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Fine morphological reconstruction of individual neurons across the entire brain is
essential for mapping brain circuits. Inference of presynaptic axonal boutons, as a key
part of single-neuron fine reconstruction, is critical for interpreting the patterns of neural
circuit wiring schemes. However, automated bouton identification remains challenging
for current neuron reconstruction tools, as they focus mainly on neurite skeleton drawing
and have difficulties accurately quantifying bouton morphology. Here, we developed
an automated method for recognizing single-neuron axonal boutons in whole-brain
fluorescence microscopy datasets. The method is based on deep convolutional neural
networks and density-peak clustering. High-dimensional feature representations of
bouton morphology can be learned adaptively through convolutional networks and used
for bouton recognition and subtype classification. We demonstrate that the approach is
effective for detecting single-neuron boutons at the brain-wide scale for both long-range
pyramidal projection neurons and local interneurons.

Keywords: DeepBouton, single-neuron, axonal bouton, deep convolutional neural network, density-peak
clustering

INTRODUCTION

Mapping neural circuits, a core goal of modern neuroscience, depends on fine morphological
reconstruction of individual neurons across the whole brain, including neuronal skeleton drawing
and synaptic connectivity inference (Halavi et al., 2012; Helmstaedter and Mitra, 2012). Axonal
boutons in optical microscopy images are typical presynaptic structures indicative of one or
more synapses (Hellwig et al., 1994; Anderson et al., 1998). Recent research by Gala et al. (2017)
and Drawitsch et al. (2018) showed that optical microscopy-based axonal boutons were highly
correlative with electron microscopy. Therefore, identification of axonal boutons of individual
neurons is critical for interpreting the patterns of neural circuit wiring schemes, as boutons indicate
contact sites of individual neurons and reveal how neural circuits are wired (Braitenberg and Schüz,
1998; Lichtman and Denk, 2011). Furthermore, acquired bouton distribution patterns at the single-
neuron level provide more comprehensive and finer structural information for defining cell types
(Karube et al., 2004; Portera-Cailliau et al., 2005; Huang, 2014) and simulating neural circuits
(Goodman and Brette, 2008; Brüderle et al., 2009; Markram et al., 2015) combined with neuronal
arborization patterns.
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Recent progress in fluorescence sparse-labeling and large-
volume fine-imaging techniques (Micheva and Smith, 2007;
Rotolo et al., 2008; Osten and Margrie, 2013; Economo
et al., 2016; Gong et al., 2016) has enabled the acquisition
of submicron-resolution whole-brain datasets of neuronal
morphology. These techniques provide detailed structural
information on single neuron and axonal boutons. Manual
counting of axonal boutons in whole-brain datasets is extremely
inconvenient and time-consuming given the large number
and wide range of single-neuron boutons. As such, various
algorithms and tools have been developed for automated
reconstruction of individual neurons (Donohue andAscoli, 2011;
Myatt et al., 2012; Peng et al., 2015). Most of these approaches
are able to extract neuronal skeletons well. However, these tools
focus mainly on neurite tracing and are insufficient to precisely
quantify bouton morphology.

Several methods for detecting axonal boutons from light
microscopy images have been proposed. Song et al. (2016)
proposed a score index for quantifying axonal boutons, which
used the maximum intensity along the axon to locate boutons.
Bass et al. (2017) developed an automated algorithm for
detecting axonal boutons based on Gabor filters and support
vector machine in local image volume. The primary principle
underlying these approaches is using manually designed features
to approximately model axonal boutons. Nevertheless, the
features are insufficient to accurately describe complex bouton
morphology, since there are many suspected axonal swellings
similar to boutons derived from the inhomogeneities of axonal
fibers and insufficient imaging quality. Thus, it is difficult to
distinguish between boutons and non-bouton swellings using
manually designed features. Further, the shapes and sizes of
boutons of individual neurons in different brain regions are
diverse and may include partially overlapping boutons, which
renders bouton recognition difficult.

