
CommIT (Communication & Information Technology) Journal 11(2), 67–76, 2017

The Effectiveness of a Program Visualization
Tool on Introductory Programming: A Case

Study with PythonTutor
Oscar Karnalim1 and Mewati Ayub2

1,2Faculty of Information Technology, Maranatha Christian University, Bandung 40164, Indonesia
Email: 1oscar.karnalim@it.maranatha.edu, 2mewati.ayub@it.maranatha.edu

Abstract—Program Visualization (PV) is an educa-
tional tool frequently used to assist users for under-
standing a program flow. However, despite its clear
benefits, PV cannot be incorporated easily on Intro-
ductory Programming course. Several key properties
such as student characteristics and behavior should be
considered beforehand. This paper is intended to provide
an empirical review about the impact of PV toward
students of Introductory Programming course. For our
case study, PythonTutor is selected as a sample of PVs
due to its accessibility. It can be accessed anywhere
and anytime through a web browser. Three conclusions
are obtained based on our evaluation on data collected
from a survey. Firstly, PV is quite effective to assist
students for conducting several programming sub-tasks.
Secondly, PV, at some extent, may help students to learn
advanced topics on Introductory Programming course.
Finally, despite the fact that several features should be
incorporated to enhance understanding of students, PV is
beneficial for learning Introductory Programming course,
especially when it is frequently used.

Index Terms—Program Visualization, Introductory
Programming course, Empirical Evaluation, Educational
Technology

I. INTRODUCTION

PROGRAMMING is a core topic in information
technology program study. However, not all stu-

dents can master it properly due to its complexity [1].
Several students need more time to learn it while the
others need more stresses on some program parts to
understand it. Thus, several educational tools, which
may assist students to understand programming fur-
ther, are developed. These tools target various aspects
of programming such as abstraction knowledge [2],
program flow [3], and program characteristics [4, 5].
Among numerous educational tools, Program Visual-
ization (PV) is an educational tool focusing on the
second aspect, program flow [6]. Using the tool, users

Received: 27 Jun. 2017; received in revised form: 10 Oct. 2017;
accepted: 17 Oct. 2017; available online: 28 Nov. 2017.

can understand how their program behaves and learn
why such behavior occurs.

Currently, there are various PVs developed to as-
sist users to understand programming. Jeliot 3 [7],
JIVE [8], VILLE [9], and PythonTutor [3] are four
prominent examples in this category. Even though
these PVs share similar major goal, they are still
different in the term of their features. For instance,
VILLE [9] incorporated source code in a parallel view
as its unique feature so that they could enhance student
understanding in the term of syntax correlation.

Despite the fact that there are many available PVs
which may help students to understand programming
further, incorporating the tool into Introductory Pro-
gramming course is not a trivial task. Several key
properties such as student characteristics and behavior
should be taken into account. Thus, this paper is
intended to provide an empirical review about the
impact of PV in Introductory Programming course.
This review is expected to help lecturers to consider
whether PV should be incorporated on their Introduc-
tory Programming course or not. In general, there are
three aspects evaluated in this work. These aspects
are: 1) PV impacts on assisting students to conduct
several programming sub-tasks such as understanding
the concept of variable; 2) PV impacts on assisting
students to understand advanced topics on Introductory
Programming course; and 3) Students’ feedbacks about
the PV features and its usage. These aspects are evalu-
ated based on two-fold which are questionnaire survey
and quiz results. Yet, to get more accurate result, both
evaluation schemes are conducted after the students
have been introduced with PV for six weeks. In this
work, we select PythonTutor as our sample PV. This
tool is preferred to other tools due to its accessibility.
It can be accessed anywhere and anytime since it is
designed as a web-based application.

mailto: oscar.karnalim@it.maranatha.edu
mailto: mewati.ayub@it.maranatha.edu 


Cite this article as: O. Karnalim and M. Ayub “The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor”, CommIT (Communication & Information
Technology) Journal 11(2), 67–76, 2017.

II. LITERATURE REVIEW

According to several works [10–13], learning pro-
gramming has been proven to be a highly non-trivial
task for students. Students are not only required to
master considerably high computational thinking but
also well-developed knowledge about programming
language. Based on that reason, many educational tools
have been developed to simplify student learning pro-
cess, especially for novice students. These tools target
various programming aspects. It may target abstraction
knowledge [2], program flow [3], or program charac-
teristics [4, 5]. However, since program characteristics
are considered as supplementary knowledge, the target
is rarely used as the main objective of educational
tools.

