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Abstract. This article investigates the static behavior of functionally graded plate under mechanical loads by using 
a new quasi 3D model. The theory is designated as fifth-order shear and normal deformation theory (FOSNDT). 
Properties of functionally graded material are graded across the transverse direction by using the rule of mixture i.e. 
power-law. The effect of thickness stretching is considered to develop the present theory. In this theory, axial and 
transverse displacement components respectively involve fifth-order and fourth-order shape functions to evaluate 
shear and normal strains. The theory involves nine unknowns. Zero transverse shear stress conditions are satisfied 
by employing constitutive relations. Analytical solutions are obtained by implementing the double Fourier series 
technique. The results predicted by the FOSNDT are compared with existing results. It is pointed out that the 
present theory is helpful for accurate structural analysis of isotropic and functionally graded plates compared to 
other plate models. 
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1. Introduction 

Nowadays, functionally graded (FG) materials are being used in many advanced and important engineering structures. The 
material composition and volume fraction vary according to the simple rule of mixture i.e. power-law through the thickness. 
Wide applications of FGM in various industries forced researchers to develop accurate analytical and numerical techniques. 
This can be achieved by selecting a proper structural theory. Modeling of plate structures is based on either classical and 
refined computational models or three-dimensional elasticity theories. However, exact 3D elasticity theories for the FG plates 
are not found in the whole variety of literature. Therefore, researchers have hired various approximate plate theories for 
predicting the structural behavior of FG plates. Approximate theories reduce the 3D problem to a 2D problem. Various 
investigations on FG plate which are based on approximate theories are well documented in Jha et al. [1], Swaminathan et al. 
[2], Swaminathan and Sangeeta [3], etc. 

Classical plate theory (CPT) predicts zero values for strains in the transverse direction (z-direction). Therefore, it is not 
suitable for thick FG plates wherein these strains are more pronounced. The first-order shear deformation theory (FSDT) 
considered these strain components, but shows constant variation of transverse strains in the transverse direction. These 
drawbacks of CPT and FSDT forced the researchers to develop refined plate theories. Several higher-order shear deformation 
theories (HSDTs) are developed by different scientists for predicting the structural behavior of FG plates. These theories are 
systematically documented by Sayyad and Ghugal [4, 5]. Reddy [6] analyzed the FG plates by his well-known polynomial type 
model. Reddy and Cheng [7] presented 3D asymptotic theory for FG plates. Zenkour [8] studied the behavior of FG plates 
under uniform load. Zhong and Shang [9] presented 3D analysis of FG plates using Plevako’s solution. Lu et al. [10] obtained 
natural frequencies of FG thick plates using 3D elasticity theory. Ameur et al. [11] developed a trigonometric theory containing 



 S.M. Ghumare and A.S. Sayyad, Vol. 5, No. 2, 2019 
 

Journal of Applied and Computational Mechanics, Vol. 5, No. 2, (2019), 367-380   

368

four unknowns for the bending of FG plates. Jha et al. [12] and Neves et al. [13] presented stress solutions for FG plates based 
on HSDT with including normal deformation. 

Thai and Choi [14] attempted buckling analysis of FG plates by utilizing a refined model. Second-degree variation of the 
shear strains in the transverse direction is accounted. Najafizadeh et al. [15] investigated frequencies of FG plates with non-
ideal end conditions. Neves et al. [16] addressed flexure and vibration problems of FG plates by deploying hyperbolic theory. 
Thai and Thuc [17] and Thai and Kim [18] tried new theories for flexure, buckling, and vibration of FG plates. Mechab et al. 
[19] obtained solutions for flexure conditions of functionally graded plates by employing the refined theory. Thai and Choi 
[20] developed a FEM solution for FG plates. Reddy and Kant [21] determined frequencies for FG plates made of 
exponentially graded materials using 3D exact solution. Thai and Choi [22] obtained an analytical solution hiring Levy’s 
solution technique to determine frequencies for FG plates with different end conditions based on a refined theory. H
adji et al. [23] developed a HSDT model for static and vibration problems of FG beams. Mantari et al. [24] have used 
five non-polynomial displacement based theories for FG plates. Amirpour et al. [25] have utilized HSDT for thick FG plates 
with varying stiffness. Thai et al. [26] presented a theory for FG plates containing four unknowns. Li and Zhang [27] reported 
the vibration study on FG plate with rotation. Park and Choi [28] developed a simple FSDT for predicting the global respo
nse of isotropic plates. Sayyad and Ghugal [29] presented a unified shear deformation theory for FG beams and plates. Naik 
and Sayyad [30] developed higher-order plate theory for the cylindrical bending problem of plates. Sayyad and Ghugal [31] 
have reviewed the literature on the analysis of FG sandwich beams by means of refined beam theories based on the analytical 
and numerical techniques.      