Considering these challenges, we propose here an
automated method, DeepBouton, for single-neuron bouton
identification in whole-brain datasets. The method includes
three key parts: neuron tree division with redundancy,
initial bouton detection using density-peak clustering
(Rodriguez and Laio, 2014; Cheng et al., 2016), and
filtering out false positives from the initial detection via
deep convolutional neural networks (LeCun et al., 2015;
He et al., 2016). DeepBouton adopts a two-step recognition
strategy: density-peak clustering to detect underlying bouton
centers and deep convolutional networks for filtering out
non-bouton axonal swellings in the initial detection. The
method combines the adaptive feature representation ability
of convolutional networks and robustness of density peak
clustering, allowing description of bouton morphology and
segmentation of objects with various patterns including
overlapping. Thus, it can effectively detect axonal swellings
of various morphologies and learn high-dimensional
representations of bouton morphology to distinguish reliable
boutons from other candidates. In addition, we developed
a neuron tree division technique to process brain-wide
single neurons effectively. To validate our method, we
applied it for identification of boutons of both long-range

pyramidal projection neurons and local interneurons in
whole-brain datasets. We obtained precision and recalls rates of
approximately 0.90.

MATERIALS AND METHODS

The Principle of DeepBouton
DeepBouton consists of three parts: neuron tree division
with redundancy, initial detection of axonal swellings, and
filtering of non-bouton swellings (Figures 1A,B). First,
with the guidance of a manually traced neuronal skeleton,
piecewise sub-blocks are extracted along axons with redundancy
(Figure 1C). For each sub-block, the foreground images are
segmented through adaptive binarization and morphological
erosion. Then, axonal swellings are localized with density-peak
clustering in the foreground images (Figure 1D), and the
detected swelling centers of all sub-blocks are merged.
Finally, we designed and trained a patch-based classification
convolutional network to filter the non-bouton swellings
in the initial detection (Figure 1E). A demonstration of
application of the method on an experimental dataset is depicted
in Figure 1F.

The two-step recognition strategy is utilized for accurate
identification of single-neuron boutons. The initial detection
should contain as many underlying axonal swellings of diverse
degrees as possible. Second recognition is then used to filter
non-bouton swellings. Initial detection is difficult because
underlying swellings have various sizes and partially overlap.
We used density-peak clustering to locate swelling centers
due to its robustness to cluster scale and effective splitting of
overlapped clusters (Figure 1D). However, the initially detected
swellings had diverse radii and intensities relative to neighboring
axons, and a suitable recognition scale needed to be determined
to distinguish boutons from non-bouton swellings. Here, we
adopted deep convolutional networks to filter false positives
due to their adaptive feature representation abilities without
manually designed features compared to those of traditional
machine learning or model-based approaches (Figure 1E). The
blocking-merging strategy along axons with redundancy ensures
that the method can quickly process ultra-volume datasets while
maintaining recognition accuracy (Figure 1C).

Neuron Tree Division With Redundancy
Image Extraction
Single-neuron boutons for long-range projection neurons
generally have brain-wide distributions as axonal projections
across different brain regions. Therefore, we extracted piecewise
sub-block images along axonal arbors with the guidance of
the reconstructed neurons. Specifically, (a) an axonal arbor is
divided into several segments with redundancies; and (b) for each
segment, tubular volume along the axonal skeleton with a radius
of 8 × 8 × 4 voxels is extracted from the corresponding whole-
brain dataset as depicted in Figure 1C. Foreground segmentation
and initial detection of boutons are performed on each sub-
block, and the initially detected boutons of each segment are
then merged.
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FIGURE 1 | The principle of DeepBouton. (A) Flow diagram of DeepBouton: extract images along axons piecewise from a whole-brain dataset guided by a
manually traced neuronal skeleton, segment foreground images by adaptive binarization and morphology erosion, initially detect underlying boutons using
density-peak clustering, and filter non-bouton axonal swellings via a deep convolutional network. (B) Pattern graphs of DeepBouton corresponding to the flow
diagram in (A). (C) Diagram of piecewise-extracted images along axons: the axonal arbor is divided into segments with redundancy, and the tubular volume is
extracted along the axonal skeleton for each segment. (D) Diagram of initially detected boutons using density-peak clustering: the points with a higher signal
density than their neighbors and with a relatively large distance from points of higher densities are recognized as centers of underlying boutons (red dots), while
the points with a higher density but with a small distance are not centers (black dots labeled by arrows). (E) Filtering of non-bouton axonal swellings in the initial
detection via a patch-based classification convolutional network. (F) A demonstration of the method on an experimental dataset. Scale bars in (F) represent
1 mm and 2 µm, respectively.

