a new quasi 3D model. The theory is designated as fifth-order shear and normal deformation theory (FOSNDT).
Properties of functionally graded material are graded across the transverse direction by using the rule of mixture i.e.
power-law. The effect of thickness stretching is considered to develop the present theory. In this theory, axial and
transverse displacement components respectively involve fifth-order and fourth-order shape functions to evaluate
shear and normal strains. The theory involves nine unknowns. Zero transverse shear stress conditions are satisfied
by employing constitutive relations. Analytical solutions are obtained by implementing the double Fourier series
technique. The results predicted by the FOSNDT are compared with existing results. It is pointed out that the
present theory is helpful for accurate structural analysis of isotropic and functionally graded plates compared to
other plate models.
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1. Introduction

Nowadays, functionally graded (FG) materials are being used in many advanced and important engineering structures. The
material composition and volume fraction vary according to the simple rule of mixture i.e. power-law through the thickness.
Wide applications of FGM in various industries forced researchers to develop accurate analytical and numerical techniques.
This can be achieved by selecting a proper structural theory. Modeling of plate structures is based on either classical and
refined computational models or three-dimensional elasticity theories. However, exact 3D elasticity theories for the FG plates
are not found in the whole variety of literature. Therefore, researchers have hired various approximate plate theories for
predicting the structural behavior of FG plates. Approximate theories reduce the 3D problem to a 2D problem. Various
investigations on FG plate which are based on approximate theories are well documented in Jha et al. [1], Swaminathan et al.
[2], Swaminathan and Sangeeta [3], etc.

Classical plate theory (CPT) predicts zero values for strains in the transverse direction (z-direction). Therefore, it is not
suitable for thick FG plates wherein these strains are more pronounced. The first-order shear deformation theory (FSDT)
considered these strain components, but shows constant variation of transverse strains in the transverse direction. These
drawbacks of CPT and FSDT forced the researchers to develop refined plate theories. Several higher-order shear deformation
theories (HSDTs) are developed by different scientists for predicting the structural behavior of FG plates. These theories are
systematically documented by Sayyad and Ghugal [4, 5]. Reddy [6] analyzed the FG plates by his well-known polynomial type
model. Reddy and Cheng [7] presented 3D asymptotic theory for FG plates. Zenkour [8] studied the behavior of FG plates
under uniform load. Zhong and Shang [9] presented 3D analysis of FG plates using Plevako’s solution. Lu et al. [10] obtained
natural frequencies of FG thick plates using 3D elasticity theory. Ameur et al. [11] developed a trigonometric theory containing
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four unknowns for the bending of FG plates. Jha et al. [12] and Neves et al. [13] presented stress solutions for FG plates based
on HSDT with including normal deformation.

Thai and Choi [14] attempted buckling analysis of FG plates by utilizing a refined model. Second-degree variation of the
shear strains in the transverse direction is accounted. Najafizadeh et al. [15] investigated frequencies of FG plates with non-
ideal end conditions. Neves et al. [16] addressed flexure and vibration problems of FG plates by deploying hyperbolic theory.
Thai and Thuc [17] and Thai and Kim [18] tried new theories for flexure, buckling, and vibration of FG plates. Mechab et al.
[19] obtained solutions for flexure conditions of functionally graded plates by employing the refined theory. Thai and Choi
[20] developed a FEM solution for FG plates. Reddy and Kant [21] determined frequencies for FG plates made of
exponentially graded materials using 3D exact solution. Thai and Choi [22] obtained an analytical solution hiring Levy’s
solution technique to determine frequencies for FG plates with different end conditions based on a refined theory. H
adji et al. [23] developed a HSDT model for static and vibration problems of FG beams. Mantari et al. [24] have used
five non-polynomial displacement based theories for FG plates. Amirpour et al. [25] have utilized HSDT for thick FG plates
with varying stiffness. Thai et al. [26] presented a theory for FG plates containing four unknowns. Li and Zhang [27] reported
the vibration study on FG plate with rotation. Park and Choi [28] developed a simple FSDT for predicting the global respo
nse of isotropic plates. Sayyad and Ghugal [29] presented a unified shear deformation theory for FG beams and plates. Naik
and Sayyad [30] developed higher-order plate theory for the cylindrical bending problem of plates. Sayyad and Ghugal [31]
have reviewed the literature on the analysis of FG sandwich beams by means of refined beam theories based on the analytical
and numerical techniques.

