
METHODS
published: 26 April 2019

doi: 10.3389/fgene.2019.00371

Frontiers in Genetics | www.frontiersin.org 1 April 2019 | Volume 10 | Article 371

Edited by:

Shihua Zhang,

Academy of Mathematics and

Systems Science (CAS), China

Reviewed by:

Guoxian Yu,

Southwest University, China

Lihua Zhang,

University of California, Irvine,

United States

*Correspondence:

Tao Zeng

zengtao@sibs.ac.cn

Luonan Chen

lnchen@sibs.ac.cn

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 21 December 2018

Accepted: 09 April 2019

Published: 26 April 2019

Citation:

Tang H, Zeng T and Chen L (2019)

High-Order Correlation Integration for

Single-Cell or Bulk RNA-seq Data

Analysis. Front. Genet. 10:371.

doi: 10.3389/fgene.2019.00371

High-Order Correlation Integration
for Single-Cell or Bulk RNA-seq Data
Analysis
Hui Tang 1, Tao Zeng 1* and Luonan Chen 1,2,3,4*

1 Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell

Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of

Sciences, Shanghai, China, 2CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences,

Kunming, China, 3 School of Life Science and Technology, ShanghaiTech University, Shanghai, China, 4 Shanghai Research

Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China

Quantifying or labeling the sample type with high quality is a challenging task, which

is a key step for understanding complex diseases. Reducing noise pollution to data

and ensuring the extracted intrinsic patterns in concordance with the primary data

structure are important in sample clustering and classification. Here we propose an

effective data integration framework named as HCI (High-order Correlation Integration),

which takes an advantage of high-order correlation matrix incorporated with pattern

fusion analysis (PFA), to realize high-dimensional data feature extraction. On the one

hand, the high-order Pearson’s correlation coefficient can highlight the latent patterns

underlying noisy input datasets and thus improve the accuracy and robustness of the

algorithms currently available for sample clustering. On the other hand, the PFA can

identify intrinsic sample patterns efficiently from different input matrices by optimally

adjusting the signal effects. To validate the effectiveness of our new method, we firstly

applied HCI on four single-cell RNA-seq datasets to distinguish the cell types, and we

found that HCI is capable of identifying the prior-known cell types of single-cell samples

from scRNA-seq data with higher accuracy and robustness than other methods under

different conditions. Secondly, we also integrated heterogonous omics data from TCGA

datasets and GEO datasets including bulk RNA-seq data, which outperformed the other

methods at identifying distinct cancer subtypes. Within an additional case study, we

also constructed the mRNA-miRNA regulatory network of colorectal cancer based on

the feature weight estimated from HCI, where the differentially expressed mRNAs and

miRNAs were significantly enriched in well-known functional sets of colorectal cancer,

such as KEGG pathways and IPA disease annotations. All these results supported that

HCI has extensive flexibility and applicability on sample clustering with different types and

organizations of RNA-seq data.
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INTRODUCTION

Cells, the fundamental unit in biology, can be distinguished
by their size and shape using a microscope. Later, advanced
technological developments have made it possible to isolate a
large number of cells, and along with improvements in RNA
isolation and amplificationmethods, next-generation sequencing
technologies are used to profile the transcriptome of individual
cells. Single-cell RNA sequencing (scRNA-seq) now allows for
omics analysis of individual cells, which can expose exciting
biological processes, novel medical insights and efficient clinical
applications (Dunham et al., 2012; Kolodziejczyk et al., 2015;
Wagner et al., 2016). The advances in single-cell technologies
have led to more comprehensive studies for multicellular
organisms than previous approaches. Recently, 10X Genomics
could release a single-cell dataset of more than 1.3 million cells
(2017)1. With the production of large amount of single-cell data,
understanding the development of an organic organ requires
to characterize all of its cell types, so that, it is important to
quantify single-cell cell types with high quality. Conventionally,
one key application of scRNA-seq is to cluster cell types
based on cells’ transcriptome profiles through unsupervised
computational methods (Lloyd, 1982; Jaitin et al., 2014; Mahata
et al., 2014; Grün et al., 2015; Kiselev et al., 2017; Jiang et al., 2018;
Shi et al., 2018; Dai et al., 2019). These approaches in recently
published studies show some good performances in determining
different cell types (Xue et al., 2013; Patel et al., 2014; Pollen
et al., 2014; Shalek et al., 2014). SAFE-clustering (Yang Y. et al.,
2018) can take as input results from multiple clustering methods
and scmap (Kiselev et al., 2018) can compare clusters across
data sets without merging. RaceID (Grün et al., 2015) augments
k-means to identify rare cell types by detecting outliers, but k-
means faces the problem of global solution. Meanwhile, SC3
(Kiselev et al., 2017) adopts repeated application of k-means
using a small subset of principal components or different initial
conditions and finding the consensus clusters. SC3 is a user-
friendly clustering method that works well for smaller datasets.
However, it takes too long in terms of computation time because
of amount of calculating correlation matrix of cells. Besides,
CIDR (Lin et al., 2017) adapts hierarchical clustering (HCA) for
single-cell datasets by adding an implicit imputation of zeros
into the distance calculation. But, an important shortcoming of
hierarchical clustering is that it is prohibitively expensive for large
datasets. Therefore, themore efficient and accurate method is still
urgently needed to cluster cell types.