Foreground Segmentation
Foreground images are segmented through adaptive binarization
and mild morphological erosion. The binarization definition is
the following formulation:

B =
{

1 I > C + threbinarization
√
C

0 otherwise

where I is the original image, C represents the background image
generated by multiple convolutions with averaging template,
and threbinarization is a threshold parameter. It is easy to set the
threshold parameter to ensure that underlying axonal bouton
regions are segmented. To eliminate artifacts and noise points
in binarized images, we performed mild morphological erosion.
The foreground images are defined as the element-wise product
of I and B.

Initial Detection of Boutons
We located centers of axonal swellings in the segmented
foreground images via density-peak clustering (Rodriguez and
Laio, 2014; Cheng et al., 2016). The principle of density-peak
clustering is searching for density peaks in the ρ, δ feature
space (Figure 1D), where ρ is the local signal density (i.e., the

Gaussian-weighed mean of local signal intensities), and δ is
the corresponding minimum distance from voxels of higher
densities. The density peaks (i.e., centers of swellings) are
characterized by a higher signal density ρ than their neighbors
and by a relatively large distance δ. They act as isolated points
in the ρ, δ space. Therefore, possible density peaks are the
voxels with low feature densities Λ defined in the ρ, δ space.
The clustering method explicitly adds the minimum distance to
describe cluster centers other than the local signal density. Thus,
cluster centers can be searched for intuitively in the density-
distance space even for multiple-scale clusters or overlapped
clusters. The formulations of the density-peak clustering are
provided below.

Formulations of Density-Peak Clustering
The local signal density ρ of each voxel is defined as follows
(Cheng et al., 2016):

ρi =
1
Z

∑
j: ||pi − pj||2≤R

I(pj)
1

√
2πσ

exp
(
−
||pi − pj||22

2σ 2

)
where I(pi) represents the signal value of voxel pi; s and R
are the kernel width and the window radius, respectively, of
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the Gaussian kernel function (R = 2σ); ||.||2 is the 2-norm;
Z is a normalization constant. In our experiments, the kernel
width σ is set to approximately one third of the average
bouton radius.

With the density map, one can search for the minimum
distance δ of each voxel according to the following formulation:

δi =


min

j: ρj>ρi
||pi − pj||2

max
∀i,j
||pi − pj||2

ρi < max
∀j

ρj

1 ρi = max
∀j

ρj

The density peaks (i.e., the underlying bouton centers) are
characterized by a higher density ρ than their neighbors and by
a relatively large distance δ. They act as isolated points in the
ρ, δ space. Therefore, the possible density peaks can be selected
according to the feature density Λ (the density computed in the
ρ, δ space). According to this principle, we used the following
formulation to search for the possible density peaks:pi∣∣3(i) ≤ thresearch& δ(i) ≥

Rmin

max
∀i,j

∣∣pi − pj
∣∣
2


where thresearch is a predetermined parameter, and Rmin is the
minimum value of the estimated bouton radius. The setting of
thresearch should ensure that the underlying bouton centers can
be searched; thus, we set it to a small value.