Recently, few research papers have been published on the applications of analytical [32-38] and numerical methods [39-50] 
for the analysis of functionally graded beams, plates, and shells. However, in most of the literature, the effect of transverse 
normal deformation is neglected to minimize unknown variables in the displacement field.    
 
1.1 Present Contribution 

  In the current contribution, FOSNDT investigated by Ghumare and Sayyad [51] is extended to examine structural behavior 
of the FG plates under transverse loadings. The novelty and contribution of the present theory are summarized as follows: 
1) For the accurate description of the bending behavior of the thick FGM plates, shear and normal deformations play 

important roles. Thus, their effects are considered. Many published theories neglect the effect of transverse normal 
deformations. Hence, in this work, a new quasi-3D model is presented for FG plate including normal deformation along 
with shear deformation. 

2) To account for the effects of cross-sectional warping and thickness stretching, a polynomial type shearing strain function 
expanded up to fifth-order is chosen. Zero transverse shear stress conditions are satisfied by using constitutive relations. 

3) Since the current developed theory is a polynomial type, it is computationally simpler than non-polynomial plate theories 
which are mathematically more cumbersome. 

4) Since 3D Hooke’s law is used to obtained stresses associated with the present theory, it accurately describes the state of 
stress in 3D continuum.   

5) The developed theory shows improvements in results when compared to the other HSDTs found in the literature [52-57]. 
 

 

Fig. 1. FGM plate and its geometry with coordinates  

2. Problem Formulation 

    The transversely loaded FG plate which is presented in Fig. 1 is considered for the mathematical formulation and 
numerical study. Properties of material graded in z-direction using the power-law relation stated in Eq. (1), wherein top face is 
made of metal and bottom face is of purely ceramic. 
 

                       
   , 1 0.5 /

P

m m c c m c cE z E V E V V V V z h                              (1)
 

                                          
 

where subscript m stands for metal and subscript c refers to ceramic. E is the elastic modulus, V is the volume fraction, and P 
is the power-law coefficient/index. Fig. 2 plots the elastic modulus in z-direction. 
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Fig. 2. Variation of elastic modulus in z-direction 
 

2.1 Kinematics of the present model 

The displacement field of the present theory is defined as, 
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where 0 0 0, ,u v w  are the displacements of a mid-plane. , , , , ,x x y y z z       are the unknown rotations. 1 ( )f z  and 2 ( )f z  

are assumed to get the parabolic variation of shear strains. The non-zero normal and shear strain ( , , , , ,x y z xz yz xy      ) 

components are as follows: 
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2.2 Constitutive relation  

The stresses are obtained using the 3D constitutive relations stated in Eq. (5) 
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2.3 Governing differential equations 

The principle of virtual work stated in Eq. (7) is applied to derive the variationally consistent governing differenti
al equations.   
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where   represents the variational operator. Substituting non-zero strains from Eqs. (3) and (4) into Eq. (7) one can write: 
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where, (N, M, Q) are the resultant in-plane forces, moments, and shear forces, respectively. The superscript b is associated with 
the terms analogous to classical theory, whereas S1 and S2 are the superscripts associated with the transverse shear deformation 
effect. Additionally, Superscripts 1 and 2 are associated with the shearing strain functions f1(z) and f2(z). The governing 
differential equations are obtained by integration of Eq. (8) and setting the coefficients of unknown equal to zero. 
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Associated boundary conditions are as: 
at 0 andx x a   
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 0xyN   or 
0 0v   (21) 

