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Abstract. This article is proposed to address the melting heat transfer of a Jeffrey fluid in Blasius and Sakiadis 
flow caused due to a moving surface. Thermal radiation and a constant free stream are considered in this 
mathematical model. The non-linear coupled dimensionless equations from the governing equations are attained by 
employing appropriate similarity transformations. The resulting dimensionless equations are solved by 
implementing RKF method. The impact of sundry emerging parameters on different flow fields are interpreted with 
the help of figures and tables. For augmented values of Deborah number, the velocity profile diminishes in the case 
of Blasius flow and the reverse behavior in the Sakiadis flow is observed. Moreover, the velocity of non-Newtonian 
liquid in case of Blasius flow is superior to that of the Sakiadis flow. The present work is demonstrated by matching 
with the computational results in the literature and found to be outstanding agreement. 
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1. Introduction 

The non-Newtonian fluids have been widely established by many engineers and scientists because of their appropriate 
industrial and engineering applications. The examples of those fluid models are applesauce, waste fluids, food products, 
condensed milk and toothpaste. In particular, these fluids are involved in the melting of plastics, cosmetics and beautifying 
agents, polymers and nourishment preparing, coal slurries, etc. The rheological behavior of such fluids can be expressed as 
many constituent relationships due to their versatile nature. Therefore, a diversity of non-Newtonian liquids exhibiting distinct 
rheological behavior has been examined by many researchers [1-5]. In fact, several models are established to recognize the 
performance of the non-Newtonian fluids such as viscoelastic fluid, Oldroyd-B, nanofluid, Maxwell fluid, Sisko fluid, Jeffrey 
fluid. Amongst, Jeffrey fluid model is the most often used model due to its time derivative or rather converted derivative. The 
Jeffrey fluid model is employed to formulate the flows associated with modern industrial materials such as polymer solutions 
(melts & solutions), blood model and multi-phase systems (foams, emulsion, slurries, etc). This liquid model describes the 
notable attributes of relaxation and retardation times. Recently, the influence of heat transfer on the Jeffrey non-Newtonian 
fluid model properties is described by many researchers [6-12]. 

The non-Newtonian liquid flows generated by a continuously moving surface are of massive interest in many engineering 
and industrial applications, such as polymer sheet, fiber glass production, melt-spinning process, spinning of fibers, continuous 
casting and hot rolling. For instance, the quality and physical characteristics of each and every product depend on rate of heat 
transfer along the surface. In view of all these practical claims, Blasius [13] examined numerical solutions of a power law fluid 
flow towards sheet moving with uniform velocity. Later, the same work was extended by Sakiadis [14] considering 
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continuously moving surface. Further, this work was numerically and theoretically studied by many researches [15–18] under 
various aspects. Hayat et al. [19] characterized the heat transfer flow in a Jeffrey liquid over a continuously moving surface by 
implementing the HAM. Jilal et al. [20] have utilized in a Powell-Eyring fluid past a continuously moving permeable surface. 
Anjali Devi et al. [21] explored the impact of Blasius and Sakiadis flow of the MHD mixed convection nano-liquid flow past a 
plate. Mustafa et al. [22] developed the Sakiadis flow of a non-Newtonian (Maxwell fluid) fluid using convective boundary 
conditions. Ramesh et al. [23] reported the numerical solution to Blasius and Sakiadis flows of Williamson non-Newtonian 
liquid under composite velocity and convective suface conditions. Some other latest works have been done on various flow 
models under different heat and mass transfer effects [24-29].   