Filtering Out False Positives From the
Initial Detection
The Architecture of the Deep Convolutional Network
We designed a patch-based classification network architecture
(Figure 2) based on ResNet50 (He et al., 2016) to filter out
non-bouton swellings from the initial detection according to the
characteristics of bouton morphology. The biggest challenge of
accurate bouton identification is how to obtain effective feature
representations of bouton morphology. Since the pixel size of
our dataset was 0.2 × 0.2 × 1 µm3, an average axonal bouton
radius was about 2–3 pixels (about 0.5 µm) in the x-y plane.

The scale of boutons is too small for classical classification
network architecture. Thus, features of bouton morphology may
disappear in sequential pooling layers of classical classification
nets. We employed three strategies to address this problem: (a)
performing a maximum projection of the extracted 3D image
patches along the z axis, since the z resolution is insufficient to
identify axonal boutons; (b) performing four-times up-sampling
of the projected patches; and (c) setting convolution stride as
1 and using pooling layer just once in the stem block. Thus,
the output feature map size of the stem block was half of
the up-sampled image patch size instead of a quarter, as in
the original ResNet50. As bouton recognition is simpler than
ImageNet 1000-classification (He et al., 2016), we greatly reduced
the feature map number of the original ResNet50. In addition,
the dropout method (Hinton et al., 2012) and the rectified linear
unit (LeCun et al., 2015) were utilized in the network to reduce
the effect of overfitting and accelerate network convergence.

Sample Patch Preparation
The suitable patch size should contain enough neighboring
neural fibers of boutons for recognition of contextual
information. We set the patch size to 60 × 60 × 7 after multiple
tests (i.e., volume patches with a size of 60 × 60 × 7) around
the candidate bouton centers were extracted in original images.
We then performed a maximum projection of the patches
along the z axis, since the z resolution is insufficient to identify
axonal boutons (0.2× 0.2× 1 µm3). The bouton morphological
characteristics appeared more clearly in the projection image
than in the 3D patch. The projection patches were up-sampled to
240× 240 (0.05× 0.05 µm2). We performed up-sampling based
on two considerations: (a) axonal boutons are approximately
4–6 pixels width (about 1.0 µm) in the 60× 60 patches, which is
too small for classical classification network architecture; and (b)
the learned convolutional network can adapt to different image
resolutions (other resolutions can be unified to 0.05 µm).

Network Training
We trained the designed deep convolutional network with
about 5,000 manually labeled samples (half the samples were
positive). The network training was implemented through

FIGURE 2 | The architecture of the deep convolutional network. For each initially detected bouton center, extract its surrounding patch from the whole-brain
dataset, and classify it into bouton or false bouton. The classification convolutional network is designed based on ResNet50 (He et al., 2016) according to the
characteristics of bouton morphology. There are three changes compared to the original ResNet50: perform four times up-sampling of input image patches; set
convolution stride as 1 and use pooling layer just once in the stem block; greatly reduce the feature map number of the original ResNet50.
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Keras (2018) with Tensorflow (2018) backend. Back propagation
with mini-batch stochastic gradient decent was used during the
training. A mini-batch size of 60, a learning rate of 10−2 with a
decay of 10−6, and a moment of 0.9 were adopted. The network
could reach the desired accuracy with approximately 50 epochs
of training on one NVIDIA GTX 1080 GPU in about 1 day.

Sample augmentation is a common technique in deep
learning domains of computer vision and biological image
recognition. Its purpose is to add variability to the samples,
thus improving the robustness, such as rotation invariance and
noise immunity, of learned networks. We introduced sample
augmentation in our training data as below. Rotation: rotate a
sample by 90, 180, or 270 degrees. Noise: add Gaussian noise, salt
and pepper noise, or Poisson noise to a sample. Shifting: shift a
sample in the x-y dimension by [1, 1], [1, -1], [-1, 1], or [-1, -1].
Scaling: scale a sample by 1.2 or 0.82 rates. Transforming gray
levels: multiply the image gray intensity by a random coefficient
within limits.