At the same time, large amounts of bulk data have already
become widely available resources along with rapid development
of high throughput technologies. To take full advantage of
these rich data sets, integrating multiple datasets will give
more opportunities to address biological dynamics and cancer
heterogeneity (Hamid et al., 2009; Wang et al., 2014). Some
integrationmethods have been developed in recent years, such as:
iClusters, SNF, NMF, and PFA (Zhang et al., 2011; Mo et al., 2013;
Mahata et al., 2014; Wang et al., 2014; Shi et al., 2017). However,
there are still several limitations of these approaches. For

110X Genomics single cell gene expression datasets from https://support.

10xgenomics.com/single-cell-gene-expression/datasets

example, iClusterPlus is based on Gaussian assumption, which
could not make sense when data is too heterogeneous on signal
distributions. And recently developed pattern fusion analysis
(PFA) can integrate multidimensional data (Shi et al., 2017) so
as to provide a comprehensive way to understand biological
processes and complex diseases in a multi-view manner. In
theory, PFA can align local sample-patterns derived from each
single data type into a global sample-pattern to characterize the
sample types in a low-dimensional feature space, so that, it is
expected that PFA can model the sample types (i.e., cell types)
when using scRNA-seq. However, the original PFA is designed for
multi-source data rather than only one source data, in addition to
insufficient analysis on the sample features. Thus, it is required to
extend the original PFA to sample clustering even for one source
data by a unified integration framework.

To overcome above challenges, we proposed a unified
computational framework for distinguishing single-cell cell types
from single-cell RNA-seq data, which also keeps the ability
for clustering sample types from bulk RNA-seq data. The new
method named as HCI (High-order Correlation Integration),
can integrate joint high-order correlation matrices, where the
iterative use of Pearson’s correlation coefficient in sample data
are incorporated into our previously developed pattern fusion
analysis method (PFA) (Shi et al., 2017). Technically, HCI
integrates single-cell data sets and different distance matrices
corresponding to different sample correlation feature spaces (i.e.,
the distance between the cells) by joint matrix factorizations.

On the one hand, HCI has been compared with other
existing methods [i.e., SC3 (Kiselev et al., 2017) and SEURAT
(Macosko et al., 2015)] for identifying cell types on various
single-cell RNA-seq data. And the robustness of HCI was also
tested in different correlation orders (e.g., one-order, second-
order, different percentage of differentially expressed genes).
Furthermore, a case study was conducted byHCI on a scRNA-seq
dataset of Diabetes, which successfully clustered the ambiguous
cells unassigned in previous study. On the other hand, HCI
was also applied to analyze bulk RNA-seq data as previous
PFA, e.g., bulk RNA-seq and other omics data (Schuster, 2008).
By comparing HCI with the original PFA on three datasets
with multiple data types (e.g., gene expression and miRNA
expression), it is found that HCI can improve computational
efficiency of sample clustering and can recognize gene regulatory
networks in an accurate and reliable manner (Joung et al., 2007;
Tran et al., 2008; Hamid et al., 2009; Peng et al., 2009).

Totally, HCI can not only cluster cell types with scRNA-seq
data in an efficient way, but also capture biologically meaningful
sample types as well as extracting network modules with bulk
RNA-seq data or other omics data. It provides a new and general
way to detect the sample-specific characteristics from the high-
order correlation information in an integration manner.