In the past few decades, the massive utility of heat transfer accompanied by melting phenomenon is considered in many 
researchers due to its numerous applications, for example, casting and welding process, latent heat storage, crystal growth, 
material processing, purification of materials, heat transportation melting of permafrost, preparation of semiconductors 
material and others. Roberts [30] first proposed to scrutinize the shielding effect on melting body of ice in a plane surface to 
hot stream of air. Epstein et al. [31] inspected persuade of melting heat processes in steady flow owing a flat plate. Some other 
progressive work contributed for melting heat transfer effects on Newtonian fluids along different channels by [32–33]. 
Recently, Azizah et al. [34] discussed the micropolar fluid in the direction of a linearly stretching and shrinking sheet with the 
melting process. They found the dual solutions which are unique for both the shrinking and stretching cases. Mabood et al. [35] 
investigated the impacts of variable fluid properties on heat transfer in a Casson-liquid over a permeability moving surface. 
They observed that the heat transfer rate rises as the Casson-fluid parameter increases. Khan et al. [36] deliberated the melting 
heat transfer influence on generalized Burgers fluid. Investigations related to the melting heat transfer effect on non-Newtonian 
fluid models was reported in [37- 39]. 

In view of all the cited studies above, it is concluded that the thermal radiation and melting heat transfer effects on the flow 
of a Jeffrey liquid past a continuously moving surface is not scrutinized up to yet. Thus, to fill this gap, the prime object of this 
article is to explore the impact of melting processes and thermal radiation on flow of Jeffrey liquid over a moving surface with 
free stream velocity. The nonlinear coupled dimensionless equations from the governing equations are attained by employing 
appropriate similarity transformations. Finally, the resulting dimensionless equations are solved computationally by 
implementing the RKF method through bvc45 in MATLAB software. The graphs for velocity component, skin-friction 
coefficient, temperature field and local Nusselt number are exhibited and deliberated. 

2. Mathematical formulations of the problem 

A steady flow of a Jeffrey non-Newtonian fluid towards a moving surface under uniform velocity uw and the uniform free 
stream velocity u∞ in the similar direction are displayed in Fig. 1. The melting surface of wall subjected to fixed temperature Tm 

and the free stream condition T∞ with T∞ >Tm is considered. Also, the viscous dissipation and thermal radiation effects are taken 
into account. Under these assumptions, the governing equations can be reported in Cartesian system as listed in [12, 19]: 

 

Fig. 1. Physical model 
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The boundary conditions are (see ref. [3, 31, 39-42]): 

 wu u , 0v ,  wT T  at y = 0 (4) 
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Utilizing Rosseland approximation of thermal radiation, we obtain the resultant expression 
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Equation (7) is considered in Eq.(3) to attain the below equation 
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Equations (1)-(3) can be easily transformed into a simpler form by establishing the following similarity transformation: 
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where,  wU u u . Further, the stream function is defined as /u y   and /v x   , which is inevitably satisfies 

Eq. (1). Utilizing aforementioned similarity transformation (i.e Eq.9), Eqs. (2) -(3) becomes 
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Here Ec>0 indicates that the heated wall and when Ec=0, the viscous dissipation term is absence in energy Eq. (3). The 
boundary conditions (4) and (5) become 
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The boundary condition 0A represents the Blasius flow (i.e. laminar boundary layer flow induced by a stationary surface) 
and 1A  indicates the Sakiadis flow (i.e. moving surface in absence of free steam velocity). When A<1, the free stream 
velocity is positive x-direction whereas the plate moves to the negative x-direction (See ref. [43]). 
Here 2[ ( )] / [ ( )]p m sH c T T T T     . The skin friction coefficient and the local Nusselt number are required engineering 

physical quantities of the problem and these are defined as 
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Using (9), we obtain the following 
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where Re [ ( ). ] /x wu x x   is the local Reynolds number. 

3. Results and Discussion 

The Figures 2-12 are depicted for the heterogeneous physical quantities on the velocity, local skin-friction coefficient, 
temperature and the Nusselt number in presence of both Blasius and Sakiadis flow. The comparability between local Nusselt 
number for different values of Prandtl number with those of Refs. [41, 42] are arrayed in Table 1 and the results are in good 
alliance with existing. Also, the local Nusselt number magnitude rises with an increase of Pr. 

Table 1. Comparison of (0)   for various values of Pr and  =  =H=R=0. 