Ground Truth and Performance Evaluation
The criteria for manually annotating axonal boutons is that a
significant axonal swelling with at least 2-fold the neighboring
average axonal width is defined as a putative axonal bouton
(Kalisman et al., 2005; Grillo et al., 2013). But in practice, a
putative axonal bouton is judged comprehensively according to
width, fluorescence intensity, morphology and neuron type. To
ensure the quality and consistency of the manually annotated
putative boutons of the train and test datasets, we obtained the
ground truth of putative boutons by multi-expert labeling and
consensus. Specifically, two PhDs majoring in neuroscience and
biomedical engineering labeled putative boutons according to
the above principle independently; another PhD majoring in
neuroscience checked the annotations and obtained the final
ground truth.

We then compared the automated recognition result with
the ground truth and used precision, recall, and F1-measure to
evaluate the performance of the method. Assuming M, N, and P
are the number of the ground truth cases, automatic recognition
cases, and matched cases, respectively, the precision and recall
equal P/N and P/M. F1-measure is the harmonic mean of the
precision and recall. If the distance between a ground truth case
and an automatic case is within 1.2 µm, they are defined as a pair
of matched cases.

Materials
The experimental datasets were obtained by imaging
mouse brains injected with adeno-associated virus using a
high-resolution stage-scanning microscopy system (Yang et al.,
2015) with chemical reactivation (Xiong et al., 2014). All
experiments were performed in accordance with the guidelines
of the Experimental Animal Ethics Committee at Huazhong
University of Science and Technology. The protocol for sample
preparation is described in detail by Gang et al. (2017). The
voxel size of the imaging datasets was 0.2 × 0.2 × 1 µm3. Two
whole-mouse brain datasets were used in this study.

In our experiment, the datasets included one training
dataset and four test datasets. The training dataset contained

2,553 putative boutons as positive samples and 2,509 non-bouton
axonal swellings as negative samples classified by three PhDs
majoring in neuroscience and biomedical engineering. The
putative boutons in test datasets were also classified by the
three PhDs. The test dataset in Section ‘‘Demonstration of
the Validity of DeepBouton’’ was comprised of 18 randomly
selected sub-blocks of a pyramidal neuron. There were in total
3,831 human-classified putative boutons as the ground truth. The
test dataset in Section ‘‘Applicability of DeepBouton for Multiple
Neuronal Types’’ was comprised of seven randomly selected
sub-blocks of a pyramidal neuron and a basket cell, containing
in total 837 putative human-classified putative boutons as the
ground truth. The test dataset in the Section ‘‘Comparisons of
DeepBouton and Other Bouton Detection Methods’’ includes
two image volumes. One is our own data with a sub axonal
tree (1,501 × 1,366 × 991, 0.2 µm × 0.2 µm × 1.0 µm)
containing 790 human-classified putative boutons. The other
is public data with one axon trace (1,024 × 1,024 × 150,
0.26 µm × 0.26 µm × 0.8 µm) containing 35 human-classified
putative boutons.

RESULTS

Demonstration of the Validity of
DeepBouton
To demonstrate the validity of DeepBouton, we applied it
to identify boutons of a long-range pyramidal neuron in the
motor cortex of a mouse brain dataset (Figure 3A), which
was acquired by high-resolution stage-scanning microscopy with
a voxel size of 0.2 × 0.2 × 1 µm3. The method achieved
average precision and recall rates of 0.90 and 0.89 (Figure 3F)
in 18 randomly selected sub-blocks (the small white-boxed or
purple-boxed regions in Figure 3A), with manual annotation of
a portion of boutons and non-bouton swellings of the neuron
as training samples (the yellow-boxed region in Figure 3A).
A total of 21,587 boutons of this pyramidal neuron were detected
in the whole-brain range in approximately 4 h, including its
local axon, dense ipsilateral axon (Figure 3B), and contralateral
axon. Diverse non-bouton swellings (labeled by the arrows in
Figures 3C,D) were filtered out by the algorithm. Overlapped
boutons were split (labeled by the triangles in Figure 3D).
Notably, the left fiber in Figure 3C did not belong to the cell;
thus, its boutons were not detected. In conclusion, the proposed
method is effective for automated identification of single-neuron
boutons at the brain-wide scale.