Based on the fact that illustration may help students
to recall explained information [14], most educational
tools are focused on visualizing the learning material.
The tools focused on visualizing abstraction knowl-
edge is frequently referred as Algorithm Visualization
(AV) [15], whereas the others that focus on visualizing
program flow are referred as Program Visualization
(PV) [6]. AV is an educational tool which visualizes
and animates several aspects from a given algorithm
based on its working mechanism [16]. VisuAlgo [2,
17, 18], AlgoViz [19], AP-ASD1 [20], AP-SA [21],
and AP-BB [22] are several examples in this category.
Some of them are developed as a web-based applica-
tion to enable easy access, whereas the others are de-
veloped as a desktop-based application to enable direct
use without relying on Internet connection. On the con-
trary, PV is an educational tool which visualizes and
animates several program aspects from a given source
code based on its runtime execution [6]. This tool is
frequently used as a supplementary tool to Introductory
Programming course [3, 6, 13, 23]. Several examples
of the tools are Jeliot 3 [7], JIVE [8], VILLE [9],
and PythonTutor [3]. Among these tools, PythonTutor
is the only tool designed as a web application.

Jeliot 3 [7] is a program visualization tool aiming
at novices for learning Java programming. As the
execution advances step-by-step, all variables and func-
tion calls are visualized to improve user understanding
further about the given program. According to several
comprehensive evaluations [13, 24, 25], Jeliot 3 can
enhance user understanding in learning Java program.

JIVE [8] is quite similar to Jeliot 3 and only differs
on several key features such as object structure and
calling method sequence visualization. However, the
main focus of JIVE is inclined to visualize program
in an interactive manner, and it is not specifically
focused on learning programming. According to their
evaluation, JIVE can be a practical tool for visualizing

and debugging program.
VILLE [9] is a program visualization tool which

is designed as language-independent as possible. Un-
like Jeliot 3 and JIVE, VILLE can incorporate any
programming languages as long as their syntaxes
have one-to-one correspondence with Java and C++
syntaxes. Furthermore, VILLE is also featured with
parallel view where users can learn syntax translation
between two programming languages. As the execution
advances step-by-step, VILLE highlights the executed
syntaxes which refer to similar semantic from both
source codes. According to several comprehensive
evaluations [23, 26], VILLE can be considerably ef-
fective for learning programming.

PythonTutor is a web-based program visualization
tool which is initially focused on visualizing Python
codes for Introductory Programming course [3].
Python [27] is selected as its initially-featured pro-
gramming language since it has been widely used as
main programming language for various large com-
puter science (CS) departments and online courses.
Nevertheless, as PythonTutor is further developed,
several popular programming languages such as Java
and C++ are also incorporated to fulfill users’ need.
Unlike other program visualization tool, PythonTutor
is designed as a web-based application so that users
can access such tool anytime and anywhere as long
as they are connected to the Internet. In addition,
PythonTutor is also featured with responsive UI which
can be viewed on the gadget. Users can open it from
personal computers, laptops, tablets, or smartphones.

Even though there are many available PV tools and
most of them have been proven to be effective, PV
effectiveness is greatly relied on students’ background,
motive, and behavior. Thus, its impacts may be var-
ied per university. As we know, each university has
their unique student characteristics that may affect
PV effectiveness. Based on the reason, this paper
intends to evaluate the impacts of a PV tool when
it is incorporated to Information Technology major,
Faculty of Information Technology, Maranatha Chris-
tian University, Indonesia. Evaluation is conducted in
two-fold which are questionnaire survey and quizzes.
Both mechanism are incorporated after the students
have been accustomed to use PV. For our case study,
we select PythonTutor as our sample PV which is
incorporated in our work.

III. RESEARCH METHOD

In general, there are three objectives that we want
to address in this paper. Firstly, we want to measure
the effectiveness of PV in assisting students for doing
several sub-tasks in programming. Secondly, we want

68



Cite this article as: O. Karnalim and M. Ayub “The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor”, CommIT (Communication & Information
Technology) Journal 11(2), 67–76, 2017.

TABLE I
THE MEAN AND STANDARD DEVIATION, IN BRACKETS, OF THE

RESPONDENT SCORES.

Attribute Class A Class B

Total Respondent 18 23
Admission test score 79.56 (10.52) 77.30 (4.61)
National test score for mathematics 55.00 (16.49) 55.87 (23.84)
Final written score 53.22 (24.04) 55.82 (23.61)
Final laboratory score 54.00 (20.86) 49.39 (19.11)

to measure the effectiveness of PV for advanced course
topics such as array or function. Lastly, we want to
summarize their feedbacks toward the usage of PV for
teaching Introductory Programming. All objectives are
measured through questionnaire survey and quiz result.
Questionnaire survey is used to cover all mentioned
objectives based on student’s perspective, whereas quiz
results are be used to cover the first two objectives
based on academic grade.