Pr Present Results Hayat et al. [41] (K=0 ) Bianachi &Viskanta [42] 
0.01 -0.0519 -0.0519 -0.0519 
0.1 -0.1405 -0.141 -0.140 
0.7 -0.2934 -0.293 -0.293 
1.0 -0.3331 -0.333 -0.332 
10.0 -0.7279 -0.728 -0.728 

The effects of Deborah number ( ) , ratio of relaxation and retardation times ( ) on the velocity profile for both Blasius and 

Sakiadis flows are presented respectively in Figs. 2 and 3. The velocity of the fluid declines with rising values of   in case of 

Blasius flow, and opposite behavior is seen in the rising values of  . Both and  show the opposite nature in case Sakiadis 

flow. Physically, in case of Blasius flow (A=0), there is no moment in the surface and hence the moment of the fluid is less 
compare to that of Sakiadis flow (A=1). Also, Deborah number  is proportional to the rate of sheet. As  rises, the stretching 

rate increases which leads to fluid flow increases. 
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Fig. 2. Effect of   on Velocity, when  =0.1; Ec=0.5; Pr=1; 

R=0.1; H=1.0 
Fig. 3. Effect of  on Velocity, when  =0.1;Ec=1; Pr=1; R=0.1; 

H=1.0 

The importance of melting parameter H on the horizontal velocity and temperature profiles is plotted, respectively, in Figs. 
4 and 5. As melting parameter H increases, ( )f rises for the case of Blasius flow, while the reverse trend is seen in the case 

of Sakiadis flow. In addition, much heat transfer to cold melting surface due to high convection is marked by greater melting 
parameter values.  

From Fig.5 it is noticed that ( )  decreases for higher values of H and the thickness of the thermal boundary layer increase 

for an increase in H. Virtually, the transfer of more heat on the melting surface from heated fluid is proven greater H values. 
Therefore, temperature distribution decreases. Also, it is noticed that the decay in the thermal boundary layers for positive 
values of Sakiadis flow in the case of non-Newtonian and Newtonian ( 0  and 0  ) fluids.   

The deviations of  on ( )  for both cases of Blasius and Sakiadis flow are demonstrated in Fig. 6. ( )  decelerates 

with the rising values  for the Blasius and Sakiadis flows. Fig.7 draws to examine the behavior of Prandtl number on the 
temperature profile. In rising values of Prandtl number, there is a diminishing pattern in the temperature distribution for both 
the Blasius and Sakiadis flows. Fundamentally, the fluids thermal diffusivity and Prandtl number are inversely related. Due to 
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this, the temperature and thermal boundary layer thickness decreases. 
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Fig. 4. Effect of H on Velocity, when  =0.1;  =0.1; Ec=1; 

Pr=1; R=0.1 
Fig. 5. Effect of H on Temperature, when  =0.1;  =0.1; 

A=1; Ec=0.3; Pr=1; R=0.1 

(
)

  
Fig. 6. Effect of  on Temperature, when  =0.1; A=0.1;Ec=2; 

H=1.0; Pr=1; R=0.1 
Fig. 7. Effect of Pr on Temperature, when  =0.1;  =0.1; Ec=1; 

H=1.0; R=0.1 

The influence of the thermal radiation R on temperature distribution is shown in Fig. 8. The temperature distribution 
declines for larger values of thermal radiation R. In reality, increase in R enhances thickness of thermal boundary layer and flux 
of energy transport to the fluid temperature. The impact of Eckert number Ec on ( )  is exposed in Fig. 9. It is indicated that 

temperature profile ( )  is an increasing function of Ec. The boundary layer viscosity rises when Ec increases. Literally, the 

essential energy to enhance the temperature is attributed by the fluid particles which more active at higher Ec. 
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Fig. 8. Effect of R on Temperature, when  =0.1;  =0.1; 

Ec=1; H=1.0; Pr=1 
 

Fig. 9. Effect of Ec on Temperature, when  =0.1;  =0.1; 
H=1.0; Pr=1; R=0.1 

Figs.10 and 11, respectively illustrate the impact of  and H against A on skin friction coefficient. It is noticed that the 

exclarating values of  is resposible for hike of skin friction coefficient in the range 0 0.5 A  and later it shows opposie 
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effect as A inceases. On the other hand H exhibits opposite effect for f ′′(0). The drag force employed on the solid surface by 
the liquid is expressed by (0) 0 f and (0) 0 f implies the drag force of the fluid utilized by the solid surface. From both the 

figures it is observed that (0)f has reverse nature at A=0.5, this is due to the presence of equal stretching and free stream 

velocities. 