We examined the learned high-dimensional features by
visualizing them with t-distributed Stochastic Neighbor
Embedding (t-SNE) dimensionality reduction (Van der Maaten
and Hinton, 2008). Each point in Figure 3E represents a
sample patch image projected from the 64-dimensional
feature of the last hidden layer in the network into two
dimensions. We observed that boutons and non-bouton
swellings were separated and clustered into point clouds.
In addition, two subclasses of boutons were observed
and generated by k-means (Kanungo et al., 2002). An
intuitive understanding of subclasses can be acquired by
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FIGURE 3 | Demonstration of the validity of DeepBouton. (A) The traced skeleton of a pyramidal neuron in a mouse brain contour. Boutons and non-bouton
swellings in the yellow-boxed region were manually labeled as training samples. A total of 18 sub-blocks were used to evaluate the recognition performance of the
method. (B) The localization results of the method on the ipsilateral axon. The red dots are the detected bouton centers merged with the green axonal skeletons.
(C,D) The detected boutons (red dots) in two sub-regions of the two purple-boxed evaluation regions in (A), merged with the original image signal. Non-bouton
axonal swellings, labeled by the triangles, were filtered out by DeepBouton. Overlapping boutons, marked by the arrows, were split. Notably, the left fiber in (C) does
not belong to the cell; thus, its boutons were not detected. (E) Visualization and analysis of the learned high-dimensional features of the deep convolutional network.
For each sample, we projected its high-dimensional feature representations into two dimensions using t-distributed Stochastic Neighbor Embedding (t-SNE).
Colored points refer to boutons of different subtypes and non-bouton swellings. Insets of different points at several key locations are presented to aid the intuitive
evaluation of the meaning of the learned features. (F) Recognition precision and recall rates of the 18 evaluation sub-blocks. The red points refer to average values.
These figures were snapshots in Stalling et al. (2005) with 4× magnification and image contrast adjustment for better visualization.

examining sample image instances: (a) strong putative
boutons of larger sizes and greater intensities (insets e1
and e2 in Figure 3E), especially the boutons at the bottom
left; (b) weak putative boutons of smaller sizes and lower
intensities (insets e3 in Figure 3E); and (c) non-bouton
swellings are derived from radius and intensity inhomogeneities
of axons (insets e4 in Figure 3E). These results indicate
that the features learned by the deep convolutional network
represent the axonal swelling degree in radii and intensity
and can be considered a comprehensive quantification of
bouton morphology.

Applicability of DeepBouton for Multiple
Neuronal Types
To demonstrate the wide applicability of DeepBouton, we applied
it to additional types of neurons, including an interneuron
(basket cell) and pyramidal neuron in the primary somatosensory
barrel cortex of another mouse brain dataset. The interneuron
was locally distributed, and the pyramidal neuron was a
long-range projection neuron (Figures 4A,B). The method
achieved 0.97 and 0.92 average F1-measures for the two
neurons, respectively; although their bouton morphology and
distributions were different. Boutons of the basket cell were
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FIGURE 4 | Applicability of DeepBouton for multiple neuronal types. (A) The traced skeleton of a pyramidal neuron in a mouse brain contour. (B) The original image
signal of a basket cell in the same brain region as the pyramidal neuron. (C,D) The automatic bouton detection results labeled by red dots of the basket cell. Dots in
(C) were too small; thus, we enlarged a subregion of (D). (E,F) The recognition results of the pyramidal neuron in a big branch and local small region. Scale bars
represent 500 µm in (A) and 3 µm in (D,F). Notably, the middle fiber in (F) does not belong to the cell; thus, its boutons were not detected. The image contrast of
these figures was adjusted for better visualization.

TABLE 1 | Performance of single-bouton recognition using DeepBouton.