 0b
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 0b
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 1 0S
xM   or 0x   (24) 
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2.4 Closed-form solutions 

A Navier’s solution procedure is implemented to obtain static solutions for the FG plates. The displacement variables are 
assumed to be in the following trigonometric form.  
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where / , /m a n b     and , , , , , , , ,mn mn mn xmn ymn xmn ymn zmn zmnu w v       are the unknown coefficients. The transverse load 

is also considered to be in trigonometric form. 
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                                 (41) 

 
The Fourier coefficients (qmn) for different loading conditions are as follows, 
 

                 qmn= q0   (m =1, n =1) (Sinusoidal distributed load)                                (42)                                                   

                qmn= 0
2

16q

mn
(m =1, 3, 5…n=1, 3, 5…)  (Uniformly distributed load)                  (43)   

                                   
where q0 is the maximum intensity. Substituting Eqs. (40)-(43) into the Eqs. (11)-(18) leads to the following equations: 
 

                                
    K Q 

                                            
(44) 

                                                                                                                      
where the elements of Matrix K are described in the Appendix and also we have: 
 

       

   
   

0,0, ,0, 0, 0, 0, 0, 0

, , , , , , , ,

mn

T

mn mn mn xmn xmn ymn ymn zmn zmn

Q q

u v w      



 

       

                  (45) 

3. Illustrative examples and validation 

The bending analysis of the FG plates is presented herein to prove validity of the theory. The properties of the metal and 
ceramic are; Metal: Em= 70 GPa and μ = 0.3, Ceramic: Ec = 380 GPa and μ = 0.3. The non-dimensional quantities are 
presented in the following form. 
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Isotropic Plate: 

                 

3 2

4 2
00 0

100
, ,0 , , , , ,0,

2 2 2 2 2 2x x xz xz

a b Eh a b h h a z h
w w

h q aq a q a
                

     

          

(46) 

 
FG Plate: 
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, ,4
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x y x y

xy xy xz xz yz yz

E ha b a b h h
w w
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h h a z h b z h

q a h q a h q a

   

     

        
   

             
     

              

(47)  

 

3.1 Validation and discussion of results 

Due to the unavailability of the exact 3D solutions for FG plates, the present FOSNDT is applied to isotropic plates (E 
=210 GPa, μ = 0.3) to prove its accuracy and validity. Non-dimensional quantities are shown in Table 1. Exact solution of 
Pagano [52], CPT of Kirchhoff [53], FSDT of Mindlin [54], parabolic shear deformation theory (PSDT) of Reddy [55], and 
sinusoidal shear and normal deformation plate theory (SSNPT) of Sayyad and Ghugal [56] are used for the comparison 
purpose. The CPT neglects the shear effect, the FSDT considers the first-order shear effect, the PSDT considers the third-order 
shear effect. SSNPT considers the sinusoidal type shear effect. In the comparison of these theories, the present theory considers 
the fifth-order shear effect along with thickness stretching effect. Table 1 shows that the present FOSNDT yields accurate 
predictions of displacements and stresses for all aspect ratios compared to other well-known plate theories. This is mainly due 
to the inclusion of fifth-order variation of displacements and thickness stretching effect. In many cases, percentage error 
predicted by the FOSNDT is lower than other existing plate theories. For a/h = 4, the percentage error in transverse deflection 
predicted by the present theory is 0.076% whereas PSDT, SSNPT, FSDT, and CPT show error of 3.380, -0.262, -1.010, 
23.47 %, respectively. A similar type of error difference can be observed for in-plane normal and transverse shear stresses. CPT 
and FSDT show higher percentage error in the prediction due to the neglect of the effects of normal strains. Therefore, it is 
revealed that the FOSNDT is more accurate compared to the other theories. 