MATERIALS AND METHODS

HCI pipeline schematically is shown in Figure 1. Input is the
expression matrix M where columns correspond to cells or
samples and rows correspond to genes or molecules, e.g., each
element of X corresponds to the expression of a gene in a given
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cell. The analysis procedure of HCI can be summarized as several
steps in follows.

Pre-processing
The gene filtering removes genes with zero expressions in all cells
(or samples), which are not informative for the cell clustering.
And, the normalization for each column data is carried to
maintain the feature stability of each cell or sample. Then, we can
get a filtered expression matrix X.

High-Order Correlation Matrix
Construction
We firstly calculate F1, the correlation of the gene expression
profiles Xm·n, in which the expressions of m genes are measured
for n samples and xkj denotes the expression level of gene k in
sample j , the correlation of sample i and j can be calculated by the
Pearson correlation coefficient (Rodgers and Nicewander, 1988):

f
(1)
ij =

∑n
k=1(xki − x−i)(xkj − x−j)

√

∑n
k=1(xki − x−i)2

√

∑n
k=1(xkj − x−j)2

(1)

where xki and x−i are the expression level of gene k and
the average gene expression level of sample i, respectively.
Similarly, xkj and x−j are the expression level of gene k and the
average gene expression level of sample j, respectively. Thus,
we can obtain a correlation matrix F1n·n of X in which f 1i·j is its

element measuring the correlation coefficient between sample i
and sample j. Now, based on the matrix F1n·n, we can further
calculate F2n·n as follows:

f
(2)
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k=1

(
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ki
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) (
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(1)
kj
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)
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(
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(1)
−i

)2
√
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(
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(1)
kj

− f
(1)
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F1n·n is called as the first-order correlation matrix of X, and F2n·n
is the second-order correlation matrix of X. The advantage of
this transformation with expression matrixX can highlight latent
structures between samples with noisy (Hubert, 1985; Ren et al.,
2013). In fact, we also investigated the other kind of distance
matrix by using other method, such as Spearman correlation,
however, F2n·n is similar to F1n·n due to its consideration on
element rank rather than element value in matrices. Cleary, the
higher-order correlation matrix can be constructed in a similar
way. Therefore, in this paper, we only use the Pearson metrics to
construct our high-order correlation matrices. Noted, such high-
order matrix can enhance the sample clustering performance. In
our prior analysis, the clustering accuracy increased quickly on
the first-order correlation features, and it almost approached the
highest on the second-order correlation features and tended to
be saturated when the order further increased. Without loss of
generality, we only used the first-order matrix and the second-
order matrix to incorporate into HCI in this work.

Correlation Matrix Induced Pattern Fusion
Analysis (PFA)
The input data X has m rows and n columns, and matrices F1n·n
and F2n·n have n rows and n columns. We integrated these three

input datasets by pattern fusion analysis. This methodology has
been proved and evaluated in previous work (Shi et al., 2017), and
the key steps used in our work are as follows:

The first step is to obtain the optimal local information sets of
Ui,Yi, which requires to minimize the error Ei as follows:

min ‖ Ei ‖= minci ,U i ,Y i ‖ Wi − (ci1T + U iY i) ‖2F (3)

where Wi is the input data sets X, F1n·n, F
2
n·n, and F is the

Frobenius norm. Then, we have











U i = Qi
di

Y i =
(

U i
)T (

Wi − ci1T
)

ci = Wi1
n

(4)

where Qi
di

is an orthogonal matrix formed by the eigenvectors

corresponding to the first di largest eigenvalues of (Wi −

ci1T)(Wi − ci1T)T . It is important noted that the sensible default

values di of matrix X is chosen according to
di

∑

r=1δr/
p

∑

r=1δr ≥

0.8 and di is the r largest eigenvalues of (Wi − ci1T)(Wi − ci1T)T

and the number of the non-zeros eigenvalues is p . Meanwhile,
the di-dimension of matrix F1n·n and F2n·n is chosen according to

di
∑

r=1δr/
p

∑

r=1δr ≥ 0.9 due to their different feature dimensions
with X.

And then, the adaptive optimal alignment is used to capture
the global sample-pattern matrix Y. The detailed adaption
method can be seen in the original study (Shi et al., 2017), and
the related parameters can be easily adjusted by the user.

Sample Clustering and Cluster Number
Estimation
The global sample-spectrum Y obtained in the above step
instead of conventional data matrix X can be clustered by many
clustering methods, such as K-means or HCA. In this paper, K-
means clustering (Ding and He, 2004) is performed on the global
sample-spectrum matrix Y by using the “kmeans()” MATLAB
function.