Recently, few research papers have been published on the applications of analytical [32-38] and numerical methods [39-50]
for the analysis of functionally graded beams, plates, and shells. However, in most of the literature, the effect of transverse
normal deformation is neglected to minimize unknown variables in the displacement field.

1.1 Present Contribution

In the current contribution, FOSNDT investigated by Ghumare and Sayyad [51] is extended to examine structural behavior
of the FG plates under transverse loadings. The novelty and contribution of the present theory are summarized as follows:

1) For the accurate description of the bending behavior of the thick FGM plates, shear and normal deformations play
important roles. Thus, their effects are considered. Many published theories neglect the effect of transverse normal
deformations. Hence, in this work, a new quasi-3D model is presented for FG plate including normal deformation along
with shear deformation.

2) To account for the effects of cross-sectional warping and thickness stretching, a polynomial type shearing strain function
expanded up to fifth-order is chosen. Zero transverse shear stress conditions are satisfied by using constitutive relations.

3) Since the current developed theory is a polynomial type, it is computationally simpler than non-polynomial plate theories
which are mathematically more cumbersome.

4) Since 3D Hooke’s law is used to obtained stresses associated with the present theory, it accurately describes the state of
stress in 3D continuum.

5) The developed theory shows improvements in results when compared to the other HSDTs found in the literature [52-57].
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Fig. 1. FGM plate and its geometry with coordinates

2. Problem Formulation

The transversely loaded FG plate which is presented in Fig. 1 is considered for the mathematical formulation and
numerical study. Properties of material graded in z-direction using the power-law relation stated in Eq. (1), wherein top face is
made of metal and bottom face is of purely ceramic.

E(z)=EJV,+EV,, V,=1-V, V. =(05+z/h)" 1)

c c?

where subscript m stands for metal and subscript ¢ refers to ceramic. E is the elastic modulus, ¥ is the volume fraction, and P
is the power-law coefficient/index. Fig. 2 plots the elastic modulus in z-direction.
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Fig. 2. Variation of elastic modulus in z-direction

2.1 Kinematics of the present model
The displacement field of the present theory is defined as,

2 4
u :uo—z%—kz[l—iz }@+z{l—£z—} 78

ox e 5 4
ow, 4 7* 16 z*
V:VO—Za—;+2|:1—§h—2:|¢y+Z|:1—?h—4:|(//y (2)

2 4
w:w0+{l—4;—2} ¢Z+{1—16;—4} v,

where u,,v,,w, are the displacements of a mid-plane. ¢,y .4 .y .4,y are the unknown rotations. f(z) and f,(z)
are assumed to get the parabolic variation of shear strains. The non-zero normal and shear strain (&, &, 6.,7.,7,..7,,)

components are as follows:

g, = &lvzkl+[z=(413)(2 /1) | e+ 2= (1615)(2° 1) ] &
[2=(473)(="/w)]

gy +[z-(16/5)(* 1h*) ] &]
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; op.\ oy,
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2.2 Constitutive relation
The stresses are obtained using the 3D constitutive relations stated in Eq. (5)
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2.3 Governing differential equations

The principle of virtual work stated in Eq. (7) is applied to derive the variationally consistent governing differenti
al equations.

—h/2

o & " (0.0, +0,06,+0.0¢,
J I ' dzdydx = I I x y 5wdydx @)
0 0 +Tn;57/xy+rx25 7xz+Tyz5 }/yz

where O represents the variational operator. Substituting non-zero strains from Egs. (3) and (4) into Eq. (7) one can write:
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here
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+h/2

where, (N, M, Q) are the resultant in-plane forces, moments, and shear forces, respectively. The superscript b is associated with
the terms analogous to classical theory, whereas S| and S» are the superscripts associated with the transverse shear deformation
effect. Additionally, Superscripts 1 and 2 are associated with the shearing strain functions fi(z) and fx(z). The governing
differential equations are obtained by integration of Eq. (8) and setting the coefficients of unknown equal to zero.
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Associated boundary conditions are as:
at x=0 andx=a
N,=0 or u, =0 (20)
N,=0 or =0 @1)
M!=0 or  w =0 (22)
MfyzO or  ow,/0x=0 (23)
MP =0 or $.=0 (24)
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M = or v, = (25)
M¥ = or 4 =0 (26)
Mg =0 oy, =0 7)
0.=0 o 4= (28)
0. = o y.=0 (29)
at y=0 andy=5
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MP=0 o  y =0 (35)
M} = or 9, = (36)
Mp»=0 oy, = (37)
1
0.=0 o . = (38)
0.=0 or  y =0 (39)

2.4 Closed-form solutions

A Navier’s solution procedure is implemented to obtain static solutions for the FG plates. The displacement variables are
assumed to be in the following trigonometric form.