Table 1. Non-dimensional deflection and stresses for the isotropic square plate subjected to sinusoidal load (a=b). 

a/h Model (0)w  % error  / 2x h
 

% error (0)xz
 

% error 

4 Present (FOSNDT) 3.6658 0.076 0.2060 -0.980 0.2356 -0.211 
 PSDT [55] 3.7870 3.380 0.2090 -2.450 0.2260 -4.277 
 SSNPT [56] 3.6534 -0.262 0.2267 -11.12 0.2355 -0.254 
 FSDT [54] 3.6260 -1.010 0.1970 -3.430 0.2390 1.220 
 CPT [53] 2.8030 23.47 0.1970 -3.430 0.2380 0.804 
 Exact [52] 3.6630 00.00 0.2040 00.00 0.2361 0.000 

10 Present (FOSNDT) 2.9491 0.224 0.2000 0.855 0.2383 0.000 
 PSDT [55] 2.9610 6.280 0.1990 0.100 0.2290 3.900 
 SSNPT [56] 2.9333 0.397 0.2125 6.890 0.2380 -0.126 
 FSDT [54] 2.9340 2.888 0.1970 -0.905 0.2390 0.293 
 CPT [53] 2.8020 4.770 0.1970 -0.905 0.2380 -0.419 
 Exact [52] 2.9425 00.00 0.1988 00.00 0.2383 0.000 

20 Present (FOSNDT) 2.8412 0.123 0.1986 0.353 0.2387 0.000 
 PSDT [55] 2.8286 -0.320 0.2105 6.360 0.2384 -0.125 
 SSNPT [56] 2.8377 00.00 0.1979 00.00 0.2387 0.000 
 FSDT [54] 2.8109 0.096 0.1981 0.253 0.2387 0.041 
 CPT [53] 2.7991 -0.324 0.2100 6.270 0.2385 -0.041 
 Exact [52] 2.8082 00.00 0.1976 00.00 0.2386 0.000 

10
0 

Present (FOSNDT) 2.8066 0.092 0.1976 0.000 0.2388 0.041 

 PSDT [55] 2.8040 0.000 0.1980 0.202 0.2390 0.125 
 SSNPT [56] 2.7949 -0.324 0.1980 0.202 0.2385 -0.041 
 FSDT [54] 2.8040 0.000 0.1980 0.202 0.2390 0.125 
 CPT [53] 2.8030 -0.035 0.1980 0.202 0.2390 0.125 
 Exact [52] 2.8040 00.00 0.1976 00.00 0.2387 0.000 

Table 2 presents values of non-dimensional quantities of FGM plate for p = {0, 1, 5, 10} and a/h = 10. The top surface, i.e. 
metal surface, is subjected to mechanical load. The present results are compared with those presented by PSDT of Reddy [55], 
trigonometric, hyperbolic, and exponential shear deformation theories (TSDT, HSDT, and ESDT) developed by Sayyad and 
Ghugal [56], Mindlin [54] and Kirchhoff [53]. It is observed from Table 2 that PSDT, TSDT, HSDT, and ESDT overestimate 
the results for FG plate under sinusoidal load. This is in fact due to the neglect of transverse normal deformations, i.e. thickness 
stretching effect. It is important to note that the nondimensional displacements and stresses are increasing with growth in the 
power-law index. This is due to increases in the power-law index which reduces the stiffness of the plate. Distributions of 
stresses in z-direction are plotted in Fig. 3. From these figures, it is observed that the variations of in-plane normal and shear 
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stresses ( x , xy ) are linear for p = 0 and nonlinear for p = {1, 5, 10}. It is also observed from Fig. 3 that the maximum 

compressive in-plane normal stress is increased with an increase in the power-law index. Moreover, it is observed that the 
transverse shear stresses are maximum at mid-plane (z/h = 0) when p = 0 and maximum at z = +0.14h and +0.22h when p = 1 
and 5, respectively. This is due to the fact that mid-plane shifted toward ceramic face due to an increase in power-law index. 
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Fig. 3. Distribution of stresses in z-direction for sinusoidal load 

Table 2. Non-dimensional deflection and stresses for the functionally graded square plate subjected to sinusoidal load (a=b and a/h=10) 