 A
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Fig. 10. Effect of   on skin-friction coefficient against A, 

when  =0.1; Ec=1; H=1;Pr=1; R=0.1 

Fig. 11. Effect of H on skin-friction coefficient against A, 
when  =0.1;  =0.1; Ec=1; Pr=1.0; R=0.1 

Fig. 12 highlights the influence of Pr on Nusselt number against radiation parameter R. It is obvious that the Nusselt 
number gradually rises by an increase in Pr. Further, it is perceived that the heat transfer rate declines with the boost of 
radiation parameter R for both Sakiadis & Blasius flows. Also, it is marked that the Sakiadis flow is aloft Blasius flow and are 
coextending with each other. 

 R
e

x1/
2  N

u

 
Fig. 12. Effect of Pr on Nusselt Number against R, when  =0.1;  =0.1; Ec=1; H=1.0 

4. Conclusion 

The melting heat transfer has several real-time applications like manufacturing processing and spinning of fibers, etc. 
Owing to this, the stretched flow of a rheological model, i.e. Jeffrey fluid over a continuously moving surface with melting 
heat transfer and thermal radiation under the impact of Blasius and Sakiadis flow, is examined. The non-linear coupled 
dimensionless equations from the governing equations are attained by employing appropriate similarity transformations. 
Finally, the resulting dimensionless equations are solved computationally by implementing Runge-Kutta-Fourth order method 
through bvc45 in MATLAB software. The main results of the given problem are depicted as follows: 

 Melting parameter (H) has a boosting nature of temperature distributions in case of a non-Newtonian fluid. 
 The velocity and the boundary layer thickness are decreasing functions of the Deborah number (  ) .  

 The impact of melting parameter (H), Prandtl number (Pr), ratio of relaxation and retardation times (  ) on thermal 
boundary layer thickness & fluid temperature are the same and the reverse trend is observed in various values of 
thermal radiation, for both Blasius and Sakiadis flows.  

 The velocity of Jeffrey fluid is higher in Blasius flow compared to that of Sakiadis flow. 
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Nomenclature 

A Moving parameter x distance along  wall [m] 
Ec Eckert number y distance normal to wall [m] 

fc  Skin-friction coefficient Greek symbols 

pc  specific heat at constant pressure [J/kg/K]   the thermal diffusivity of the fluid 

sc  the heat capacity of the solid surface β Deborah number 
F dimensional stream function   similarity variable 
f   dimensionless velocity   ratio of relaxation and retardation times  

H Melting parameter 1  relaxation time [s] 

k thermal conductivity of fluid [W/m/k] 2  the latent heat of the fluid 
Ks Rosseland mean absorption coefficient   dynamic viscosity [Pa/s] 
R radiation parameter   kinematic viscosity [m2s-1] 

Nux Nusselt number ρ fluid density [ kg/m] 
Pr Prandtl number σ electric conductivity[sm-1] 

rq  radiative heat flux[W/m] σ* Stefan-Boltzman constant [Wm-2K-4] 
qw surface heat flux   non-dimensional temperature 
Rex local Reynolds number   steam  function 
T fluid temperature (K)   

mT  melting temperature  Subscripts 

sT  the solid temperature w sheet surface 

T  temperature far away from wall (K)   Infinity 

u, v 
velocity components in   x-,y-directions, 
respectively [m/s] 

Superscript 

wu  shrinking velocity [ms-1] ' differentiation with respect to   
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