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Satvinder Kaur* and Clifford B. Saper
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Boston, MA, United States

Obstructive sleep apnea is a sleep and breathing disorder, in which, patients suffer from
cycles of atonia of airway dilator muscles during sleep, resulting in airway collapse,
followed by brief arousals that help re-establish the airway patency. These repetitive
arousals which can occur hundreds of times during the course of a night are the cause of
the sleep-disruption, which in turn causes cognitive impairment as well as cardiovascular
and metabolic morbidities. To prevent this potential outcome, it is important to target
preventing the arousal from sleep while preserving or augmenting the increase in
respiratory drive that reinitiates breathing, but will require understanding of the neural
circuits that regulate the cortical and respiratory responses to apnea. The parabrachial
nucleus (PB) is located in rostral pons. It receives chemosensory information from
medullary nuclei that sense increase in CO2 (hypercapnia), decrease in O2 (hypoxia)
and mechanosensory inputs from airway negative pressure during apneas. The PB
area also exerts powerful control over cortical arousal and respiration, and therefore,
is an excellent candidate for mediating the EEG arousal and restoration of the airway
during sleep apneas. Using various genetic tools, we dissected the neuronal sub-types
responsible for relaying the stimulus for cortical arousal to forebrain arousal circuits.
The present review will focus on the circuitries that regulate waking-up from sleep in
response to hypercapnia.

Keywords: obstructive sleep apnea, arousal, parabrachial nucleus, calcitonin gene related peptide, hypercapnia

INTRODUCTION

Obstructive sleep apnea (OSA) is caused by a sleep state-dependent reduction in the pharyngeal
dilator muscle activity that leads to the closure of the upper airway in the susceptible individuals.
These recurrent episodes of complete or partial obstruction of the upper airway lead to the airway
collapse, which causes periodic hypoxia and hypercapnia during sleep, causing brief arousals that
restore airway patency (Schulz, 2010; Mannarino et al., 2012; White and Younes, 2012; White, 2017;
Darquenne et al., 2018; Pham et al., 2018). These repeated arousals result in sleep disruption, which
in turn causes cognitive impairment as well as cardiovascular and metabolic morbidities (Bonnet,
1985; Fletcher, 1996; Bennett et al., 1998; Malhotra and White, 2002; Jun and Polotsky, 2009;
Malhotra and Loscalzo, 2009; Drager et al., 2010; Bonsignore et al., 2012). The transient cortical
arousals and sleep fragmentation are associated with the autonomic dysregulation, increased
oxidative stress and hemodynamic changes during sleep. In patients with OSA, these consequences
have been linked to increased daytime sleepiness, cardiovascular and metabolic morbidities. Due to
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this, many OSA patients are also at risk of developing
arterial hypertension, coronary heart disease, stroke, type 2-
diabetes and mortality.

Although OSA can be treated effectively with continuous
positive airway pressure, many patients do not tolerate it and
compliance is often poor. One alternative therapeutic approach
in OSA may involve modifying the arousal threshold that may
augment respiratory drive during apnea and recruiting the
upper air way muscles to reestablish stable breathing (Horner
et al., 1991; Loredo et al., 1999; Horner et al., 2017; Sands
et al., 2018; Zinchuk et al., 2018). However, designing drugs
that can selectively reduce cortical arousals while maintaining
or augmenting the respiratory drive during these respiratory
events would require understanding the circuits that mediate
cortical EEG and respiratory responses to apnea. This review
will focus on recent attempts to identify that circuitry, in
particular, using newer methods such as optogenetics and
chemogenetics that allow selective, genetically directed targeting
of the neuronal nodes that mediate cortical EEG and respiratory
responses to apnea.