(vt )| (U Voo By JCOS@XSIN By

(VO ’ W}’ 4 ¢)" ) = Z Z (an > l//ymn > ¢ymn ) Sin axCcos ﬂy (40)
m=1,3,5 n=1,3,5 . .

(Wo’l//z’¢2 ) (Wmn’l//zmn’¢zmn )Sln axsmﬂy

wherea =mz/a, f=nx/band u,, W, V.., B> B>V cuns ¥ yun> Bonns P ar€ the unknown coefficients. The transverse load

n, " mn,” mn, Py

is also considered to be in trigonometric form.

q(x,y)= Y, Y q,,sinaxsinfy (41)

5n=1,3,5

o0
m=1,3

The Fourier coefficients (¢mx) for different loading conditions are as follows,

gm=qo (m =1, n=1) (Sinusoidal distributed load) (42)
qmn= 16%2 (m=1,3,5...n=1,3,5...) (Uniformly distributed load) (43)
mnrw

where g is the maximum intensity. Substituting Egs. (40)-(43) into the Egs. (11)-(18) leads to the following equations:

[K]{A}={0} )
where the elements of Matrix K are described in the Appendix and also we have:
{Q} = {0’ 0’ qmn ’05 09 Oy O, 0, 0}

r (45)
{A} = {umn sV mn W mn ¢xmn > l//)cmn > ¢ymn > l//ymn > ¢zmn >7F zmn }

3. Illustrative examples and validation

The bending analysis of the FG plates is presented herein to prove validity of the theory. The properties of the metal and
ceramic are; Metal: En= 70 GPa and p = 0.3, Ceramic: E. = 380 GPa and u = 0.3. The non-dimensional quantities are
presented in the following form.
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Isotropic Plate:

3 2
W(E,Q,OJ:IOOET w, 5X(ﬁ’é’_ﬁj: h o, iz(ﬁ,O,EJzifr (46)
2°2 q, a 22 2) gy “\2 h) gua "
FG Plate:
3
W( ’é’oj: 100F h ’ _X’Ey)(g’é’_ﬁj:_(a" o, ),
2 q, a 22 2) g,

(47)

3.1 Validation and discussion of results

Due to the unavailability of the exact 3D solutions for FG plates, the present FOSNDT is applied to isotropic plates (E
=210 GPa, p = 0.3) to prove its accuracy and validity. Non-dimensional quantities are shown in Table 1. Exact solution of
Pagano [52], CPT of Kirchhoff [53], FSDT of Mindlin [54], parabolic shear deformation theory (PSDT) of Reddy [55], and
sinusoidal shear and normal deformation plate theory (SSNPT) of Sayyad and Ghugal [56] are used for the comparison
purpose. The CPT neglects the shear effect, the FSDT considers the first-order shear effect, the PSDT considers the third-order
shear effect. SSNPT considers the sinusoidal type shear effect. In the comparison of these theories, the present theory considers
the fifth-order shear effect along with thickness stretching effect. Table 1 shows that the present FOSNDT yields accurate
predictions of displacements and stresses for all aspect ratios compared to other well-known plate theories. This is mainly due
to the inclusion of fifth-order variation of displacements and thickness stretching effect. In many cases, percentage error
predicted by the FOSNDT is lower than other existing plate theories. For a/h = 4, the percentage error in transverse deflection
predicted by the present theory is 0.076% whereas PSDT, SSNPT, FSDT, and CPT show error of 3.380, -0.262, -1.010,
23.47 %, respectively. A similar type of error difference can be observed for in-plane normal and transverse shear stresses. CPT
and FSDT show higher percentage error in the prediction due to the neglect of the effects of normal strains. Therefore, it is
revealed that the FOSNDT is more accurate compared to the other theories.

