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ABSTRACT
Background. Dengue caused by dengue virus (DENV) serotypes −1 to −4 is the most
important mosquito-borne viral disease in the tropical and sub-tropical countries
worldwide. Yet many of the pathophysiological mechanisms of host responses during
DENV infection remain largely unknown and incompletely understood.
Methods. Using a mouse model, the miRNA expressions in liver during DENV-1
infection was investigated using high throughput miRNA sequencing. The differential
expressions of miRNAs were then validated by qPCR, followed by target genes
prediction. The identified miRNA targets were subjected to gene ontology (GO)
annotation and pathway enrichment analysis to elucidate the potential biological
pathways and molecular mechanisms associated with DENV-1 infection.
Results. A total of 224 and 372 miRNAs out of 433 known mouse miRNAs were
detected in the livers of DENV-1-infected and uninfected mice, respectively; of these,
207 miRNAs were present in both libraries. The miR-148a-3p and miR-122-5p were
the two most abundant miRNAs in both groups. Thirty-one miRNAs were found
to have at least 2-fold change in upregulation or downregulation, in which seven
miRNAs were upregulated and 24 miRNAs were downregulated in the DENV-1-
infected mouse livers. The miR-1a-3p was found to be the most downregulatedmiRNA
in the DENV-1-infected mouse livers, with a significant fold change of 0.10. To validate
the miRNA sequencing result, the expression pattern of 12 miRNAs, which were highly
differentially expressed or most abundant, were assessed by qPCR and nine of them
correlated positively with the one observed in deep sequencing. In silico functional
analysis revealed that the adaptive immune responses involving TGF-beta, MAPK,
PI3K-Akt, Rap1, Wnt and Ras signalling pathways were modulated collectively by 23
highly differentially expressed miRNAs during DENV-1 infection.
Conclusion. This study provides the first insight into the global miRNA expressions of
mouse livers in response to DENV-1 infection in vivo and the possible roles of miRNAs
in modulating the adaptive immune responses during DENV-1 infection.
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INTRODUCTION
Dengue virus (DENV) is a positive-sense single-stranded, mosquito-borne RNA virus that
belongs to the genus Flavivirus of the Flaviviridae family. DENV infections are caused by
at least four distinct serotypes of DENV (DENV-1, DENV-2, DENV-3 and DENV-4). The
majority of primary dengue infections with any one of the DENV serotypes results in a
mild, self-limiting flu-like illness known as dengue fever (DF). The majority of DF patients
recover without intervention, although a 2–5% developmore severemanifestations ranging
from dengue hemorrhagic fever (DHF) to dengue shock syndrome (DSS) (Murrell, Wu &
Butler, 2011; Halstead, 2002). Infection with one serotype confers life-long immunity to
that serotype; however, it does not protect the host against infections with other serotypes
(Mukhopadhyay, Kuhn & Rossmann, 2005). Liver impairment has been extensively reported
in acute dengue infection of human. Severe dengue can lead to liver failure which can be
complicated by encephalopathy, severe bleeding, renal failure, metabolic acidosis and fatal
outcomes (Green & Rothman, 2006; Halstead, 2007; Aye et al., 2014; Samanta & Sharma,
2015; Fernando et al., 2016). As the liver is one of the main organs involved in dengue
infections, the underlying pathways involved in causation of liver damage in primary
DENV infection need to be unraveled as this remains poorly understood.

MicroRNA (miRNA) profiling has been widely used to gain deeper understanding of the
molecular mechanisms of host-pathogen interactions, especially involving host miRNAs
modulation of gene expressions and their levels in response to a disease. miRNAs are small,
endogenous non-coding single-stranded RNA that are approximately 22 nucleotides in
size. miRNAs regulate the post-transcriptional of gene expression in animals and plants
by base-pairing with the complementary sequences within 3′ non-translated region (NTR)
of the targeted mRNA, thus inducing gene silencing via repression of protein synthesis or
degradation of mRNA targets (Bartel, 2004; Fabian, Sonenberg & Filipowicz, 2010).