The brain circuitry that underlies waking up to hypercapnia
(increased CO2) that can occur in apnea is not clearly
understood. Briefly, three main sensory stimuli that alert the
brain during apnea are hypoxia, hypercapnia and negative air
pressure in the airways created due to increased respiratory
efforts (sensed by mechanoreceptor fibers in vagus) during
apneas (White, 2006, 2017). The carotid body primarily senses
the hypoxia and to a lesser extent the hypercapnia, and transmits
that information to the nucleus of the solitary tract (NTS)
via the carotid sinus branch of the glossopharyngeal nerve
(Massari et al., 1996; Lindsey et al., 2018). In addition, the
chemosensory neurons in the retrotrapezoid nucleus (RTN)
directly sense the CO2, and these project in parallel to the
NTS to the ventrolateral medulla (VLM- pattern generator for
breathing), and parabrachial nucleus (PB- relay node for visceral
sensory information from the brainstem to the forebrain) (Dean
et al., 1989; Herbert et al., 1990; Finley and Katz, 1992; Massari
et al., 1996; Guyenet et al., 2010a; Bochorishvili et al., 2012;
Guyenet and Bayliss, 2015; Lindsey et al., 2018; Figure 1A). The
serotonergic raphe system in the brainstem (Richerson et al.,
2001; Depuy et al., 2011) and orexin neurons in the lateral
hypothalamus (Hunt et al., 2016; Rodrigues et al., 2019), are other
CO2 sensing neurons, which also project to the NTS, the VLM,
and the PB. In patients with OSA, arousal correlates closely with
the airway negative pressure, to a lesser degree to the level of
hypercapnia, and least with the level of hypoxia (Gleeson et al.,
1990). However, all the three stimuli converge in the same brain
locations; therefore studying these areas and their connections is
important to understand the brain response to apnea.

PARABRACHIAL NUCLEUS AND
CORTICAL AROUSAL

The PB, a relay node for sensory visceral information, that
surrounds the superior cerebellar peduncle, is referred to as the
“Pontine taste area” (Saper, 2016) and the same region as early

as 1920s was also identified as the “pneumotaxic center” or
the “pontine respiratory group” by the workers on respiratory
control (Feldman et al., 1976; Dobbins and Feldman, 1994).
Recent studies have associated the PB with cortical arousal. In
addition to the canonical, cholinergic (Semba and Fibiger, 1992;
Steriade et al., 1993; Kleiner and Bringmann, 1996; Datta and
Siwek, 1997; Cape and Jones, 2000) and monoaminergic (Aston-
Jones and Bloom, 1981; Berridge and Wifler, 2000) arousal
pathways from the upper brainstem, the PB projects to the
thalamus, hypothalamus, and cerebral cortex (Saper and Loewy,
1980; Steriade et al., 1993; Jones, 2005). Surprisingly, cell specific
lesions of the cholinergic and monoaminergic neurons, either
alone or in combination, in these pontine areas have been found
to cause little alteration in wake in both cats and rats (Jones
et al., 1973; Holmes and Jones, 1994; Lu et al., 2006; Blanco-
Centurion et al., 2007; Fuller et al., 2007), whereas large PB lesions
cause profound coma (Fuller et al., 2011). Studies from our lab
and others have shown that cortical arousal can be induced by
activation of PB (Hayashi et al., 2015; Qiu et al., 2016; Kaur
et al., 2017) and the deletion of glutamatergic signaling in PB
neurons increases sleep and causes EEG slowing (Fuller et al.,
2011; Kaur et al., 2013). Therefore, ascending projections of the
PB through a ventral forebrain pathway via the hypothalamus
and BF may play a key role in mediating cortical arousal. As
the PB consists of different diverse sub nuclei, each with its
distinct input and output targets, and these are often associated
with different neuromodulators (Fulwiler and Saper, 1984), it is
therefore, necessary to further dissect it using newer genetically
specified tools to understand the roles of different cell types in
this functionally heterogeneous population.

PARABRACHIAL NUCLEUS AND
BREATHING

PB receives chemosensory information from RTN and NTS,
that sense hypercapnia and hypoxia and also from the upper
airway afferents that respond to pulmonary negative pressure
associated with apneas (Panneton and Loewy, 1980; Finley and
Katz, 1992; Mizusawa et al., 1995; Berquin et al., 2000; Pete
et al., 2002; Izumizaki et al., 2004; Rosin et al., 2006; Corcoran
et al., 2009; Song and Poon, 2009; Gonzalez et al., 2010; Guyenet
et al., 2010b; Topchiy et al., 2010; Bochorishvili et al., 2012;
Yokota et al., 2012, 2015; Guyenet and Bayliss, 2015; Roman
et al., 2016). As mentioned above, the PB area not only exerts
powerful control over cortical arousal (Fuller et al., 2011; Kaur
et al., 2013, 2017; Hayashi et al., 2015; Qiu et al., 2016) it also
regulates respiration (Miura and Takayama, 1991; Chamberlin
and Saper, 1994; Mizusawa et al., 1995; Chamberlin, 2004; Bonis
et al., 2010a,b; Diaz-Casares et al., 2012; Damasceno et al., 2014;
Kaur et al., 2017; Yang and Feldman, 2018). The ascending
projections of the PB mediate cortical arousal (Saper and Loewy,
1980; Saper, 1982; Kaur et al., 2013, 2017; Saper, 2016), while its
descending projections to the respiratory areas such as ventral
lateral medulla, hypoglossal motor nucleus and phrenic motor
nucleus, may regulate respiration (Yokota et al., 2001, 2012,
2015). Thus, the PB is an excellent candidate for a site that
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can augment the airway dilator muscles, particularly following
EEG arousals during sleep apneas. However, the precise brain
circuitries that can be selectively targeted to prevent cortical
arousal but augment respiration and maintain air-way patency
during apneas need to be investigated.