Interneuron Precision Recall F1-measure Pyramidal neuron Precision Recall F1-measure

Block 1 0.96 0.99 0.98 Block 1 0.97 0.93 0.95
Block 2 0.95 0.98 0.96 Block 2 0.98 0.91 0.95
Mean ± S.D 0.96 ± 0.007 0.98 ± 0.006 0.97 ± 0.007 Block 3 0.95 0.81 0.88

Block 4 0.96 0.89 0.93
Block 5 0.89 0.89 0.89
Mean ± S.D 0.95 ± 0.03 0.89 ± 0.04 0.92 ± 0.03

TABLE 2 | Comparison of DeepBouton and other bouton detection methods.

Detected bouton number Precision Recall F1-measure

Dataset1 DeepBouton 750 0.95 0.91 0.93
Bass’s method 626 0.93 0.74 0.82
Gala’s method 804 0.82 0.84 0.83

Dataset2 DeepBouton 36 0.92 0.94 0.93
Bass’s method N/A N/A N/A N/A
Gala’s method 39 0.85 0.94 0.89

strong and large but densely distributed, while boutons of
the pyramidal cell had diverse sizes and intensities and were
widely distributed. For both cells, DeepBouton obtained effective
recognition results (Figures 4C–F). Notably, the middle fiber
in Figure 4F did not belong to the cell; thus, its boutons
were not detected. Detailed performance statistics are provided
in Table 1.

Comparisons of DeepBouton and Other
Bouton Detection Methods
To further demonstrate the validation of our method,
we compared DeepBouton and other bouton detection
methods on two datasets including our own dataset and
a public dataset. Gala’s method (Gala et al., 2017) detects
boutons through finding peaks in the intensity profile along
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FIGURE 5 | Comparisons of DeepBouton and other bouton detection methods in our own dataset. (A) The ground truth boutons in the dataset.
(B,C,D) The detected boutons by DeepBouton, Bass’s method and Gala’s method in the dataset separately. (E,F,G,H) The enlarged view of the same sub-region
in (A,B,C,D).

FIGURE 6 | Comparisons of DeepBouton and other bouton detection methods in a public dataset. (A) The ground truth boutons in the public dataset.
(B,C) The detected boutons by DeepBouton and Gala’s method in the public dataset separately. (D,E,F) The enlarged view of the same sub-region in (A,B,C).

axonal traces and gives the weight of each detected bouton.
Bass’s method (Drawitsch et al., 2018) detects bouton-based
Gabor or HOG features and support vector machine to classify
axonal swellings. Our own dataset is a 1,501 × 1,366 × 991
(0.2 µm × 0.2 µm × 1.0 µm) volume image containing a sub
tree of a pyramidal neuron. There are 790 manually annotated
putative axonal boutons in the sub tree. The public dataset
is 1,024 × 1,024 × 150 (0.26 µm × 0.26 µm × 0.8 µm)
with one axon trace from Gala et al. (2017)1. However, no
manually annotated boutons were provided accompanying the
dataset. Thus, we labeled the boutons of the dataset by two

1http://www.northeastern.edu/neurogeometry/resources/bouton-analyzer/

experts and obtained the ground truth by consensus. There
were 35 putative boutons on the axon trace. Our method
achieved higher precision and recall compared with Gala’s
method and Bass’s method (Table 2). Figures 5, 6 show the
detection boutons of different methods. Notably, we used a
bouton weight threshold of 1.4 in Gala’s method, which was
a value to achieve the best F1-measure. The image resolution
parameter was adjusted for different datasets. When applying
DeepBouton to the public dataset, we did not adjust the
parameters and retrained the convolutional network. The
Bass’s method did not get reasonable results on the public
dataset, therefore we did not compute its precision and recall
in Table 2.
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FIGURE 7 | The role of the deep convolutional network. The initial bouton
detection using density-peak clustering without the convolutional network
achieves a high recall but low precision of ≈ 0.5. The precision can be
improved to ≈ 0.9 by adding the convolutional network to filter out the
non-bouton swellings in the initial detection while mildly reducing the recall.