The differential expressions of intracellular miRNAs in mosquitoes either in vivo or in
vitro, and peripheral blood mononuclear cells (PBMC) in response to DENV-2 infection
have been profiled; findings suggest that the host miRNAs were modulated by regulation
of the immune-related genes during the antiviral responses against dengue virus (Qi et al.,
2013; Campbell et al., 2014; Liu et al., 2015; Liu et al., 2016; Miesen et al., 2016). However,
the miRNA profiling or the involvement of intracellular miRNAs in the pathophysiological
mechanisms of dengue infection in a mammalian model remain unreported. In this study,
BALB/c mouse strain was used to study the miRNA expression in mouse liver in response
to DENV infection. Although there is no non-human species that naturally develop dengue
disease similar to that observed in humans, the immunocompetentmousemodels including
BALB/c mouse strain have been shown to be permissive to DENV infection and replication
(Huang et al., 2000; Chen et al., 2004; Paes et al., 2005; Bente & Rico-Hesse, 2006; Paes et al.,
2009; Tuiskunen et al., 2011). Moreover, the liver injury associated with DENV infection
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has been evidenced in BALB/c mouse strain (Paes et al., 2005; Paes et al., 2009; França,
Zucoloto & Da Fonseca, 2010; Tuiskunen et al., 2011; Sakinah et al., 2017).

In this study, we have explored the miRNA dysregulation in liver of mice with DENV-1
infection by using deep sequencing. We aimed to utilize the differential expression of
intracellular miRNAs to examine the pathophysiological mechanisms of host responses
during DENV-1 infection. We then performed a comparative analysis on the differential
expression ofmiRNAs followed by the prediction of genes targeted by the high differentially
expressed miRNAs. The identified miRNA targets were subjected to gene ontology (GO)
annotation and pathway enrichment analysis to elucidate the potential biological pathways
and molecular mechanisms that are modulated during DENV-1 infection.

MATERIALS & METHODS
Dengue viruses and cell culture
Dengue virus serotype 1 (DENV-1) used in this study was isolated from human serum
diagnosed with dengue, which was a generous gift from Professor Sazaly Abu Bakar of
Tropical Infectious Diseases Research and Education Centre (TIDREC), University of
Malaya, Malaysia (GenBank accession number FR666924.1). Following initial passages in
C6/36 cells (Aedes albopictus mosquito cells; ATCC CRL-1660), DENV-1 was propagated
in Vero cells (African green monkey kidney cells; ATCC CCL-81) in minimum essential
media (MEM) supplemented with 2% FBS, 1% HEPES and 1% penicillin-streptomycin
antibiotic (Gibco) to obtain high viral titer. The virus stocks were stored at −80 ◦C until
further use. Viral stocks were concentrated by ultracentrifugation at 30,000 rpm for 3 h
at 4 ◦C and resuspended in MEM. The concentrated DENV-1 was titrated via TCID50

assay and the viral titer was determined using the Spearman-Karber method (Hierholzer &
Killington, 1996).

DENV-1 infection in mice
Evidence that DENV-1 infection was established in the mice was based on the development
of IgM and IgG antibodies at various days post infection to determine the peak levels
of IgM and IgG (Wickremsinghe et al., 2018). Three six-week old male BALB/c mice were
infected with DENV-1. Briefly, eachmouse was inoculated with 200 µL ofMEM containing
1.26×107 TCID50/mL DENV-1: a total of 100 µL were administered intravenously and
the other 100 µL was administered subcutaneously into each mouse. Three aged-matched
BALB/c mice without DENV-1 infection were used as control. Mice were euthanized 3
days post infection (d.p.i) and the liver of each mouse was collected and stored at –152 ◦C.
During the three days of observation after infection with DENV-1, all mice survived the
infection without apparent signs of the disease and did not show any signs of distress. On
post mortem, it was observed that the spleens of infected mice were grossly enlarged and
the livers of infected mice were slightly enlarged when compared to mock-infected mice
(data not shown). The animal experiment was approved by Monash University Animal
Ethics Committee (Approval No. MARP/2015/071). The mice were housed in individually
ventilated mice cages, which is also mosquito proof.
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RNA isolation and library preparation
The small RNA (sRNA) of each sample was isolated from a pool of three mouse livers by
using mirVana miRNA Isolation kit (Ambion) according to the manufacturer’s protocol. A
total of 100 ng of enriched sRNA from each sample was used to construct a respective library
by using the NEBNext R© Small RNA Library Prep Set for Illumina R© (NEB) according to
the manufacturer’s instruction. Each library was constructed with a unique index adaptor
barcode in order to enable pooled multiplex sequencing. Briefly, the adaptor-ligated sRNA
was reverse-transcribed into cDNA followed by PCR amplification for 15 cycles. The sRNA
libraries were then size-selected using AMpure XP Beads (Beckman Coulter) to recover
the library DNA with 136–143 bp in length which was the average size of sRNA with 3′and
5′adaptors attached. The quantity and size distribution of the libraries was analyzed by
Agilent 2100 Bioanalyzer (Agilent Technologies) using High Sensitivity DNA assay.