MOUSE MODEL OF APNEA

We designed a mouse model of apnea (Kaur et al., 2013) to
simulate breathing during apneas and understand the brain
circuitry underlying the repetitive arousals during apnea. Briefly,
a mouse is kept in a plethysmograph chamber, and every 300 s,
the gas mixture entering the chamber is switched for 30 s to
one that contains either increased CO2 (10%), reduced O2 (10%)
or both. The gasses mix in the chamber and approach the new
steady state after about 10–15 s. At the end of the 30 s period, the
source is switched back to air, and the gas levels return to baseline.
We continuously record the EEG and EMG, the plethysmograph
(which gives us tidal volume and respiratory rate) and percentage
of CO2 and O2 in the chamber (Figure 1). In our earlier study, the

arousal kinetics to CO2 (hypercapnia alone) and to the combined
hypercapnia and hypoxia were identical (Kaur et al., 2013),
therefore we continue to test EEG arousals with hypercapnia in
our model (Figures 1B,C), and we will refer here only to the
trials with elevated CO2. We used this paradigm of repetitive
hypercapnia as a model of sleep apnea as the duration of the
gas disturbance, its frequency, and the length of the arousals,
were similar to those seen in a patient with mild sleep apnea.
Also hypercapnia is mechanistically more relevant than hypoxia
in sleep disordered breathing related neuro-impairment (Wang
et al., 2014, 2016), even though the effect of hypoxia only is more
extensively studied by most groups.

GENETIC TOOLS AND TECHNOLOGIES
FOR CIRCUIT ANALYSIS

In the past, researchers have used a wide range of
electrophysiological and molecular tools, either individually
or in combination, to probe and manipulate neural circuits.
Although, these had helped us understand some basic pathways,

FIGURE 1 | (A), Three main stimuli related to apnea converge on the parabrachial area: Increased CO2 (Hypercapnia), Hypoxia and negative air-way pressure cause
activation of both central and peripheral chemoreceptors whose signals are integrated in the nucleus of the solitary tract (NTS) and retrotrapezoid nucleus (RTN). The
NTS and RTN activate neurons in the lateral parabrachial nucleus, major node in the brain stem that relay visceral sensory information to the forebrain areas. Mouse
model of apnea: (B), shows the “repetitive CO2 arousal (RCA) protocol” where a mouse is recorded in the plethysmograph chamber for the EEG, EMG and
breathing, while exposed to repeated bouts of CO2 (hypercapnia). Mice undergo spontaneous periods of sleep and wake, however, only trials where the mouse is in
NREM sleep for at least 30 s prior to onset of the CO2 are used to examine arousal. During these trials, the arousals are judged by EEG arousal (loss of delta waves
and appearance of low voltage fast EEG), which is usually accompanied by EMG activation. Scale = 45 s (C), is a schematic of the plethysmography chamber used
to model apnea in mice, while they are exposed to CO2 and recorded for EEG/EMG and breathing responses, with and without laser light that is transmitted through
the pre-implanted optical glass fibers. [Adapted and modified from Kaur et al. (2013)]. Kaur et al. (2013), is published under Creative Commons
Attribution-Non-commercial-Share License, and therefore no permission is required reproducing this modified version.
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the inherent heterogeneity of brain cells and the lack of target
specificity of these earlier tools make the interpretation of such
data difficult. For example, pharmacological approaches using
receptor agonists and antagonists have been confounded by poor
blood-brain permeability when given systemically; low solubility
when given directly into the brain; and “off-target” side effects
when they engage unintended targets. Other approaches that
involve the use of the global gene knockout, sometimes suffer
from low temporal and spatial resolution and such approaches
can also be confounded by ontogenetic and ectopic expression
of the gene of interest. Similarly, both acute and chronic lesions
produce collateral damage to adjacent brain structures making it
difficult to interpret the effects which could be secondary to the
lesion itself. Now, the emergence of newer conditional genomic
models and viral-vectors approaches allow us to precisely target
a selective cell population in the brain area of interest, and this is
helping to link specific group of neurons and neural pathways to
specific behaviors (Carter et al., 2010, 2013b; Carr and Zachariou,
2014; Fuller et al., 2015; Han et al., 2015; Campos et al., 2016,
2018; Qiu et al., 2016; Whissell et al., 2016; Saper and Fuller, 2017;
Wu et al., 2018). The introduction of the Cre transgenes through
gene delivery methods using the Cre/ lox system provides better
temporal and spatial control over Cre-mediated excision of a