To evaluate such aspects, students from two In-
troductory Programming classes in odd semester of
2016/2017 academic year are taken as our respon-
dents. In fact, there are three classes of Introductory
Programming course at that semester. However, since
quiz-based evaluation incorporated in our work are
measured by comparing two classes, only the classes
are taken into our consideration. One class will act as
an experimented class whereas the other one will be
assigned as a control class. The statistics of involved
classes can be seen in Table I. All attributes except the
number of respondent are taken into our consideration
based on our previous work about predicting student
outcome on Introductory Programming [28]. These
attributes have been used as learning features to detect
the student outcome using data mining technique,
namely J48. We believe that average and standard
deviation of such attributes may be used as a prior
knowledge to discuss our evaluation result further.
Admission test score and national test score for math-
ematics are considered as pre-attributes, which are
recorded before the students incorporated PV. Final
written and laboratory score, on the other hand, are
considered as post-attributes, which are taken after the
students have incorporated PV. In general, class A
outperformes class B in term of admission test score
and final laboratory score. Yet, class A still yields
lower score on the remaining attributes, national test
score for mathematics, and final written score.

Since our evaluation requires a PV tool for our case
study, PythonTutor [3], a web-based PV tool developed
by Guo, is selected to be incorporated in our work.
PythonTutor is preferred to other PV tools based on
following reasons: 1) PythonTutor is designed as a
web-based application with responsive UI. Thus, our

TABLE II
THE SCHEDULE OF PV USAGE FOR THE EVALUATED CLASSES.

Week Class A Class B

1st week: Void function ×
2nd week: Non-void function ×
3rd week: Array ×
4th week: Advanced array ×
5th week: Matrix
6th week: Searching and Sorting × ×

students may use it anytime and anywhere as long as
they are connected to the Internet; and 2) PythonTutors
initial programming language is similar with our used
programming language on Introductory Programming,
which is Python.

To gain more accurate result, evaluation is only
conducted after the respondents have used PV tool for
six weeks alternately. The detail of PV usage for six
weeks on two evaluated classes can be seen on Table II.
On the first two weeks, class B acts as an experimented
class which uses PV for learning function whereas
class A acts as a control class. The assignment is
swapped on the next two weeks. Class A acts as an
experimented class which uses PV for learning array
whereas the other one acts as a control class. The fifth
and sixth week are used to measure the impact of PV
for each class. The fifth week is used to represent initial
state where both classes do not use PV and the sixth
week is used to represent the state of both classes after
their learning session have been intervened by PV. Both
states then will be compared to generate delta value
representing the impact of PV for each class.

Each time a session is intervened with the PV
usage, the lecturer uses PV to explain the material.
For instance, it can be providing an example about
how the concept of array works through PV tool. In
addition, after one-way session has been conducted
in that occasion, the students will be asked to try
the given PV through several code samples. They are
required to answer several questions according to given
code samples. In such manner, students may have their
personal experience about using PV tool for learning
Introductory Programming.

Empirical evaluation conducted in our work is split
into twofold: questionnaire survey and quizzes. Ques-
tionnaire survey is used to measure the impact of PV
based on students perspective whereas quizzes are used
to measure such impact based on academic result.

Questionnaire survey is given at the end of the sixth
week schedule for using PV in both classes. It consists
of 14 questions which can be seen on Table III. For
convenience, each question will be assigned with an
unique ID and the ID will be used to refer that question

69



Cite this article as: O. Karnalim and M. Ayub “The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor”, CommIT (Communication & Information
Technology) Journal 11(2), 67–76, 2017.

TABLE III
THE QUESTIONS PRESENTED IN THE SURVEY.

Q Statement

1 PV helps student to understand the execution flow of running
program

2 PV helps student to understand how variable content changes
3 PV helps student to understand the sequence of method invoca-

tion
4 PV helps student to trace their own code
5 PV helps student to understand standard algorithms such as

searching and sorting
6 PV helps student to learn Introductory Programming material in

general
7 The interface incorporated in PythonTutor is descriptive and

representative
8 The features incorporated in PythonTutor fulfill student necessity

for learning Introductory Programming
9 PV is effective to help student learn array / function (depend on

the class of given respondent)
10 PV is effective to help student learn searching
11 PV is effective to help student learn sorting
12 PV is effective to help student learn advanced modules in general
13 Please provide feedback(s) about PythonTutor’s features
14 Please provide feedback(s) about PV usage on Introductory

Programming class

at the rest of this paper. In general, these questions
are split into three categories where each category
corresponds to one of our major goal. The first category
is focused on the impact of PV for assisting several
sub-tasks in programming. Questions which fall into
this category (Q1-Q8) should be answered in 7-point
Likert scale where 1 represents strongly disagree, 2
as negatively disagree, 3 as positively disagree, 4 as
neutral, 5 as negatively agree, 6 as positively agree,
and 7 as strongly agree. The second category covers
the effectiveness of PV in assisting advanced course
materials. Questions in this category (Q9-Q12) should
also be answered in 7-point Likert scale too. The
third category, on the contrary, is represented as two
open questions (Q13 and Q14) where students can
answer it with a free text. This category is focused
on collecting students feedback about the usage of PV
on Introductory Programming class. Among proposed
questionnaire questions, it is important to note that
several questions use ”PythonTutor” to refer the PV
since these questions rely heavily on domain-specific
characteristics such as interfaces and features. Such
characteristics may vary based on incorporated PV.