Deep sequencing and bioinformatics analysis
A total of two libraries were normalized to 2 nM and pooled for sequencing on the Illumina
MiSeq Benchtop Sequencer at Monash University Malaysia Genomics Facility (1×36 bp
configuration). The post sequencing data processing was carried out using the UEA sRNA
Workbench (Stocks et al., 2012). The adaptor sequences were trimmed and removed from
the raw reads according to the 3′ adapter sequence (AGATCGGAAGAGCACACGTCT)
obtained from theNEBNext R© Small RNALibrary Prep Set for Illumina R© (NEB) instruction
manual using the first eight nucleotides. The adapter-removed reads were then filtered to
the length between 16 bp and 35 bp followed by filtering against low complexity sequences
which contain less than three distinct nucleotides. The reads matching to known transfer
and ribosomal RNA sequences were excluded using the database from RFAM, v10 (Burge et
al., 2013). Finally, the clean reads were converted into FASTA format and thenweremapped
to the Mus musculus miRNA dataset from miRBase (version 20) using miRProf tool from
UEA sRNA Workbench (Kozomara & Griffiths-Jones, 2011; Kozomara & Griffiths-Jones,
2014). Parameters were set to allow overhangs, only kept best matches, and disallowed
variant or same miRNA family groupings. The miRNA sequencing data are available from
the NCBI Gene Expression Omnibus (GEO) and is accessible through accession number
GSE123346.

Analysis of differential miRNA expression
To compare the miRNA abundance between two sRNA libraries, the mappable reads were
normalized using transcripts per million (TPM) (Liu et al., 2015; Jiang & Sun, 2018). TPM
was calculated where the absolute number of read of an individual miRNA in a particular
sRNA library was divided by the absolute total number of read of all miRNAs in this
library and then multiplied by one million. The miRNAs with TPM value less than 10 in
both libraries were excluded from differential expression analysis (Liu et al., 2015). The
miRNAs with changes in expression of a log2-fold change higher than 1 (upregulation) or
lower than −1 (downregulation) between DENV-1 infection and uninfected control were
identified as highly differentially expressed miRNAs.
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Quantitative real-time PCR (qPCR)
Some of the differentially expressed and most abundant miRNAs were selected for
validation by two-step qPCR. The qPCR validation was performed in StepOnePlus
Real-Time PCR System (ABI) by using TaqMan microRNA Assay (ABI) according to
manufacturer’s instructions. Each of the samples was assayed by qPCR in triplicate. The
snoRNA202was used as an endogenous control formiRNA in this qPCR assay. The resulted
qPCR data were analyzed using StepOne Software v2.3 (ABI). The relative expression of
miRNAs was statistically calculated by using Relative Expression Software Tool (REST) and
the resulted relative expression ratio (R) was tested for significance by a Pair Wise Fixed
Reallocation Randomization Test which is included in REST (Pfaffl, Horgan & Dempfle,
2002).

miRNA target prediction, GO and pathway enrichment analyses
The target genes of all highly differentially expressed miRNAs were predicted and identified
using two web-based databases of mouse species: the microT-CDS (version 5.0) and
TarBase v7.0 (version 7.0) in Diana Tools (Paraskevopoulou et al., 2013; Vlachos et al.,
2015a). microT-CDS was used with default parameters (microT threshold: 0.8; p-value
threshold: 0.05), while p-value threshold in TarBase v7.0, which determines the miRNA
targets based on the experimental data, was set to 0.05. The miRNA target genes were
then annotated through GO term enrichment and pathway analysis using mirPath v3.0 in
Diana Tools (http://www.microrna.gr/miRPathv3/) (Vlachos et al., 2015b). The threshold
of EASE score, a modified Fisher Exact p-value was set to 0.05 to sort out the terms where
genes are considered strongly enriched in the annotation. GO terms and pathways with a
p-value less than 0.05 were defined as statistically significant.

RESULTS
Analysis of small RNA libraries by high-throughput sequencing
A total of 4,753,961 and 2,229,568 raw reads were generated from the small RNA libraries
of uninfected control and primary infection, respectively. After the adaptor removal and
multiple filtering steps as described in the methodology, 572,866 out of 1,316,491 clean
reads from uninfected control library and 133,348 out of 527,208 clean reads fromDENV-1
infection library were mapped to theMus musculusmiRNA dataset frommiRBase (version
20). The size distribution of clean reads was similar in both libraries and most of the reads
were 22 nucleotides in size (Fig. 1).