selective gene sequence encoding the protein of interest (Kaur
et al., 2013; Abbott et al., 2014; Todd et al., 2018), in a selective
brain area (Figure 2C).

In recent years, the use of chemo- and opto-genetic tools
had equipped us with an unparalleled ability to probe the
neural circuitry that underlies behavioral state. The genetically
engineered receptors are successfully used as tools for targeting
chemo- and opto-genetics to selective cell types. Because
they are activated either by injectable synthetic ligands that
specifically bind to these receptors on the targeted cells and
excite or inhibit them (chemogenetics) or through the delivery
of specific wavelengths of laser-light via an implanted optical
fiber (optogenetics), investigators retain temporal control over
particular subsets of neurons (Fuller et al., 2015; Park and
Carmel, 2016; Vlasov et al., 2018). In addition, because the
opto- or chemogenetic tool is expressed in a conditional manner,
it is only expressed by cells of a specific genotype, thus
giving the investigator both neuroanatomical and neurochemical
control over the response. Because the receptor transcript is
packaged within a Flip-Excision-Switch (FLEX) cassette, the
functional receptor can be expressed only in the presence of
cre-recombinase (Schnutgen et al., 2003; Fuller et al., 2015;
Plummer et al., 2017). The use of the Cre-driver mouse lines,

FIGURE 2 | Testing the role of glutamatergic signaling in hypercapnia induced arousal: (A,B), are the two representative trials from a control mouse (A), where
cortcial EEG arousal in response to hypercapnia occurs in 15 s after onset of CO2, while the mouse with deletion of Vglut2 gene in the LPB (B), fails to wake wake
up to hypercapnia. (C), Photomicrograph of the Nissl-stained coronal section of the mouse brain, showing different sub divisions of the parabrachial (PB) nucleus,
Cre-immunoreactivity (brown) against a Nissl-stained background (blue) in the neurons in the lateral parabrachial (LPB) region after injection of AAV-Cre in Vglut2
flox/flox mice and last panel shows the shows a photomicrograph of a brain section immunostained for Neu-N, a neuronal marker after bilateral injection of AAV-DTA
killed Vglut2+ neurons into the LPB. (D), Show graphs of the latency of arousal during and after a hypercapnic stimulus of 30 s in mice injected bilaterally with
AAV-DTA (green) compared to the control (black, gray, and striped green) and LPB group from which Vglut2 was deleted in the LPB including the PBel (red). scp –
superior cerebellar peduncle; dl – dorso-lateral; cl – centro-lateral; el – external lateral; vl – ventrolateral PB subnucleus; MPB – medial and MPB-ext – medial
external-lateral parabrachial nucleus; KF – Kolliker Fuse; vsct – ventral cerebro-spinal tract; Scale = 100 µm. ∗∗represents p < 0.01 compared to the control group
(AAV-GFP) and #p < 0.05, compared to the AAVCreWT group. [Adapted and modified from Kaur et al. (2013)]. Kaur et al. (2013), is published under Creative
Commons Attribution-Non-commercial-Share License, and therefore no permission is required reproducing this modified version.
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FIGURE 3 | Selective activation of the PBelCGRP neurons, using chemogenetics (A) and optogenetics (B): The (A1,B1) represent the strategy used to first express
either hM3Dq or Channel rhodopsin (ChR2) in the PBelCGRP neurons, using the CGRP-CreER mice. Chemogenetic activation of PBelCGRP neurons, significantly
increased wakefulness for 2 h post injection of the designer ligand (CNO) that binds hM3Dq (A2). Optogenetically driving the PBelCGRP neurons also produced very
short latency arousals both at 10 and 20 Hz, trials shown in the figure are from stimulation at 20 Hz (B2). (∗∗∗p < 0.0001; ∗∗p < 0.001; 1-way or repeated measures
ANOVA followed by Holm-Sidak for multiple comparison). [Adapted and modified from Kaur et al. (2017)]. Kaur et al. (2017) is published in a Cell Press journal
“Neuron,” and no permissions needed to reproduce the modified versions of the published figure.