The Role of the Deep Convolutional
Network
The proposed method consists of two parts: density-peak
clustering for initial bouton detection and the deep convolutional
network for filtering out non-bouton swellings from the initial
detection. Here, we demonstrate the effects of the two parts. We

used the method with and without the convolutional network to
test the dataset in Figure 3. Based on the performance of the two
methods (Figure 7), it is clear that: (a) the method without the
convolutional network achieves a high recall but low precision
(i.e., the initial detection includes underlying boutons but also
contains approximately 50% false positives); (b) the precision can
be improved to approximately 0.9 by adding the convolutional
network to filter out the false positives while only minimally
reducing the recall. The results are consistent with the intentions
of our two-step recognition strategy.

DISCUSSION

Identification and quantitative analysis of single-neuron axonal
boutons in their entirety is critical for understanding the
wiring patterns of neural circuits. However, limited methods
are available for the automated identification of single-neuron
boutons, even though sparse-labeling fine-imaging whole-brain
datasets have been obtained. In this article, we proposed
an automated recognition method, DeepBouton, based on
density-peak clustering and deep convolutional networks. We
demonstrated its validity in detecting single-neuron axonal
boutons at the brain-wide scale and its applicability for multiple
types of neurons.

Synaptic connectivity inference is a key step for mapping
neural circuits (Lichtman and Denk, 2011; Helmstaedter and
Mitra, 2012). Currently, electron microscopy and fluorescence

FIGURE 8 | Comparison of bouton distribution of pyramidal neurons and basket neurons in the learned feature space of DeepBouton. Purple and green points refer
to the detected boutons of pyramidal neurons and basket cells, respectively. The boutons of the former cell type are distributed uniformly, while those of the latter cell
type are clustered at the bottom left in the projection feature space.
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optical microscopy are the two main tools for imaging brain
circuits (Helmstaedter and Mitra, 2012; Osten and Margrie,
2013). Synapses can be identified in electron microscopic
images, and many automated detection algorithms based on
models or learning have been developed (Kreshuk et al., 2011;
Dorkenwald et al., 2017). However, electron microscopy is a
small volume imaging technique, and it is almost impossible
to acquire single-neuron synapses at a brain-wide scale. Most
axonal synapses (i.e., presynaptic structures), appear as axonal
boutons in light microscopy (Hellwig et al., 1994; Anderson
et al., 1998). Recent reports by Drawitsch et al. (2018)
and Gala et al. (2017) demonstrated that light microscopy-
based axonal boutons were highly correlative with electron
microscopy. Though axonal synapses cannot be confirmed
in light microscopic images, axonal boutons identified by
DeepBouton reflect axonal synapse distribution in statistical
terms. Therefore, we can infer synaptic connectivity at the single-
neuron level by counting axonal boutons in whole-brain light
microscopic images using DeepBouton.

Many quantitative analyses of single-neuron bouton
distribution patterns will be facilitated by using DeepBouton.
As an example, we compared the bouton distributions between
pyramidal cells and basket cells in the feature representation
space to analyze the differences in their bouton morphologies
(Figure 8). The results indicate that boutons of basket cells are
strong and larger, corresponding to strong putative boutons in
Figure 3E; while boutons of pyramidal neurons are of diverse
sizes and intensities (i.e., strong putative boutons and weak
putative boutons were distributed uniformly).

We released the code of DeepBouton with two test
datasets and provided a user manual2. The section of the
initial bouton detection is implemented in Matlab and
the section of the convolutional network is implemented

2https://github.com/ShenghuaCheng/DeepBouton

in Python. Few parameters of the initial detection need to
be changed for new datasets. However, the convolution
network trained on our own datasets may need to
be refined if the new datasets are very different from
our dataset.

In the future, a software platform based on this method
will be developed for accurate and automated identification of
single-neuron boutons at the brain-wide scale and to perform
rapid manual verification of the automated detection. Using the
platform, more detailed quantitative analyses of the distribution
of various subtypes of single-neuron boutons in different brain
regions will be possible.
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