Detection of miRNAs and its abundance in livers of DENV-1-infected
and uninfected mice
Out of 433 known mouse miRNAs, 372 miRNAs in livers of uninfected mice library and
224 miRNAs in livers of DENV-1-infected mice library were detected regardless of the
TPM value of less than 10 in both libraries (Data S1). Of these, 207 miRNAs were found
in both libraries. A total of 17 different miRNAs were only found in DENV-1-infected
mice livers in comparison with the uninfected control (Fig. 2). Forty-four miRNAs were
not detected in both libraries (Data S2). There were 10 most abundant miRNAs that made
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Figure 1 Read size distribution of clean reads from deep sequencing in DENV-1-infected and unin-
fected mouse livers.

Full-size DOI: 10.7717/peerj.6697/fig-1

Figure 2 Venn chart depicting the number of miRNAs detected in the DENV-1-infected and unin-
fected mouse livers.Detection of these miRNAs was done by mapping their clean reads to theMus muscu-
lusmiRNA dataset from miRBase (version 20).

Full-size DOI: 10.7717/peerj.6697/fig-2

up more than 80% of the total mappable reads across each of the libraries (Fig. 3). All of
these 10 miRNAs were observed in both libraries except let-7c-5p and miR-126a-3p. The
miR-148a-3p and miR-122-5p were found to be the two most abundant miRNAs in each
of the libraries, covering at least 50% of the respective total mappable reads.

Differential miRNA expression between livers of DENV-1-infected and
uninfected mice
In differential expression analysis, a total of 155 miRNAs with TPM value more than 10
in both libraries were retained for further analysis (Campbell et al., 2014; Liu et al., 2015)
(Data S3). Of these, 31 miRNAs were found to have at least 2-fold change in upregulation
or downregulation regardless of miRNA abundance (Data S3); seven miRNAs were
upregulated and the highest fold change of 5.16 was observed in miR-690, whilst 24
miRNAs were downregulated in the livers of DENV-1-infected mice in comparison to
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Figure 3 Distribution of the top 10 most abundant miRNAs detected in DENV-1-infected and un-
infected mouse livers. (A) Library of DENV-1-infected mouse livers. (B) Library of uninfected control
mouse livers. The others category represents all remaining miRNAs in the mouse miRNA dataset from
miRBase (version 20).

Full-size DOI: 10.7717/peerj.6697/fig-3

uninfected control (Fig. 4). The miR-1a-3p was the most downregulated miRNA in
DENV-1-infected mouse livers, with a significant fold change of 0.10. In addition, twenty-
eight miRNAs were not detected in the livers of DENV-1-infected mice but were only
detected in uninfected control with TPM value of more than 10, which were let-7d-3p,
miR-133a-3p, miR-133b-3p, miR-152-5p, miR-15a-5p, miR-15b-3p, miR-181a-1-3p,
miR-184-3p, miR-192-3p, miR-193a-3p, miR-199b-5p, miR-19a-3p, miR-205-5p, miR-
206-3p, miR-217-5p, miR-26b-3p, miR-29c-5p, miR-300-3p, miR-30b-3p, miR-342-3p,
miR-375-3p, miR-378b, miR-434-3p, miR-501-3p, miR-5099, miR-574-3p, miR-7a-1-3p
and mir-802-3p (Data S4). It is deemed that these miRNAs were downregulated during
dengue infection with respect to the uninfected control. miR-339-3p was detected in the
livers of DENV-1-infected mice with TPM value of more than 10 but it was not detected
in the uninfected control (Data S4).

Validation of miRNAs differential expression by qPCR
The expression of few differentially expressed miRNAs including the most downregulated
miRNA, miR-1a-3p and some of the most abundant miRNAs were validated by two-step
qPCR. The qPCR result showed that expression of all 11 miRNAs except miR-122-5p,
miR-148a-3p and miR-192-5p in the livers of DENV-1-infected mice have a positive
correlation in expression pattern with the one observed by deep sequencing (Fig. 5).
The expression of miR-1a-3p was significantly down-regulated by 10.1-fold relative to its
expression in uninfected control. The other two miRNAs, miR-24-3p and miR-126a-3p
were significantly downregulated by 1.3-fold and 1.2-fold with respect to uninfected
control, respectively.