Quiz result are incorporated in our evaluation to
measure the impact of PV in term of enhancing stu-
dents grade. In general, we will conduct four quizzes
during six weeks of PV usage. The first two quizzes
will be conducted at the end of the fourth week. They
cover both function and array material where each
quiz consists of four questions. On the contrary, the
last two quizzes would be conducted at the end of
the sixth week. Similar with the first two, each of
them consists of four questions. Yet, the proportion of

involved materials is quite different. They cover both
matrix and searching and sorting instead of function
and array.

Questions for each evaluated material is designed
based on the first four level of Bloom taxonomy [29],
which are remembering, understanding, applying, and
analyzing. We do not incorporate all level of Bloom
Taxonomy since the fifth and sixth level are not
designed to undergraduate students. These levels are
designed for the graduate ones. For each quiz, each
question is weighted similar to each other in term of
its grade proportion. In other words, for each quiz, a
question will be weighted as 25 of 100 points.

IV. RESULTS AND DISCUSSIONS

A. Questionnaire Survey Result

The result of questionnaire survey is split into
twofold which are the result of close and open ques-
tions. Close questions refer to questions which should
be answered in 7-point Likert scale whereas open ques-
tions refer to questions which asked about student’s
feedback.

First of all, we will discuss about the result of
close question category. It consists of 12 questions
which cover our first two goals measuring the impact
of PV for assisting students to do both sub-tasks in
programming and specific advanced topics. The mean
score of Q1-Q12 result toward our respondents can be
seen in Figure 1. In general, all statements are roughly
agreed by our respondents since, when it is viewed
based on all respondents, all statements are scored
higher than 5 and their mean score is 5.519. Among
these statements, Q8 yields the highest Likert score,
which is 5.853, and Q12 yields the lowest one, which
is 5.097. In other words, they think that PythonTutors
features are enough to learn Introductory Programming
in general but some advanced modules are better to
be learned through another tool such as Algorithm
Visualization.

Class A students who get higher final laboratory
score in average, Q8 still yields the highest score
among all statements. Yet, the lowest-score statement
is not Q12 anymore. There are three statements which
shares the lowest score based on class A student
feedbacks, Q2, Q3, and Q11. When it is discovered,
Q2 yields a considerably low score since they think
that showing all variable values on log may confuse
students due to overwhelming information. The issue
about overwhelming information also causes Q3 to
yield the lowest score. They think that showing all
method invocations, including the technical ones, may
confuse the students since most students only care
about their own-defined methods. Q11, on the contrary,

70



Cite this article as: O. Karnalim and M. Ayub “The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor”, CommIT (Communication & Information
Technology) Journal 11(2), 67–76, 2017.

Fig. 1. The mean scores of Q1 to Q12.

yields the lowest score since they prefer not to use
PV for learning sorting. In PV, all information about
execution trace are presented. Thus, students may not
get ”the big picture” of such algorithm. They may get
distracted easily with the overwhelming information.
From class A students who get higher final laboratory
score in average, Q8 still has the highest score among
all statements. Yet, the lowest-score statement is not
Q12. There are three statements which share the lowest
score based on class A student feedbacks, Q2, Q3,
and Q11. When we analyze this further, Q2 yields
a considerably low score since they think that show-
ing all variable values on log may confuse students
due to overwhelming information. Such issue about
overwhelming information also causes Q3 to yield the
lowest score. They think that showing all methods
invocations, including the technical ones, confuse the
students since most students only care about their own-
defined methods. Q11, on the contrary, has the lowest
score since they prefer not to use PV for learning
sorting. In PV, all information about execution trace are
presented. Thus, students may not get ”the big picture”
of such algorithm. They get distracted easily with the
overwhelming information.

For class B students who get higher final written
score in average, the phenomena, at some extent, are
quite similar to class A findings, Q8 still yields the
highest score whereas Q2, Q3, and Q11 yield a con-
siderably low score. Yet, from the class B perspective,
Q6 also shares the highest score. It generated 5.565
of 7, which is as high as Q8s mean score. They think
that PV may be beneficial for learning Introductory
Programming and in particular PythonTutor is a tool
which features fulfilled such necessity. Despite the fact
that Q2, Q3, and Q11 have a low score based on class
B perspective, Q12 still yields the lowest one since
they think that not all advanced modules are effective
to be taught through PV.

In general, respondents from class A, who have
higher final laboratory score, tend to provide higher

Fig. 2. The standard deviations of Q1 to Q12.

score for all statements. This finding is natural since
final laboratory score is obtained based on students
capability about writing program implementation and
PV is originally aimed to assist students for learning
the task. Students who learn practically through pro-
gramming implementation should feel that the tool is
helpful since it help them to visualize the implementa-
tion in comprehensive manner. However, the impact of
the tool is not too significant for students who learn
programming in theoretical manner. This finding is
deducted from the fact that respondents from class B,
who have higher final written score, tend to provide
lower scores for all statements compared to score given
respondents in class A.