where cre is expressed downstream of a selected promoter,
ensures that the designer receptors when injected in these mice
are expressed in a Cre-dependent manner, specifically in neurons
that express a select protein. Finally, because the viral vectors for
the opto- and chemogenetic tools can be injected locally in the
brain, the investigator also has spatial control over the part(s) of
the brain involved in the experiment. These modified receptors
can act as effective tools that allow us to manipulate a selective
neural circuit and we can then evaluate the effect upon the
behavior in direct relation to either the excitation or inhibition
of a specific neuronal node.

GLUTAMATERGIC SIGNALING IN THE
PB AND WAKING UP TO CO2

To examine the role of glutamatergic signaling in the PB, in one
set of animals we deleted the vesicular glutamate transporter-2
(Vglut2) gene in various PB sub-nuclei (by injecting an AAV-
Cre into the PB of Vglut2flox/flox mice). In another set of
mice, we killed the cells in the lateral PB using injections of
AAV that had Cre-dependent expression of diphtheria toxin
subunit A (DTA) in Vglut2-Cre mice (Figure 2C). We tested
these mice for arousal to hypercapnia using the mouse model

of apnea (Figure 1). Our results indicated that deletion of
glutamatergic signaling from neurons in the external lateral PB
(PBel), or killing the Vglut2 neurons in the PBel produced
the same prolongation of the latency of waking up to CO2
(Figures 2A–D), suggesting that glutamate alone in PBel neurons
is the operative neurotransmitter for relaying the signal for
waking up from sleep in response to hypercapnia (Kaur et al.,
2013). Many neurons in the PBel express calcitonin gene related
peptide [CGRP, (Yasui et al., 1991); PBelCGRP], and we tested
whether these are activated (cFos expression) in response to the
hypercapnia (Yokota et al., 2015). Most of the cFos positive
neurons in the PBel contained CGRP, while many along the
lateral edge of the nucleus did not. Because most PBelCGRP

neurons project to the forebrain, whereas most neurons lateral to
them project to the brainstem, we hypothesized that the PBelCGRP

neurons might be selectively responsible for forebrain arousal
during hypercapnia.

ROLE OF THE PBELCGRP NEURONS IN
CORTICAL AROUSAL

Using optogenetic and chemogenetic tools in CGRP-CreER mice
(Kaur et al., 2017), we could selectively activate and inhibit the
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FIGURE 4 | Selective silencing of the PBelCGRP neurons and the terminal fields using Optogenetics: (A), is the representative recording of EEG, EMG and respiration
during the 10% CO2 stimulus in a CGRP-CreER mouse with laser photo-inhibition of PBelCGRP neurons, the mouse in this representative trial did not wake up, and
had similar increase in the ventilatory-drive in response to CO2 as the control with Laser-OFF. (B), Left panel, are the graphs comparing the respiratory rate (RR) and
the tidal volume (VT ) (right panel) for 3 breaths before CO2 (Pre CO2) and for 3 breaths during CO2 just prior to waking-up in Laser-OFF and then at the same time
point in trials in the same animal with Laser-ON (in which the animals did not awaken). (C), Compares the effects of PBelCGRP soma inhibition to that of PBelCGRP

terminals field inhibition (A), latency of arousal mean (SEM) during laser (593 nm) induced inhibition of the PBelCGRP neurons is compared with inhibition of the
terminal fields in the BF, CeA, and LH. (B) Survival of sleep curves during and after a hypercapnic stimulus shown with and without laser. (∗∗∗p < 0.0001;
∗∗p < 0.001; 1-way or repeated measures ANOVA followed by Holm-Sidak for multiple comparison). [Adapted and modified from Kaur et al. (2017)]. Kaur et al.
(2017) is published in a Cell Press journal “Neuron,” and no permissions needed to reproduce the modified versions of the published figure.