miRNA target gene prediction and enrichment analyses of GO and
pathways
The GO terms and pathways that are associated with 31 highly differentially expressed
miRNAs were analyzed using mirPath v3.0 in Diana Tools (Vlachos et al., 2015b). In this
web-based software, the predicted target genes of those 31miRNAs were identified by using
two web-based databases of mouse species, the microT-CDS (version 5.0) and TarBase
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Figure 4 Differential expression of miRNAs in the livers of DENV-1-infected and uninfected mice. Bar
graph depicts the highly differentially expressed miRNAs, in which seven miRNAs were upregulated and
24 miRNAs were downregulated by at least 2-fold change in the livers of DENV-1-infected mice relative
to uninfected control. The data was subjected to statistical analysis using ordinary two–way ANOVA fol-
lowed by Sidak’s multiple comparison test. *** p= 0.0001.

Full-size DOI: 10.7717/peerj.6697/fig-4

v7.0 (version 7.0) in Diana Tools (Paraskevopoulou et al., 2013; Vlachos et al., 2015a). The
microT-CDS is a miRNA target prediction tool, while TarBase v7.0 determines the miRNA
targets based on the experimental data.

The predicted genes, whichwere regulated by the highly differentially expressedmiRNAs,
were found to be associated significantly with the biological processes, molecular functions
and cell components as summarized in Table 1. These GO terms also associated significantly
with the miRNA targets that are experimentally supported. The anatomical structure
development and embryo development are the biological processes that involve cell
differentiation. The biological processes of cell differentiation, cell division, cell cycle and
cell death are involved in cell proliferation and apoptotic process. These two biological
pathways, cell proliferation and apoptotic process together with the inflammatory response,
which also involves cell proliferation and cell death, are part of the adaptive immune
response. In addition, the inflammatory response and apoptotic process, which both
involve cell death, as well as the cell differentiation are part of the innate immune response.
Hence, those GO terms that are enriched significantly by the target genes are closely related
to the immune responses.

A total of 63 pathways that are defined by the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) were significantly enriched by the predicted genes of part of the
highly differentially expressed miRNAs (Table S1). Among these pathways, four of
them are involved in adaptive immune responses, which are transforming growth
factor-beta (TGF-beta) signaling pathway, mitogen-activated protein kinase (MAPK)
signaling pathway, phosphatidylinositol 3′-kinase (PI3K)-Akt signaling pathway, and
Rap1 signaling pathway (Katagiri et al., 2002; Zhang & Dong, 2005; Yan, Liu & Chen, 2009;
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Figure 5 qPCR validation of miRNA expression in the livers of DENV-1-infected mice. (A) A total of
11 miRNAs expression were analyzed via two-step qPCR by using TaqMan microRNA Assay (ABI), where
each of the samples was assayed in triplicate. The qPCR data was analyzed using StepOne Software v2.3
(ABI) followed by statistical analysis using Relative Expression Software Tool (REST). Bar graph depicts
the fold change of miRNA expression in the livers of DENV-1-infected mice with respect to uninfected
control. The vertical bar represents the standard error of mean (n= 3). p< 0.05, **p= 0.001. (B) The fold
change of differentially expressed miRNAs observed in deep sequencing, which were validated by qPCR
as shown in (A). The data was subjected to statistical analysis using ordinary twoway ANOVA followed by
Sidak’s multiple comparison test. ***p= 0.0001.

Full-size DOI: 10.7717/peerj.6697/fig-5

Okkenhaug, Turner & Gold, 2014). These four immune-related pathways also associated
significantly with the miRNA targets that are experimentally supported. Besides that,
Wnt and Ras signaling pathways, which are also involved in adaptive immune response
(Lapinski & King, 2012; Swafford & Manicassamy, 2015), were significantly enriched by
the predicted targets of some high differentially expressed miRNAs. A total of 23 out of
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Table 1 GO terms of target genes of 31 highly differentially expressed miRNAs in DENV-1-infected mouse liver.