In order to measure the variation between respon-
dents feedback, the standard deviation of each state-
ment result is also presented on Figure 2. In general,
the variance of the response is considerably small
since most statements have standard deviation lower
than 25% of its respective mean value. Among these
statements, Q5 for class B respondents is the highest
standard deviation which is 1.201 since there are two
contradicting views about the impact of PV in learning
standard algorithms. Some students say that PV is
enough to teach standard algorithm whereas the others
say that PV should be replaced with AV when it
comes to learning standard algorithms. The lowest-
scored statement, on the other hand, is Q10 for class
A respondents. It is only 0.727 since all respondents
in class A have similar perspective of the PVs impact
toward searching algorithm. They positively agree that
PV may help students for learning such topic even
though searching is considered as a standard algo-
rithm. This finding is logical since searching is the
simplest topic in standard algorithms. Even though all
information about the execution trace are provided on
PV, students can still conveniently learn the material
since the presented information does not overwhelm
the students.

71



Cite this article as: O. Karnalim and M. Ayub “The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor”, CommIT (Communication & Information
Technology) Journal 11(2), 67–76, 2017.

Fig. 3. The Q13 survey results.

Q13 and Q14 are incorporated to collect students
feedback about given PV. Both of them are open
questions where students can answer it freely. They
can provide no answer, an answer, or more than one
answer. However, to provide a concise result, our work
summarizes and merges the similar feedbacks.

Q13 is used to collect students feedback about
PythonTutors features. The detail of Q13 result can
be seen in Figure 3. In general, there are 33 responses
which are classified into eight categories. Among these
categories, the top three categories take more than half
of the responses. The highest category is about the
interaction of PythonTutor. It explicitly states that the
UI of PythonTutor should be more interactive to keep
students focus. The respondents believe that providing
colorful animation during program execution is an
example to achieve such goal. The second highest
category is about incorporating additional features to
PythonTutor. The respondents state that natural lan-
guage information and theoretical material of program-
ming are necessary to assist students learning. The
third highest category is about the offline version of
PythonTutor. The respondents claim that the version is
necessary due to limited internet access in Indonesia.
They believe by providing the offline version may help
students to learn without relying on Internet.

The remaining responses about PythonTutors fea-
tures are only occurred once or twice. Firstly, it is about
the input textbox of PythonTutor. The respondents
agree that such textbox is quite hard to see since it
is placed at the bottom of the code. They believe that
it will be better to be interpreted as a pop-up alert.
Secondly, it is about multiple input issue. PythonTutor

accepts the input as the program is executed. Thus,
it will be inconvenient when the program requires
numerous inputs. The students should feed the input
one by one via input textbox. The respondent be-
lieve that enabling user to provide all inputs at once
through copy-and-paste technique should be beneficial.
Students are only required to provide the inputs once
at the beginning of program execution. Thirdly, it is
about the mobile version of PythonTutor. Despite the
fact that PythonTutor can be accessed via mobile web
browser, the respondents state that converting the tool
to mobile application is advantageous. Domain-specific
mobile application may not only take less data usage
but also provide higher capabilities compared to a web
application opened through a browser. Web browser
usually takes more bandwidth due to their generic con-
nection mechanism and limits the capability of opened
application. Fourthly, it is about variable change. The
respondents state that the change should be delivered
in more declarative manner such as highlighting the
changed variable. Finally, it is about error correction.
A respondent believes that PythonTutor should be
featured with error correction so that students can learn
how to fix an error while learning.

Q14 is used to collect students feedback about PV
usage during Introductory Programming course. The
detail of Q14 result can be seen in Figure 4. Different
from Q13, Q14 yields less categories. It only gener-
ates three categories from 36 responses. Twenty six
responses state that the frequency of PV usage during
in-class session should be increased. The respondents
argue that such tool may help students in term of
learning programming used in each possible occasion
during in-class session. Nine responses state that PV
may also help the students during laboratory session.
They argue that the tool may assist students to find
logic error. One of the responses states that PV should
not only be implemented on advanced introductory
programming materials, but also on the basic ones such
as input-output, branching, and looping. The respon-
dents believe that PV is also beneficial for learning
basic materials.

To sum up, the result of our questionnaire sur-
vey states that PV is a promising tool to assist stu-
dent learning programming, particularly in Introduc-
tory Programming course. Despite the fact that several
features on PythonTutor, our case study of PV tool
is required to be developed further to fulfill students’
need, the respondents still believe that the tool may
be beneficial for learning programming. They even
wish to increase the frequency of PV usage during the
course.