The ratio of distance between clusters (RDC) is calculated to
estimate the number K of clusters. One hundred realizations of
the sample clustering used K-means clustering. The number K of
clusters is inferred by the average RDC number [K =min (K, the
average RDC’s slope is nearly 0)]. The RDC can be calculated as:

RDC =
Din

Dout
(5)

where Din is the average sample distance in clusters; Dout is the
average sample distance between clusters.

Since the reference labels of cells or samples are already
known for all published datasets, the Adjusted Rand Index (ARI)
(Hubert, 1985) is applied to calculate the similarity between
the HCI clustering results and prior-known clusters, which
can be further used to evaluate HCI and other methods [e.g.,
SC3 (Kiselev et al., 2017), PFA, one-order, second-order, and
CV situations].
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FIGURE 1 | HCI framework of high-order correction matrices based on pattern fusion analysis Overview of single-cell clustering with HCI framework (see section

Materials and Methods).

Molecular Network Construction for Case
Study on Bulk RNA-seq Data
The multi-level network is integratively constructed by using
HCI schematically shown in Figure 4A. In the same way, we
calculated the high-order matrices F1n·n and F2n·n of the input
datasets XI (e.g., RNAseq, Methylation, MicroRNA), where n
is number of samples in data. And then we integrated all
input datasets XI and high-order correlation matrices F1I , F

2
I

by using pattern fusion analysis method. Based on the global
sample-spectrummatrixY, we can get the differentially expressed
mRNAs (or miRNAs) from heterogeneous genomic datasets
according to the coefficient matrix UI∗ . In this work, we
calculated a coefficient of variation for each element on the rows
of UI∗:

ci =
δi

µi
(6)

where µi is the average weight of mRNA i (or miRNA i) in UI∗ ,
and δi is the standard deviation. We can define differentially
expressed mRNA (or miRNA) i if ci is greater than a given
threshold T, and they called DEGs (or DE-miRNAs).

Besides, we also performed functional enrichment analysis
for genes by Gene Ontology and KEGG. We also analyzed
DEGs using Ingenuity Pathway Analysis (IPA), providing
the association between a particular gene set and known
functions, pathways, networks and associated diseases. An online
database miRDB was used for miRNA target prediction and
functional annotations.

We defined key genes that significantly enriched in cancer
dependent on KEGG, GO and IPA analysis. We found the key

genes in the DEGs, which can be linked and correlated by the
combined functional couplings of protein-protein interactions of
STRING. MicroRNAs which can regulate key DEGs were defined
as key miRNAs (degree s > 80) (Hu et al., 2018). Cytoscape
was used to reconstruct and visualize gene-gene and miRNA-
gene network.

RESULTS

Performance Comparison and Robustness
Evaluation
To demonstrate the performance of HCI on the single-cell
datasets, we firstly downloaded four publicly available scRNA-Seq
datasets (Figure 2A) (Yan et al., 2013; Deng et al., 2014; Wang
et al., 2016; Xin et al., 2016). These datasets were selected on
the basis that one can be highly confident on the cell labels as
representative cells from different stages, conditions and lines.
In order to quantify the similarity between the reference cell
types and the clusters obtained by HCI or other comparable
methods. We calculated the average ARI of the clustering
results (Figure 2D, Figure S1) and estimated cluster number K
according to RDC by running K-means 100 times (Figure 2C).
Obviously, high-order correlation matrices incorporated into
PFA actually improves both the accuracy and the stability of
analysis solutions. We found that the accuracy was significantly
improved compared with the one-order correlation matrix (only
using F1I ) or the second-order matrix (only using F2I ) according
to the ARI and the RDC (Figures 2B,D). Besides, in order to
determine the robustness as a consistent performance under
different conditions, the same analysis on four datasets were both
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FIGURE 2 | Accuracy and robustness evaluation (A) A brief introduction of four published datasets used in HCI. N is the number of cells in a dataset; K is the number

of clusters originally identified; Units: FPKM is Fragments Per Kilobase of transcript per Million mapped reads, CPM is Counts of per Million mapped reads. (B)