Table 1. Non-dimensional deflection and stresses for the isotropic square plate subjected to sinusoidal load (a=b).

a’h Model w(0) %error &,(h/2) %error 7,.(0) % error
4 Present (FOSNDT) 3.6658 0.076 0.2060 -0.980  0.2356  -0.211
PSDT [55] 3.7870  3.380 0.2090 -2.450  0.2260  -4.277

SSNPT [56] 3.6534 -0.262 0.2267 -11.12 02355 -0.254

FSDT [54] 3.6260 -1.010 0.1970 -3.430  0.2390 1.220

CPT [53] 2.8030 23.47 0.1970 -3.430  0.2380  0.804

Exact [52] 3.6630 00.00 0.2040 00.00 0.2361 0.000

10 Present (FOSNDT) 2.9491 0.224 0.2000 0.855 0.2383  0.000
PSDT [55] 29610 6.280 0.1990 0.100 0.2290  3.900

SSNPT [56] 2.9333  0.397 0.2125 6.890 0.2380  -0.126

FSDT [54] 2.9340 2.888 0.1970 -0.905  0.2390  0.293

CPT [53] 2.8020 4.770 0.1970 -0.905  0.2380 -0.419

Exact [52] 2.9425 00.00 0.1988 00.00 0.2383 0.000

20 Present (FOSNDT) 2.8412 0.123 0.1986 0.353 0.2387  0.000
PSDT [55] 2.8286 -0.320 0.2105 6.360 0.2384  -0.125

SSNPT [56] 2.8377 00.00 0.1979 00.00 0.2387  0.000

FSDT [54] 2.8109 0.096 0.1981 0.253 0.2387  0.041

CPT [53] 2.7991 -0.324 0.2100 6.270 0.2385  -0.041

Exact [52] 2.8082 00.00 0.1976 00.00 0.2386  0.000

OO Present (FOSNDT) 2.8066 0.092 0.1976 0.000 0.2388  0.041
PSDT [55] 2.8040 0.000 0.1980 0.202 0.2390  0.125

SSNPT [56] 2.7949 -0.324 0.1980 0.202 0.2385  -0.041

FSDT [54] 2.8040 0.000 0.1980 0.202 0.2390  0.125

CPT [53] 2.8030 -0.035 0.1980 0.202 0.2390  0.125

Exact [52] 2.8040 00.00 0.1976 00.00 0.2387  0.000

Table 2 presents values of non-dimensional quantities of FGM plate for p = {0, 1, 5, 10} and a/k = 10. The top surface, i.e.
metal surface, is subjected to mechanical load. The present results are compared with those presented by PSDT of Reddy [55],
trigonometric, hyperbolic, and exponential shear deformation theories (TSDT, HSDT, and ESDT) developed by Sayyad and
Ghugal [56], Mindlin [54] and Kirchhoff [53]. It is observed from Table 2 that PSDT, TSDT, HSDT, and ESDT overestimate
the results for FG plate under sinusoidal load. This is in fact due to the neglect of transverse normal deformations, i.e. thickness
stretching effect. It is important to note that the nondimensional displacements and stresses are increasing with growth in the
power-law index. This is due to increases in the power-law index which reduces the stiffness of the plate. Distributions of
stresses in z-direction are plotted in Fig. 3. From these figures, it is observed that the variations of in-plane normal and shear
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stresses ( 0,,7,,) are linear for p = 0 and nonlinear for p = {1, 5, 10}. It is also observed from Fig. 3 that the maximum

compressive in-plane normal stress is increased with an increase in the power-law index. Moreover, it is observed that the
transverse shear stresses are maximum at mid-plane (z/4 = 0) when p = 0 and maximum at z = +0.144 and +0.22/ when p = 1
and 5, respectively. This is due to the fact that mid-plane shifted toward ceramic face due to an increase in power-law index.