Ontology and Accession Term Gene Count p-Valuea

Biological Process
GO:0048856 Anatomical structure development 1,372 1.04E–256
GO:0030154 Cell differentiation 1,040 7.49E–150
GO:0009790 Embryo development 420 2.50E–97
GO:0000902 Cell morphogenesis 315 1.79E–60
GO:0048646 Anatomical structure formation involved in morphogenesis 333 5.29E–56
GO:0006464 Cellular protein modification process 750 3.98E–38
GO:0051276 Chromosome organization 209 1.42E–27
GO:0034641 Cellular nitrogen compound metabolic process 1,249 4.32E–24
GO:0009058 Biosynthetic process 1,094 7.81E–21
GO:0048870 Cell motility 226 3.82E–20
GO:0040007 Growth 169 1.81E–17
GO:0021700 Developmental maturation 73 9.69E–17
GO:0007010 Cytoskeleton organization 246 1.54E–14
GO:0051301 Cell division 178 3.04E–13
GO:0042592 Homeostatic process 263 8.15E–10
GO:0007049 Cell cycle 305 2.27E–07
GO:0003013 Circulatory system process 58 5.46E–06
GO:0022607 Cellular component assembly 346 5.49E–06
GO:0008219 Cell death 253 2.39E–05
GO:0001701 In utero embryonic development 122 3.08E–04
GO:0007267 Cell–cell signalingb 179 1.07E–03
GO:0034330 Cell junction organization 44 0.031
GO:0042475 Odontogenesis of dentin-containing toothb 35 0.039
GO:0045893 Positive regulation of transcription, DNA-templatedb 273 0.046
Molecular Function
GO:0043167 Ion binding 1,849 8.46E–73
GO:0001071 Nucleic acid binding transcription factor activity 360 6.64E–29
GO:0000988 Protein binding transcription factor activity 146 3.36E–08
GO:0008092 Cytoskeletal protein binding 224 9.92E–07
GO:0001077 RNA polymerase II core promoter proximal region

sequence-specific DNA binding transcription factor
activity involved in positive regulation of transcription b

95 6.45E–03

GO:0030234 Enzyme regulator activity 210 0.043
Cell Component
GO:0005623 Cell 3,929 0
GO:0005622 Intracellular 3,428 0
GO:0043226 Organelle 2,858 3.34E–94
GO:0005856 Cytoskeleton 477 1.03E–12
GO:0016023 Cytoplasmic membrane-bounded vesicle 168 6.62E–08
GO:0000228 Nuclear chromosome 79 2.96E–07

(continued on next page)
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Table 1 (continued)

Ontology and Accession Term Gene Count p-Valuea

GO:0043234 Protein complex 1,015 1.10E–06
GO:0005737 Cytoplasm 2,627 9.14E–03
GO:0005768 Endosome 194 0.012
GO:0005694 Chromosome 178 0.016

Notes.
aGO terms with a p-value lower than 0.05 were defined as statistically significant.
bGO terms that were not found when analyzed using TarBase v7.0 (database of experimentally supported miRNA targets).

31 high differentially expressed miRNAs were found associated significantly in those six
immune-related pathways (Fig. 6). There were three high differentially expressed miRNAs
not associated with those pathways, which weremiR-423-3p, miR-434-5p andmiR-144-5p.
These pathways were mostly associated with the downregulated miRNAs. As the miRNA
causes gene silencing via translational repression or mRNA degradation, it is likely that
these pathways are activated during DENV-1 infection due to the low level of regulating
miRNAs.

DISCUSSION
In this study, we have infected BALB/c mice with DENV-1 and the expression of miRNAs
in mice livers were investigated by deep sequencing. The liver was analyzed at 3 days
post DENV-1 infection, that is, at an early stage of infection. Based on previous studies
on DENV-2 using BALB/c mice as a model for dengue infection (França, Zucoloto & Da
Fonseca, 2010; Paes et al., 2005; Paes et al., 2009), liver was among the first organs to be
infected and hepatic injury was seen as early as 2 d.p.i. In another study by Paes et al.
(2005), hepatic injury in DENV-2 infected BALB/c mice was observed as early as 2 d.p.i,
and at the 3 d.p.i, hepatocytes showed diffused steatosis in midzonal areas, while at 7 d.p.i,
necrosis and a strong flux of edema was observed. The DENV-1 used in this study was
able to evoke inflammatory immune responses as evidenced by the enlargement of spleen
and liver (data not shown) and most importantly by the rise of DENV-1 specific IgM and
IgG (Wickremsinghe et al., 2018). Here, we also demonstrated that there were differential
expressions in the regulating miRNAs during DENV-1 infection.