Number of clusters K predicted by HCI, One-order situation, Second-order situation, 80% CV used and 60% CV used for all datasets. Ref is the cell cluster reported

in previous studies and used as reference of comparison among HCI, One-order situation, and Second-order situation. (C) RDC was applied 100 times in global

sample-pattern matrix Y to each dataset. The solid lines correspond to the value of each RDC calculation. The dashed black lines correspond to the average of these

solid lines. Y-coordinate in each graph represents the RDC value and the x-coordinate represents the number of cluster K. The star indicates K which we choose (see

methods). (D) The mean and standard deviation of ARI in four datasets by running k-means 50 times separately in different situations.

repeated 50 times under different systematic conditions (e.g.,
60% CV genes or 80% CV genes used) respectively, where CV
genes mean ones with largest expression variances. Similarly,
the performance of HCI under different correlation matrices or
conditions was better (i.e., robust) than other methods according
to the ARI and the RDC (Figures 2B,D, Figure S1). Overall,
HCI always outperformed compared methods on distinguishing
single-cell types.

Comparison of Sample-Cluster
Identification With One-Level Data
We applied HCI and SC3 method to the above four datasets for
evaluation and comparison on the cell clustering. We calculated
the cluster number K and the running time in each individual
dataset by using the R package of SC3 (Kiselev et al., 2017).
On the one hand, as shown in Table 1, HCI performs better
than SC3 across almost all datasets in estimating the number
K of clusters (except for similar performance on Deng dataset).
On the other hand, the running time of 2,000 cells for SC3 is
more than 1 h. By contrast, the running time of HCI for 2,000

TABLE 1 | The estimation of K compared with SC3 on real datasets.

yan deng diabetes1 diabetes2

Ref 7 10 6 4

cPFA 6 7 5 or 6 4

SC3 6 9 11 13

cells is <10min as shown in Table 2. It is worth noted that
HCI can even apply to large datasets, such as: 10k datasets from
10x genomics, with more than 10,000 cells by using MATLAB
efficiently (Table 2, Figure S2). From these results, we included
that, HCI has better performance than SC3 because it considers
the high-order correlation information, and integrates this
potential heterogeneous information by our PFA framework well.

Case Study on the scRNA-seq Data of
Diabetes
We then applied HCI to a diabetes scRNA-seq data (Wang
et al., 2016) with 430 annotated cells belonging to six cell types,
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TABLE 2 | The running time compared with SC3 on real datasets.

yan deng diabetes1 diabetes2 brain 10x

N cells 90 259 430 1,600 3,003 10,000

cPFA 5 s 18 s 31.85 s 5.8min 16.4min 3.1 h

SC3 7.33min 18min 29.67min 101.18min 98min 4 h (no result)

where 205 ambiguous cells previously unassigned. For the 430
annotated cells, the RDC of HCI suggested that K is 5 or
6 (Figures 2B,D), provides the reasonable cluster number of
cells. When we applied HCI to the whole cells included 430
annotated cells and 205 dropped cells, the results suggested
that the K is 7. Obviously, there are potential new cell types
included, and we found there were 27 annotated mesenchymal
cells in the ambiguous cells. This result also showed that the
other ambiguous cells can be clustered well in seven cell types
separately (Figure 3A). Besides, the other methods (e.g., tSNE,
HCA) were used to visualize the clusters of these dropped
cells (Figure 3). As a control to this analysis, one well-known
scRNA-seq analysis method SEURAT (Macosko et al., 2015) was
also applied. As the results shown (Figure S3), HCI performed
better than these traditional methods on distinguishing cell types.
Noted, cluster dendrogram of global sample-pattern matrices Y,
F1, and F2 are shown in Figure S4 for illustrating the influence of
HCI on information integration.

In addition, marker genes are particularly useful since they
can usually uniquely indicate a cell cluster, e.g., α-cells with
high expression on IRX2 and ARX. To further interpret the
biological meaning of HCI based cell clustering, we applied the
50 key marker genes of the annotated cell types to categorize
the previously dropped cells which had been clustered well
by HCI now. The violin plot shown the expression level of
IRX2 and ARX are significantly high in alpha cells previously
identified and also in alpha-dropped cells newly clustered by
HCI (Figure S5). Furthermore, it was observed a high degree
of expression similarity between annotated cells and their
corresponding clustered-dropped cells in these key markers
(Figures S6, S7). Together with these results, we concluded that
HCI is able to identify new cell types with high accuracy and
biological significance.