0.5 T

Table 2. Non-dimensional deflection and stresses for the functionally graded square plate subjected to sinusoidal load (a=b and a/h=10)

Sinusoidal Load
a/h=10

Sinusoidal Load
a’h=10

0.6

0.5

0.25

z/h

-0.25

Sinusoidal Load
a’h=10

0.25

(d)

Fig. 3. Distribution of stresses in z-direction for sinusoidal load

P Model w(0) &./2) &,Ghi2) 7,(hl2) 7.0 7,0

0 Present (FOSNDT) 2.9425 19964  1.9964 1.0634 02384 0.2384
PSDT [55] 29606  1.9943  1.9943 1.0739  0.2386  0.2386
TSDT [29] 29603  1.9955  1.9955 1.0745 02462  0.2462
HSDT [29] 2.9595  1.9937  1.9937 1.0735 02371  0.2371
ESDT [29] 29575  1.9967  1.9967 1.0752 02437 0.2437
FSDT [54] 29343 19758 19758 1.0639  0.1592  0.1592
CPT [53] 2.8026 19758  1.9758 1.0639

1 Present (FOSNDT) 5.6956  3.0605  3.0605 1.6715 02604 0.2604
PSDT [55] 5.8895  3.0850  3.0850 1.6612 02623  0.2623
TSDT [29] 58891  3.0870  3.0870 1.6622 02667 0.2667
HSDT [29] 58895  3.0848  3.0848 1.6611 02619 0.2619
ESDT [29] 58878  3.0889  3.0889 1.6632 02717 02717
FSDT [54] 58452 3.0536  3.0536 1.6443  0.2688 0.2688
CPT [53] 56228  3.0536  3.0536 1.6443

5  Present (FOSNDT) 8.7493  4.1880  4.1880 23219 02511 02511
PSDT [55] 9.1135 42447 42447 22856 0.2659  0.2659
TSDT [29] 9.1183  4.2488  4.2488 22878 02574 02574
HSDT [29] 9.1130 42443 42443 22854 02668 0.2668
ESDT [29] 9.1210 42527 42527 22899 02514 02514
FSDT [54] 8.9321  4.1848  4.1848 22534  0.4971  0.4971
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Table 2. Continued

CPT [53] 85207 4.1848 4.1848 22534

10 Present (FOSNDT) 9.8204 5.0845 5.0845 2.7841 0.2218 0.2218
PSDT [55] 10.087 5.0849 5.0849 2.7380 02115 02115
TSDT [29] 10.089 5.0890 5.0890 2.7402 0.2198 0.2198
HSDT [29] 10.086 5.0845 5.0845 2.7378 02107 0.2107
ESDT [29] 10.088 5.0928 5.0928 2.7423 0.2282 0.2282
FSDT [54] 9.8644 5.0173 5.0173 2.7016 0.6160 0.6160
CPT [53] 93546 5.0173 5.0173 27016 -

Table 3 shows comparison of non-dimensional displacements and stresses of FGM plate subjected to uniformly distributed
load (UDL). Similar trends in results and distributions of stresses (see Fig. 4) are observed when the plate is loaded UDL.
Figure 5 illustrates the variation of transverse normal stress ( &, ) across the thickness of the plate. This variation is rarely

available in the whole variety of literature due to the neglect of transverse normal effect. Variations of transverse deflection
with respect to aspect ratio are plotted in Fig. 6. Examination of Fig. 6 displays that the non-dimensional transverse deflection
is increased with the increase in the power-law index. Moreover, values of transverse deflection are almost constant for higher
values of a/h ratios i.e. for thin plates.

Table 3. Non-dimensional deflection and stresses for the functionally graded square plate subjected to uniformly distributed load (UDL)
(a=b and a/h=10).