To date, the miRNA profiling of DENV infections are confined mainly to in vitro and
mosquito studies (Qi et al., 2013; Campbell et al., 2014; Liu et al., 2015; Liu et al., 2016;
Miesen et al., 2016). However, there is scarcity of data on miRNAs differential expression
during DENV infection in human (Ouyang et al., 2016; Tambyah et al., 2016). Previous
study on DENV-1 infection in human has identified few circulating miRNAs particularly,
hsa-miR-21-5p and hsa-miR-146a-5p with high specificity and sensitivity as the promising
serum biomarkers for dengue infection (Ouyang et al., 2016). Interestingly, the same
miRNAs namely miR-21a-5p and miR-146a-5p were also found in the present study; miR-
21a-5p was one of the most abundant miRNAs that was observed in both DENV-1-infected
and uninfected control libraries (Fig. 3). However, these miRNAs vary in their expression
patterns. hsa-miR-21-5p was upregulated during dengue infection in human (Ouyang et
al., 2016), while miR-21a-5p was downregulated by less than 2-fold in DENV-1-infected
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Figure 6 Putative interactions between the highly differentially expressed miRNAs and pathways in-
volved in adaptive immune responses. The downregulated and upregulated miRNAs are shown in red-
lined and green-lined rounded rectangle, respectively. Out of 31 highly differentially expressed miRNAs,
only three miRNAs were not associated with these immune-related pathways, which were miR-423-3p,
miR-434-5p and miR-144-5p.

Full-size DOI: 10.7717/peerj.6697/fig-6

mouse liver (Fig. 5B). In the present study, miR-146a-5p was upregulated by a 1.23-fold
(Data S3), concurring with a previous study reporting an increased expression of miR-146a
during DENV infection (Wu et al., 2013); however, hsa-miR-146a-5p was downregulated
by at least 3-fold during dengue infection in human (Ouyang et al., 2016). In addition,
four of the highly differentially expressed miRNAs found in the present study namely
miR-19b-3p, miR-214-3p, miR-340-3p and miR-423-3p were also reported in the study
of miRNA expression during dengue infection in human by Tambyah et al. (2016). Yet
their expression patterns were in contrast with the study by Tambyah et al. (2016), in
which downregulation of miR-19b-3p and upregulation of miR-214-3p, miR-340-3p and
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miR-423-3p were observed in the present study (Fig. 4). The variation in observationmight
be due to the type of miRNA analyzed viz. circulating or intracellular miRNA and the host
studied viz. human or mouse.

Adaptive immune response is one of the immunopathogenic mechanisms that plays vital
roles in major manifestations of dengue (Lei et al., 2001; Whitehorn & Simmons, 2011). In
this study, we demonstrated that the TGF-beta, MAPK, PI3K-Akt, Rap1, Wnt and Ras
signaling pathways involved in adaptive immune responses were modulated collectively
by the high differentially expressed miRNAs during DENV-1 infection in mouse. Three of
the pathways are related to each other, in which TGF-beta may induce activation of MAPK
signaling pathway and PI3K-Akt signaling pathway. Interestingly, all these six pathways
identified in mice liver with dengue, have been shown in human, to play important
functional roles of the liver. They have been shown to be closely associated with hepatic
inflammatory responses (Li et al., 2016), metabolic dysfunction (Matsuda, Kobayashi &
Kitagishi, 2013), liver injury and hepatocarcinogenesis (Behari, 2010; Nakagawa & Maeda,
2012), hepatic fibrosis and chronic liver disease (Blobe, Schiemann & Lodish, 2000;Munshi,
Uddin & Glaser, 2011; Shim et al., 2018).

Increases or decreases of TGF-beta have been linked to numerous disease states including
atherosclerosis and fibrotic disease of the liver (Blobe, Schiemann & Lodish, 2000). It is well
known that liver injury is one of the clinical manifestations associated with dengue infection
(Itha et al., 2005; Seneviratne, Malavige & Silva, 2006). Previous study has demonstrated
that the development of hepatic fibrosis, a wound-healing response to liver injury, is
associated with the pathway mediated by overexpression of cytokine transforming growth
factor-beta 1 (TGFB1) (Mawson, 2013; Tanikawa et al., 2017). Moreover, the higher level of
TGFB1 in the sera and TGFB1mRNA in the PBMC has been observed in patients with DHF
when compared to DF patients (Agarwal et al., 1999). In another study, plasma obtained
from children with DHF from recent DENV-2 outbreaks, were shown to have significantly
higher levels of TGFB1 than plasma from children with DF (Laur et al., 1998). Thus,
TGFB1 mediated pathway appears likely to play an important role in pathogenesis of liver
injury in dengue infection. TGF-beta are multifunctional molecules that regulate processes
such as immune function, cell proliferation, differentiation, cell adhesion, haematopoiesis,
inflammatory responses and wound healing (Dünker & Krieglstein, 2000). In immune
response, TGF-beta acts as a potent immunosuppressor that signals negative regulation in
proliferation, differentiation and activation by other cytokines of the TGF-beta secreting
immune cells including B-cell, T-cell, macrophages and dendritic cells (Yan, Liu & Chen,
2009). TGF-beta controls adaptive immunity by coordination of development and function
of regulatory T cell (Treg) and directs inhibition of cellular activity, and it has also been
shown to be linked to depression of innate cells, including natural killer (NK) cells (Wahl,
2007).