Comparison of Sample-Cluster
Identification With Multi-Level Data
To demonstrate the effectiveness of HCI inherited from PFA for
integrating multi-level datasets, we applied HCI to three cancer
omics datasets, two from the TCGA Data Portal included kidney
renal clear cell carcinoma (KIRC) and Adrenocortical carcinoma
(ACC), and one from the GEO (Colorectal cancer) (Sayagués
et al., 2016). For the two TCGA data, the gene expression, miRNA
expression and DNA methylation profiles were prepared in a
similar way as those in Shi et al. (2017). As for the Colon cancer,
the gene expression and miRNA expression were obtained,
and we removed those mRNAs or miRNAs if they have more
than 80% zero expression values across all samples. Then these

datasets with 122 patients in KIRC, 79 in ACC and 51 in colon
cancer were prepared, respectively (Figure 4B).

After carried on HCI and PFA on these datasets, respectively,
we compared their results according to the RDC, which show that
that HCI indeed performs better in terms of accuracy of cluster
quality across datasets (Figures 4C–E). In this comparison, the
heterogeneity factors including different complex conditions,
varying data resources and dissimilar samples size would provide
strong evidences to support the ability of HCI on identifying
clinically relevant disease subtypes and predicting network
modules involved in complex diseases (Zhang et al., 2011;
Zang et al., 2016).

Case Study on the Matched mRNA and
miRNA Data of Colorectal Cancer
Finally, we carried on a case study again on colorectal cancer
data, especially providing the integrated mRNA-miRNA network
according to the global sample-spectrum matrix Y. Firstly,
the HCI results suggested that the normal (9 samples) and
disease (42 samples) can be clustered into two discriminative
groups (Figure 5A). Then, 6,930 differentially expressed genes
and 2,976 differentially expressed miRNAs were obtained. By
functional enrichment analysis on these differentially expressed
genes with GO BP terms, KEGG pathways and IPA annotations,
all significant physiological system development, function terms,
disease and networks are listed in Tables S1, S2. We found
that there are 2,289 genes (nearly 33% DEGs) are significantly
correlated with colon cancer among all DEGs. Besides, according
to the miRNA target predication from miRDB, 1,661 DEGs
can be regulated by 141 DE-miRNAs (Figure 5B). Note that all
enrichment analysis results involve 25 key genes, 14 of which
can be regulated by 22 key miRNAs (Figure 5B). In addition,
the survival risks of these genes were also evaluated as shown in
Figure 5C.

As an illustrative instance, we constructed the gene-gene
network of 25 key genes (Figure 5D) based on the STRING
(p = 1.0e-16) (2018)2. The enrichment analysis results of this
network are listed in Figure 5E (Table S3), and this network is
significantly enriched with cytosol (P = 3.86e-05), beta-catenin
destruction complex (P = 1.57e-04), colorectal cancer (P =

2.73e-46), and pathways in cancer (P= 6.82e-41). We also found
that the hub genes (e.g., MAPK8, EGF, FALGDS, CCND1, MYC)
in this network have been linked to cancer in wide literature
reports. For example, the MAPK-signaling pathways have been
identified as one of the most strongly associated gene markers
to colorectal cancer (CRC) (Cummins et al., 2006; Barault et al.,
2008; Lascorz et al., 2010; Slattery et al., 2012). MAPK8 has
been shown to interact with MYC which is frequently observed
in numerous human cancers. Strikingly, 22 key miRNAs are
correlated with 14 key genes in this network. MiRNA-647
and miRNA-449a have been reported their association with
colorectal cancer (Noguchi et al., 1999; Feng et al., 2018). These
results revealed HCI would classify the sample types clearly
and could integrate the multi-level regulatory network based on
multiple heterogeneous data. All relevant DEGs andDE-miRNAs

2https://string-db.org/
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FIGURE 3 | Case study on the diabetes (A) The two-dimensional projection of the global-sample pattern matrix Y of diabetes1 dataset using t-SNE. Colors represent

different cell types where gray dots specifically mean dropped cells. (B) Hierarchical clustering diagram of all cells. The colors at the top represent the references labels

(see color legend in A). The purple represents the ductal cell and mesenchymal cell because these two cells are mixed together. (C) For the previously dropped cells,

HCI can cluster them into different groups corresponding to known cell types well. Thus, it is more efficient on cell type identification with less non-identified cells. (D)

Heatmap representation of Y of all cells. The first color bar represents the type of annotated cell and ambiguous cells and the second bar represents the seven cell

types as the same as in (A) legend.

are worthy of future experimental investigation, and listed in
Tables S4, S5.