P Model (0)w  ( / 2)hx  
( / 2)y h

 
( / 2)xy h

 
(0)xz  

(0)yz
 

0 Present (FOSNDT) 2.9425 1.9964 1.9964 1.0634 0.2384 0.2384 
 PSDT [55] 2.9606 1.9943 1.9943 1.0739 0.2386 0.2386 
 TSDT [29] 2.9603 1.9955 1.9955 1.0745 0.2462 0.2462 

 HSDT [29] 2.9595 1.9937 1.9937 1.0735 0.2371 0.2371 
 ESDT [29] 2.9575 1.9967 1.9967 1.0752 0.2437 0.2437 
 FSDT [54] 2.9343 1.9758 1.9758 1.0639 0.1592 0.1592 
 CPT [53] 2.8026 1.9758 1.9758 1.0639 --- --- 

1 Present (FOSNDT) 5.6956 3.0605 3.0605 1.6715 0.2604 0.2604 
 PSDT [55] 5.8895 3.0850 3.0850 1.6612 0.2623 0.2623 
 TSDT [29] 5.8891 3.0870 3.0870 1.6622 0.2667 0.2667 
 HSDT [29] 5.8895 3.0848 3.0848 1.6611 0.2619 0.2619 
 ESDT [29] 5.8878 3.0889 3.0889 1.6632 0.2717 0.2717 
 FSDT [54] 5.8452 3.0536 3.0536 1.6443 0.2688 0.2688 
 CPT [53] 5.6228 3.0536 3.0536 1.6443 --- --- 

5 Present (FOSNDT) 8.7493 4.1880 4.1880 2.3219 0.2511 0.2511 
 PSDT [55] 9.1135 4.2447 4.2447 2.2856 0.2659 0.2659 
 TSDT [29] 9.1183 4.2488 4.2488 2.2878 0.2574 0.2574 
 HSDT [29] 9.1130 4.2443 4.2443 2.2854 0.2668 0.2668 
 ESDT [29] 9.1210 4.2527 4.2527 2.2899 0.2514 0.2514 
 FSDT [54] 8.9321 4.1848 4.1848 2.2534 0.4971 0.4971 
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Table 2. Continued 

 CPT [53] 8.5207 4.1848 4.1848 2.2534 --- --- 
10 Present (FOSNDT) 9.8204 5.0845 5.0845 2.7841 0.2218 0.2218 

 PSDT [55] 10.087 5.0849 5.0849 2.7380 0.2115 0.2115 
 TSDT [29] 10.089 5.0890 5.0890 2.7402 0.2198 0.2198 
 HSDT [29] 10.086 5.0845 5.0845 2.7378 0.2107 0.2107 
 ESDT [29] 10.088 5.0928 5.0928 2.7423 0.2282 0.2282 
 FSDT [54] 9.8644 5.0173 5.0173 2.7016 0.6160 0.6160 
 CPT [53] 9.3546 5.0173 5.0173 2.7016 --- --- 

Table 3 shows comparison of non-dimensional displacements and stresses of FGM plate subjected to uniformly distributed 
load (UDL). Similar trends in results and distributions of stresses (see Fig. 4) are observed when the plate is loaded UDL. 

Figure 5 illustrates the variation of transverse normal stress ( z ) across the thickness of the plate. This variation is rarely 

available in the whole variety of literature due to the neglect of transverse normal effect. Variations of transverse deflection 
with respect to aspect ratio are plotted in Fig. 6. Examination of Fig. 6 displays that the non-dimensional transverse deflection 
is increased with the increase in the power-law index. Moreover, values of transverse deflection are almost constant for higher 
values of a/h ratios i.e. for thin plates. 

Table 3. Non-dimensional deflection and stresses for the functionally graded square plate subjected to uniformly distributed load (UDL)
 (a=b and a/h=10). 