72



Cite this article as: O. Karnalim and M. Ayub “The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor”, CommIT (Communication & Information
Technology) Journal 11(2), 67–76, 2017.

Fig. 4. The Q14 survey results.

B. Quiz Result

The quiz result discussed in threefold is aimed to
measure the PV impact through students grade. The
first two are focused on its impact for learning specific
advanced module whereas the last one is focused on
its impact for the students as its users. It is impor-
tant to note that we assumed that every module has
similar difficulty in this work. Therefore, no difficulty
difference will be taken into our consideration in this
evaluation.

To evaluate the PV impact for learning specific
advanced modules, our work takes two advanced mod-
ules into account. These modules are function and
array module. Based on our proposed schedule, class
B becomes an experimented class and class A is a
control class on function module. Then, the assignment
is swapped for array module. Class A becomes an
experimented class and class B is a control class.

The detail of student quiz result for function module
can be seen in Figure 5 where the horizontal axis
represents the questions and vertical axis represents
the grade. As seen in Figure 5, class B gets higher
score than A for most questions. Therefore, it can be
concluded that PV has affected the learning process
of function module positively since class B, which is
assigned as the experimented class, has higher score
than class A, which is as a control class. Among all
questions, applying is the only one category where
score of class B is lower than class A. The question
given on that category is about function invocation
where students are required to predict the output of a
nested function invocation. From our perspective, we
believe that class A respondents have got higher score
on that question since most of them have known the
concept of function call in math and nested function

Fig. 5. The average scores of function quiz result.

invocation is quite similar to the mechanism. The
concept of function call is usually taught in math as a
basic concept. In other words, when the students get
an average score in math (about 50 of 100), it can be
concluded that they have already known the concept.
Based on national test score for math, respondents
in class A have more balanced math skill than class
B. Its standard deviation (16.49) is extremely lower
than class B (23.84). Thus, it can be stated that more
respondents in class A may have already known the
concept of function call since their scores are less
fluctuated on the middle score (50 of 100).

The detail of the quiz result for array module can be
seen in Figure 6 where the horizontal axis represents
the questions and vertical axis represents the grade.
As seen in Figure 6, class B outperformes class A in
the most questions despite the fact that class A is the
experimented class in this module. The reduction is
caused by PythonTutor input mechanism. In PythonTu-
tor, users are asked to provide input one by one regard-
ing to the execution flow. Even though the mechanism
is beneficial for understanding how the program works,
it is inconvenient when the program requires numerous
inputs. The users are required to provide the input as
they concentrate to understand the program flow. The
issue affects the learning process of array module since
most array-based programs require numerous inputs.
These programs typically ask users to provide input
for filling array elements manually. Thus, the focus of
most students may be altered to provide input instead
of understanding the program flow. They may not
understand the array material better. We believe that
the issue can be handled by providing multiple-input
mechanism where students can store all required inputs
right before the PV visualizes the program flow. This
solution is also discussed in Q13 questionnaire survey
result by two respondents.

To evaluate the PV impact for students (i.e. the first
objective on this paper), our work takes two mod-

73



Cite this article as: O. Karnalim and M. Ayub “The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor”, CommIT (Communication & Information
Technology) Journal 11(2), 67–76, 2017.

Fig. 6. The average scores of array quiz result.

ules for comparison, matrix and searching and sorting
module. In matrix module, the students are asked to
learn without PythonTutor. In other words, they learn
matrix material in conventional manner. In searching
and sorting module, students are asked to learn with
the assistance of PythonTutor. The PV impact for both
classes is deducted by comparing the quiz result for
matrix and searching and sorting module. Matrix quiz
result is considered to represent student capabilities
without the PV whereas searching and sorting quiz
result is considered to represent student capabilities
with the assistance of PV.

The detail of quiz result which represents the PV
impact toward class A can be seen in Figure 7 whereas
the result for class B is seen in Figure 8. The horizontal
axis represents given questions while the vertical one
represents the grade. ”without PV” series represents
matrix quiz result whereas ”with PV” series represents
searching and sorting quiz result. As seen in Figure
7, class A respondents get higher score when they
incorporate PV. The highest improvement is in the
Analysis question whereas the lowest one is in the
applying question. However, such improvement is not
explicitly occurred on class B. As seen in Figure
8, even though their ”with PV” score is higher in
overall category, that score is low on the most specific
categories. The issue is caused by the learning style of
respondents in class B. According to final written score
for both classes, the respondents are more accustomed
to learn theoretically since they get higher grades in
final written score than class A. Therefore, PV is
originally aimed to assist students in practical manner,
the tool is not beneficial for class B.

In conclusion, according to our evaluation, it is clear
that learning function material can be supported by the
assistance of PV. Function of quiz result is improved
in most question categories. It even yields higher score
in overall category. Nevertheless, such improvement is
not explicitly occurred on array module since our case

Fig. 7. The average score of Class A quiz result to measure the PV
impacts.