DISCUSSION AND CONCLUSION

The distinct types of biological data could provide a precise
explanation for understanding the complex biological processes
(Ghazalpour et al., 2006; Kutalik et al., 2008; Li et al., 2012;
Zhang et al., 2012; Chen and Zhang, 2016; Zeng et al., 2016;
Feng et al., 2018; Yu and Zeng, 2018). In recent decades,
many approaches were proposed for analyzing single-cell data
or multi-omics data to identify subtypes and construct biological
networks (Gygi et al., 1999; Ding and He, 2004; Chari et al.,
2010; Zhang et al., 2011; Kiselev et al., 2017; Guo et al., 2018a,b;
Wang et al., 2018). However, for most methods, there are
some limitations on reliably identifying the sample types by
exploiting multi-datasets, such as the effect of noise on data
and the computational cost. And some methods would fail to
make full use of the similarity information between samples,
thus making the results unreliable. Hence, in order to overcome

this problem, a flexible and efficient integration method with
automated information fusion and bias correction is demanded.
In this work, we introduced the data-driven integrating method
HCI. The key idea of this method is to incorporate the high-order
similarity matrices (e.g., Pearson correlation matrix) into pattern
fusion analysis, where the sample cluster or subtype structure
can be actually determined benefiting from the high-order

correlations. And the obtained combinatorial sample patterns
from HCI could represent comprehensive characterization of

inherent sample relations in data. In order to demonstrate
the benefits of HCI, various evaluations have been carried

on both scRNA-seq and bulk RNA-seq datasets for complex
diseases. As expected, HCI effectively captured the sample

(e.g., cell or patient) clusters and outperformed the existing

methods under different conditions in terms of accuracy and
robustness. And two deep case studies supported that HCI has

satisfactory flexibility and applicability. Noted, HCI is based on
PFA, which has been evaluated and compared with a few multi-

view clustering methods in previous study (Shi et al., 2017).
Meantime, SC3 has also been evaluated and compared with
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FIGURE 4 | The enhanced framework flow for integrating bulk datasets and comparison of PFA (A) The flow chart of HCI to integrating multiple heterogeneous omics

data (B) A brief introduction to the datasets we used in this comparison. (C–E) Bars correspond to the average of the RDC values by running 100 times in each

dataset. Red and gray colors correspond to result of HCI and PFA respectively.

FIGURE 5 | Case study on the colorect cancer (A) Hierarchical clustering diagram of samples in matrix Y . Color bars represent the normal samples and disease

samples. (B) The process diagram of selecting key genes. (C) Evaluation of the selected 25 important genes related to colorectal cancer in (B). In SurvExpress, we

used the average for selected genes, two risk groups and Cox fitting to generate Survival curves. The total number of each group is shown in the top right corner of

graph, and the number of censoring samples is marked with +. The CI per curve is also included. P-value is shown in the top of figure. (D) The highly connected

network consists mainly of 25 DEG genes and 22 miRNAs. The 22 miRNAs targets 16 genes based on miRDB database. The size of node indicates the network

degree of gene. And the PPI enrichment P-value of genes is shown in the top right corner of this figure. (E) Top-ranked pathways and biological functions enriched in

the 25 genes in (D).

many existing approaches (Kiselev et al., 2017). Thus, in this
study of scRNA data, we have directly compared HCI and SC3
on multiple datasets. It is worthy to carry on more benchmark
studies in this field as a future topic (Zeng et al., 2016). Also

as a future topic, we can improve HCI by further exploiting
dynamics and network information, such as applying network
biomarker (Zhang et al., 2015; Liu et al., 2016; Zhao et al., 2016;
Liu, X. et al., 2018) or applying dynamic network biomarker
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(Chen et al., 2012; Li et al., 2017; Liu et al., 2017; Liu, R. et al.,
2018; Yang B. et al., 2018) for accurate and reliable clustering
and classification based on omics data from the perspectives of
dynamics and network.

As genomic data sources is increasing in diversity
and volume, HCI can fit the data structures on both
one level data or multiple level data, so that, HCI could
provide new avenues for the systematic explanation
of various data and complex biological phenotypes
at a system-wide level. Indeed, there are still a few
future topics to further extend HCI method, e.g.,
integrating discrete data types including somatic, SNP, and
CNV information.
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