P Model (0)w  ( / 2)h x  ( / 2)y h  ( / 2)xy h
 (0)xz

 
(0)yz

 
0 Present (FOSNDT) 4.6397 2.8961 2.8961 1.9541 0.4868 0.4868 
 PSDT [55] 4.6659 2.8928 2.8928 2.0331 0.4925 0.4925 
 TSDT [29] 4.6655 2.8940 2.8940 1.9964 0.5077 0.5077 
 HSDT [29] 4.6643 2.8921 2.8921 1.9264 0.4890 0.4890 
 ESDT [29] 4.6615 2.8943 2.8943 2.0176 0.5023 0.5023 
 FSDT [54] 4.6277 2.8735 2.8735 1.9473 0.3300 0.3300 
 CPT [53] 4.4361 2.8735 2.8735 1.9473 --- --- 

1 Present (FOSNDT) 8.9852 4.4190 4.4190 3.0724 0.5335 0.5335 
 PSDT [55] 9.2880 4.4738 4.4738 3.1724 0.5414 0.5414 
 TSDT [29] 9.2874 4.4758 4.4758 3.0927 0.5501 0.5501 
 HSDT [29] 9.2880 4.4736 4.4736 2.9771 0.5407 0.5407 
 ESDT [29] 9.2856 4.4777 4.4777 3.1654 0.5598 0.5598 
 FSDT [54] 9.2234 4.4411 4.4411 3.0097 0.5574 0.5574 
 CPT [53] 8.9000 4.4411 4.4411 3.0097 --- --- 

5 Present (FOSNDT) 13.777 6.0400 6.0400 4.3034 0.5166 0.5166 
 PSDT [55] 14.349 6.1484 6.1484 4.3737 0.5480 0.5480 
 TSDT [29] 14.356 6.1526 6.1526 4.2816 0.5298 0.5298 
 HSDT [29] 14.348 6.1480 6.1480 4.0138 0.5499 0.5499 
 ESDT [29] 14.360 6.1565 6.1565 4.3615 0.5167 0.5167 
 FSDT [54] 14.085 6.0862 6.0862 4.1245 1.0307 1.0307 
 CPT [53] 13.486 6.0862 6.0862 4.1245 --- --- 

10 Present (FOSNDT) 15.457 7.3217 7.3217 5.1493 0.4522 0.4522 
 PSDT [55] 15.872 7.3672 7.3672 5.2118 0.4357 0.4357 
 TSDT [29] 15.875 7.3713 7.3713 5.1209 0.4524 0.4524 
 HSDT [29] 15.872 7.3668 7.3668 4.7875 0.4343 0.4343 
 ESDT [29] 15.874 7.3751 7.3751 5.1953 0.4690 0.4690 
 FSDT [54] 15.548 7.2970 7.2970 4.9450 1.2773 1.2773 
 CPT [53] 14.806 7.2970 7.2970 4.9450 --- --- 
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Fig. 4. Distribution of stresses in z-direction for the FG plate under UDL 
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Fig. 5. Distribution of ( z ) in z-direction for sinusoidal load 
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Fig. 6. Variation of non-dimensional transverse displacement ( w ) with respect to the different aspect ratios 

4. Conclusions 

    A new quasi-3D fifth-order displacement based model was developed and presented for the bending analysis of FGM 
plates. The theory considered the effects of transverse normal strain/stress on the bending of a plate. Governing equations were 
obtained using the principle of virtual work. Closed-form solutions were presented based on Navier’s technique. Numerical 
results were presented when the plate is subjected to sinusoidal and distributed loads. From the numerical study and discussion 
of the results following conclusions were drawn. 
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1) The present theory yields accurate predictions of displacements and stresses compared to other well-known higher order 
plate theories. This is mainly due to the inclusion of fifth-order variation of displacements and thickness stretching effect.  

2) It is deduced that the non-dimensional displacements and stresses are increasing with an increase in the power-law index. 
This is due to the increases in power-law index which reduces stiffness of the plate and increases its flexibility.  

3) It is concluded that the variations of in-plane normal and shear stresses are linear for p = 0 and nonlinear for higher values 
of the power-law index due to gradation of material properties. 

4) It is also concluded that mid-plane of the plate is shifted towards ceramic face due to an increase in power-law index. 
Overall, it is concluded that the present theory is accurate and strongly recommended for the bending analysis of FGM plate. 
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