Fig. 8. The average scores of Class B quiz result to measure the
PV impacts.

study PV, namely PythonTutor, is not featured with
multiple-input mechanism. We believe that by pro-
viding such feature, students’ capabilities for learning
array material would be improved through given PV.
When perceived based on student capabilities, PV may
help student to learn programming material. Yet, the
improvement may become more significant when the
students are accustomed to learn in practical manner,
which is learning by doing.

V. CONCLUSIONS

Based on our evaluation and questionnaire survey
and quiz result, PV can help students to learn Intro-
ductory Programming course. We have measured its
impacts through three objectives and all of them yield
considerably good results. Firstly, we have measured
the impacts of PV for assisting students to do sev-
eral sub-tasks in programming such as understanding
execution flow or variable change. The objective is
measured through both survey and quiz result. Since
most survey statements which correspond to this ob-
jective have positive feedbacks, and related quiz result
generates a considerably improvement by the existence

74



Cite this article as: O. Karnalim and M. Ayub “The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor”, CommIT (Communication & Information
Technology) Journal 11(2), 67–76, 2017.

of PV, it can be concluded that the first objective is
achieved. Secondly, we have measured the impact of
PV for learning advanced topics. It is also measured
by questionnaire and quiz result. Despite the promis-
ing result of questionnaire, its improvement based on
quiz result is satisfactory. It only yields prominent
improvement on function module. Thirdly, we have
summarized students feedbacks toward PV features
and usage through survey. Despite the fact that several
features are required to enhance student understanding
further, most students argue that the tool may be
beneficial for learning programming. They state that
the PV should be used frequently so that students can
be helped further.

Besides achieving the main objectives, our work also
deducts several correlations between the PV impacts
and student characteristics. Firstly, PV is more suitable
for students who are accustomed to learn through prac-
tical fashion. Secondly, despite its low improvement,
students who are accustomed to learn in theoretical
manner are still helped by the existence of PV. Thirdly,
students with high math skill can learn function easier
since its basic concept has been learned in math.

For future works, we enhance the frequency of
PV usage in a course and re-evaluate its impacts
for learning programming. The impact of such PV
is expected to become higher than our current result
due to its higher PV usage frequency. In addition, we
are also encouraged to develop a PV which fulfills
all required features collected through our survey.
Hopefully, PV may help students to learn programming
more effectively and efficiently.

REFERENCES

[1] C. Areias and A. Mendes, “A tool to help students
to develop programming skills,” in Proceedings of
the 2007 international conference on Computer
systems and technologies. ACM, 2007.

[2] S. Halim, Z. C. Koh, V. B. H. Loh, and F. Halim,
“Learning algorithms with unified and interactive
web-based visualization.” Olympiads in Informat-
ics, vol. 6, pp. 53–68, 2012.

[3] P. J. Guo, “Online python tutor: Embeddable
web-based program visualization for cs educa-
tion,” in Proceeding of the 44th ACM Techni-
cal Symposium on Computer Science Education,
2013.

[4] E. Elvina and O. Karnalim, “Complexitor: An
educational tool for learning algorithm time com-
plexity in practical manner,” ComTech: Com-
puter, Mathematics and Engineering Applica-
tions, vol. 8, no. 1, 2017.

[5] O. Karnalim and E. Elvina, “Interfacing com-
plexitor: An empirical-based educational tool for

learning time complexity,” Journal of IRD (Infor-
matics Research and Development), vol. 1, no. 1,
2017.

[6] S. Bentrad and D. Meslati, “Visual programming
and program visualization–toward an ideal visual
software engineering system,” ACEEE Interna-
tional Journal on Information Technology, vol. 1,
no. 3, 2011.

[7] A. Moreno, N. Myller, E. Sutinen, and M. Ben-
Ari, “Visualizing programs with jeliot 3,” in
Proceedings of The Working Conference on Ad-
vanced Visual Interfaces, 2004.

[8] P. Gestwicki and B. Jayaraman, “Interactive vi-
sualization of java programs,” in Symposia on
Human Centric Computing Languages and En-
vironments, 2002, 2002.

[9] T. Rajala, M. J. Laakso, E. Kaila, and
T. Salakoski, “Ville - a language independent
program visualization tool,” in Proceedings of
The 7th Baltic Sea Conference on Computing
Education Research, Finland, 2007.

[10] M. McCracken, V. Almstrum, D. Diaz, M. Guz-
dial, D. Hagan, Y. B.-D. Kolikant, C. Laxer,
L. Thomas, I. Utting, and T. Wilusz, “A multi-
national, multi-institutional study of assessment
of programming skill of first-year cs students,”
ACM SIGCSE Bulletin, vol. 33, no. 4, 2001.

[11] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone,
J. Hamer, M. Lindholm, R. McCartney, J. E.
Moström, K. Sanders, O. Seppälä, B. Simon, and
L. Thomas, “A multi-national study of reading
and tracing skills in novice programmers,” in
ACM SIGCSE Bulletin, vol. 36, no. 4, 2004.