P Model w (0) o, (h/2) c,(h/2) fn (h/2) 7. (0) fvz (0)
0  Present (FOSNDT) 4.6397 2.8961 2.8961 1.9541 0.4868 0.4868
PSDT [55] 4.6659 2.8928 2.8928 2.0331 0.4925 0.4925
TSDT [29] 4.6655 2.8940 2.8940 1.9964 0.5077  0.5077
HSDT [29] 4.6643 2.8921 2.8921 1.9264 0.4890 0.4890
ESDT [29] 4.6615 2.8943 2.8943 2.0176 0.5023  0.5023
FSDT [54] 4.6277 2.8735 2.8735 1.9473 0.3300 0.3300
CPT [53] 4.4361 2.8735 2.8735 1.9473 -—- -—-
1 Present (FOSNDT) 8.9852 4.4190 4.4190 3.0724 0.5335 0.5335
PSDT [55] 9.2880 4.4738 4.4738 3.1724 0.5414 0.5414
TSDT [29] 9.2874 4.4758 4.4758 3.0927 0.5501 0.5501
HSDT [29] 9.2880 4.4736 4.4736 29771 0.5407  0.5407
ESDT [29] 9.2856 4.4777 4.4777 3.1654 0.5598 0.5598
FSDT [54] 9.2234 4.4411 44411 3.0097 0.5574 0.5574
CPT [53] 8.9000 4.4411 44411 3.0097 - -
5  Present (FOSNDT) 13.777 6.0400 6.0400 4.3034 0.5166 0.5166
PSDT [55] 14.349 6.1484 6.1484 4.3737 0.5480 0.5480
TSDT [29] 14.356 6.1526 6.1526 4.2816 0.5298  0.5298
HSDT [29] 14.348 6.1480 6.1480 4.0138 0.5499  0.5499
ESDT [29] 14.360 6.1565 6.1565 4.3615 0.5167 0.5167
FSDT [54] 14.085 6.0862 6.0862 4.1245 1.0307 1.0307
CPT [53] 13.486 6.0862 6.0862 4.1245 - -
10 Present (FOSNDT) 15.457 7.3217 7.3217 5.1493 0.4522 0.4522
PSDT [55] 15.872 7.3672 7.3672 5.2118 0.4357 0.4357
TSDT [29] 15.875 7.3713 7.3713 5.1209 0.4524 0.4524
HSDT [29] 15.872 7.3668 7.3668 4.7875 0.4343 0.4343
ESDT [29] 15.874 7.3751 7.3751 5.1953 0.4690 0.4690
FSDT [54] 15.548 7.2970 7.2970 4.9450 1.2773  1.2773
CPT [53] 14.806 7.2970 7.2970 4.9450 - -
0.5 — 0.5 ——
0.25 - UDL - 0.25 UDL
h a/h=10 i 4 a’/h=10 i
P=0 P=0
z/h  o- —_—P=1 - z/h 0 ——— P=1 n
—_— P=5 —_— P=5
1 —— P=10 | 1 ——pP=10 1
-0.25 - -0.25 n
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-2 0 2 4 6 8 -6 -4 2 0 2
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0.6

Fig. 4. Distribution of stresses in z-direction for the FG plate under UDL

0.5

Fig. 5. Distribution of ( &, ) in z-direction for sinusoidal load
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Fig. 6. Variation of non-dimensional transverse displacement ( W) with respect to the different aspect ratios

4. Conclusions

A new quasi-3D fifth-order displacement based model was developed and presented for the bending analysis of FGM
plates. The theory considered the effects of transverse normal strain/stress on the bending of a plate. Governing equations were
obtained using the principle of virtual work. Closed-form solutions were presented based on Navier’s technique. Numerical
results were presented when the plate is subjected to sinusoidal and distributed loads. From the numerical study and discussion
of the results following conclusions were drawn.

N (6
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1) The present theory yields accurate predictions of displacements and stresses compared to other well-known higher order
plate theories. This is mainly due to the inclusion of fifth-order variation of displacements and thickness stretching effect.

2) It is deduced that the non-dimensional displacements and stresses are increasing with an increase in the power-law index.
This is due to the increases in power-law index which reduces stiffness of the plate and increases its flexibility.

3) It is concluded that the variations of in-plane normal and shear stresses are linear for p = 0 and nonlinear for higher values
of the power-law index due to gradation of material properties.

4) Tt is also concluded that mid-plane of the plate is shifted towards ceramic face due to an increase in power-law index.

Overall, it is concluded that the present theory is accurate and strongly recommended for the bending analysis of FGM plate.
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K, =K,, K, =K,,, K, =K,,, K, =K, K, =K (,K, =K, K, =K, K, =K,,,
Ky, =Ky, Ky=K,,, Ko =K, Ky =Ky, K, =K, Ky =K, K,y =Ky, Ky =K,
K=Ky, K=Ky, K;y=Ky;, Ky =Ky, Kjy =Ky, Ko, =K, Ko, =K, K;, =K,
Ky =Ky, Koy =Ky, K=Ky, K,s=Kg;, Ky =K, Koy =K, K, =K, Ky =K,
Ky=Kg, Kgo=Ki, Ky,=K,  Ky=Kg
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