Previous studies have shown that DENV induce inflammatory responses involved in
liver injury and virus-induced apoptosis via activation of MAPK signaling pathways, thus
activation of MAPK signaling pathways is a major cause of liver injury during DENV
infection (Sreekanth, Yenchitsomanus & Limjindaporn, 2018). MAPK signaling pathways
are activated during DENV infection and the activation of Jun N-terminal kinase (JNK)
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and p38 MAPK signaling pathways are essential for DENV replication (Ceballos-Olvera
et al., 2010). In dengue-infected hepatocyte cells, the activation of JNK, p38, extracellular
signal-regulated kinase (ERK) MAPK signaling and Ras signaling pathway induced
the overexpression of Regulated on Activation Normal T-cell Expressed and Secreted
(RANTES), causing inflammation in the liver (Lee et al., 2008). Furthermore,Wnt signaling
has been shown to modulate the type I interferon (IFN) signaling, one of the cellular innate
immune pathways, in which the repression on Wnt signaling by miR-34 family induces
the activation of type I IFN signaling in response to flavivirus infection including dengue
virus and thus inhibiting the viral replication (Smith et al., 2017).

The PI3K-Akt signaling pathway regulates a variety of cellular processes, including cell
proliferation, RNA processing, protein translation, autophagy, apoptosis and antiviral
immunity (Fulda, 2013). The cellular PI3K-Akt signaling pathway has been shown to
play important roles in different steps of the life cycle of viruses. Many DNA and RNA
viruses have induced PI3K-Akt signaling pathway for virus survival during infection; these
viruses modulate this pathway to optimise the virus entry and replication, virions assembly,
latency and reactivation from latency, and apoptosis suppression (Darr, Mauser & Kenney,
2001; Cooray, 2004; Ehrhardt et al., 2006; Saeed et al., 2008; Dunn & Connor, 2011; Yogev &
Boshoff, 2013). Lee, Liao & Lin (2005) reported that the activation of PI3K-Akt signaling
pathway at the early stage of dengue infection is important in protecting the infected cells
from early apoptotic cell death. In this signaling pathway, the expression Bcl2 gene plays a
crucial role in controlling the apoptotic cell death (Lee, Liao & Lin, 2005; Liu et al., 2014).
In the present study, the miR-16-5p and miR-182-5p are predicted by microT-CDS to
regulate the expression of Bcl2 gene. Moreover, the target prediction of miR-16-5p was
supported with the experimental data. The downregulated expression of miR-16-5p may
suppress the cell death via apoptosis by upregulating the expression of Bcl2 gene, the potent
anti-apoptosis factor (Guo et al., 2009; Santosa et al., 2015). Thus, it’s deemed that these
two miRNAs are involved in regulating the apoptotic cell death in dengue-infected cells.

An in silico study using DenHunt has shown that the dengue viral proteins are interacted
directly with some proteins involved in Rap1 signaling pathway (Karyala et al., 2016).
Those interactions are believed to interfere with the expression of host miRNA, resulting
in a differential expression of some specific miRNAs. Recently, Jiang & Sun (2018) have
demonstrated that the Rap1 signaling pathway is modulated by the miRNA targets during
DENV-3 infection, which is similar to the findings in this study although the DENV
serotype used in our study is different.

CONCLUSIONS
In conclusion, this study demonstrated that the observed highly differentially expressed
miRNAsmay play vital role inmodulating the immune responses during DENV-1 infection
in vivo. To more clearly understand the roles of each of the highly differentially expressed
miRNAs in those signaling pathways during DENV infections, further studies in the
characterization of the upstream and downstream proteins involved in both classical
and atypical signaling pathways during DENV infection are needed. These studies could
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potentially identify novelmolecular therapies thatmightmodulate the genes of the signaling
pathways in DENV infection.
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