[12] J. D. Tenenberg, S. Fincher, K. Blaha, D. Bou-
vier, T. Y. Chen, D. Chinn, S. Cooper, A. Eck-
erdal, H. Johnson, R. McCartney, and A. Monge,
“Students designing software: A multi-national,
multi-institutional study,” Informatics in Educa-
tion, vol. 4, no. 1, 2005.

[13] S. M. Cisar, R. Pinter, D. Radosav, and P. Cisar,
“Effectiveness of program visualization in learn-
ing java: a case study with jeliot 3,” International
Journal of Computers, Communications & Con-
trol, vol. 6, no. 4, 2011.

[14] R. E. Mayer, “Systematic thinking fostered by
illustration in scientific text,” Journal of Educa-
tional Psychology, vol. 81, no. 2, 1989.

[15] J. Urquiza-Fuentes and J. Á. Velázquez-Iturbide,
“A survey of successful evaluations of pro-
gram visualization and algorithm animation sys-
tems,” ACM Transactions on Computing Educa-
tion (TOCE) - Special Issue on the 5th Program
Visualization Workshop (PVW08), vol. 9, no. 2,

75



Cite this article as: O. Karnalim and M. Ayub “The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor”, CommIT (Communication & Information
Technology) Journal 11(2), 67–76, 2017.

2009.
[16] C. A. Shaffer, M. L. Cooper, A. J. D. Alon,

M. Akbar, M. Stewart, S. Ponce, and S. H.
Edwards, “Algorithm visualization: The state of
the field,” ACM Transactions on Computing Ed-
ucation (TOCE), vol. 10, no. 3, 2010.

[17] S. Halim. (2015, May) Visualgo. [Online].
Available: http://visualgo.net/

[18] E. T. Y. Ling, “Teaching algorithms with web-
based technologies,” mathesis, B.Comp. Disser-
tation, Department of Computer Science, School
of Computing, National University of Singapore,
2014.

[19] AlgoViz. (2015, Dec.) Algoviz.org : The algo-
rithm visualization portal. [Online]. Available:
http://algoviz.org/

[20] L. Christiawan and O. Karnalim, “Ap-asd1: An
indonesian desktop-based educational tool for ba-
sic data structures,” Jurnal Teknik Informatika
dan Sistem Informasi (JuTISI), vol. 2, no. 1, 2016.

[21] F. C. Jonathan, O. Karnalim, and M. Ayub,
“Extending the effectiveness of algorithm visu-
alization with performance comparison through
evaluation-integrated development,” in Seminar
Nasional Aplikasi Teknologi Informasi (SNATI),
Yogyakarta, 2016.

[22] S. Zumaytis and O. Karnalim, “Introducing an
educational tool for learning branch & bound
strategy,” Journal of Information Systems Engi-
neering and Business Intelligence, vol. 3, no. 1,
2017.

[23] E. Kaila, T. Rajala, M. J. Laakso, and
T. Salakoski, “Effects of course-long use of a

program visualization tool,” in Proceedings of the
Twelfth Australasian Computing Education Con-
ference, vol. 103. Brisbane: Australian Computer
Society, Inc., 2010, pp. 97–106.

[24] O. Kannusmäki, A. Moreno, N. Myller, and
E. Sutinen, “What a novice wants: Students using
program visualization in distance programming
course,” in Proceedings of the Third Program Vi-
sualization Workshop (PVW’04), Warwick, 2004,
pp. 126–133.

[25] S. M. Čisar, R. Pinter, D. Radosav, and P. Čisar,
“Software visualization: The educational tool to
enhance student learning,” in MIPRO, 2010 Pro-
ceedings of the 33rd International Convention.
IEEE, 2010, pp. 990–994.

[26] T. Rajala, M. J. Laakso, E. Kaila, and
T. Salakoski, “Effectiveness of program visualiza-
tion: A case study with the ville tool,” Journal of
Information Technology Education : Innovation
in Practice, vol. 7, 2008.

[27] P. S. Foundation. (2016, Dec.) Welcome to
python.org. [Online]. Available: https://www.
python.org/

[28] M. Ayub and O. Karnalim, “Predicting outcomes
in introductory programming using j48 classifi-
cation,” World Transactions on Engineering and
Technology Education (WTE&TE), vol. 15, no. 2,
2017.

[29] B. Bloom and D. Krathwohl, Taxonomy of Ed-
ucational Objectives: The Classification of Edu-
cational Goals. Handbook I: Cognitive Domain.
Addison Wesley, 1956.

76

http://visualgo.net/
http://algoviz.org/
https://www.python.org/
https://www.python.org/

	Introduction
	Literature Review
	Research Method
	Results and Discussions
	Questionnaire Survey Result
	Quiz Result

	Conclusions