PBelCGRP neurons. Optogenetic activation of PBelCGRP neurons
at 10 and 20 Hz by 10 ms blue laser light pulses (Figure 3B)
caused short latency arousals and their chemogenetic activation
significantly increased wakefulness (Figure 3A; Kaur et al., 2017).
Targeting yellow (593 nm) laser light to the archaerhodposin –
TP009 (ArchT) expressing PBelCGRP neurons during the CO2
trials, silences them. Mice with inhibition of PBelCGRP neurons
(Laser-ON) failed to wake up to CO2 in 50% of the trials and
increased the latency to arousal by four fold in response to the
CO2 (Figre 4A,C). These results were similar to those we obtained
with killing most of the lateral PB neurons, or deleting their
Vglut2 gene. In other words, the PBelCGRP neurons appear to
provide most if not all of the arousal response to CO2, by using
glutamate as their neurotransmitter.

Interestingly, the silencing of the PBelCGRP neurons preserved
the respiratory drive (Figure 4B) during the hypercapnia,
with no differences in the tidal volume and respiratory
rate (Kaur et al., 2017). Also these laser-induced inhibitions
did not affect the arousal thresholds to acoustic stimuli or
somatosensory and vestibular stimulation (Kaur et al., 2017).
Recent work from Palmiter and colleagues suggests that the
CGRP neurons may respond to pain and to other visceral

stimuli (e.g., gastrointestinal upset or conditioned taste aversion)
(Carter et al., 2015; Han et al., 2015; Campos et al., 2018)
which has led to the suggestion that they may serve a
more generalized central alarm function, waking up the brain
when aversive visceral or noxious stimuli arise (Saper, 2016;
Palmiter, 2018).

To further investigate the arousal regulating circuitry targeted
by PBelCGRP neurons for causing arousals during apnea, we
inhibited terminal fields at three major forebrain arousal
nodes: the substantia innominata in the basal forebrain (BF);
the central nucleus of the amygdala (CeA); and the lateral
hypothalamus (LH). Optogenetic silencing of these terminals
fields also increased the latency for arousal, with differential
responses at multiple target sites. Our data suggested that
PBelCGRP neurons act most potently through their direct
projections to the BF, whose neurons have direct projections
to the cerebral cortex. The CeA also participates in the
arousal, but has no ascending projections to the cortex or
thalamus. Because it projects intensely to the BF, this is
likely to be its mechanism of function. Lastly inhibition of
the PBelCGRP terminals in the LH field had the least effect
on the arousal in response to CO2. Although some LH
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FIGURE 5 | Neural circuitry regulating cortical arousals and respiratory efforts to hypercapnia: PBelCGRP neurons receive CO2, O2, and airway mechanoreceptor
inputs, as well as inputs via medullary nuclei, NTS (nucleus of solitary tract) and RTN (Retrotrapezoid nucleus). The PBelCGRP neurons in turn project extensively to
the lateral hypothalamus (LH), basal forebrain (BF), and central nucleus of amygdala (CeA). Based on our findings, PBelCGRP neurons mainly cause cortical arousal
by projections to the BF, which has potent waking effects, followed by CeA and LH. PBelCGRP neurons did not contribute to respiratory component of apnea, as its
inhibition did not diminish respiratory drive to CO2. The glutamatergic FoxP2 neurons (PBFoxP2) in the lateral crescent (PBlc) and Kolliker Fuse (KF) have descending
projections to the hypoglossal nucleus (tongue), and to the retroambiguus (larynx) and phrenic motor nucleus (Diaphragm); they also project extensively to the
ventro-lateral and commissural (Comm) subdivisions of NTS. These projections of the PBFoxP2 neurons may influence the respiratory efforts during apneas, either by
direct projections to the motor neurons in medulla and spinal cord or by indirect projections to the premotor neurons in the ventro-lateral medulla, also known as the
rostral Ventral Respiratory Group (rVRG).

neurons directly project to cerebral cortex and others send
axons to the BF, this region appears to play at most a minor
role in arousal to CO2 (Figure 4C). Thus, the PBelCGRP

neurons are a critical node in the network that receives input
from neural pathways activated in apneas in response to
hypercapnia, hypoxia and airway stretching, and in relaying
that influence to the forebrain sites to cause awakening during
apneas (Figure 5).

PBelCGRP neurons did not contribute to the respiratory
component of apnea, as their inhibition did not diminish
respiratory drive to CO2. Also, these neurons did not show any
descending outputs to the respiratory areas, but adjacent neurons
that showed a cFos response to CO2 in the lateral crescent
(PBlc) and Kolliker Fuse (KF), do project to respiratory areas
(Yokota et al., 2015). Of note, many of the neurons in this area
express the transcription factor Forkhead-homeobox protein-
2 (FoxP2), which is distributed throughout the respiratory
column in both rats and mice (Geerling et al., 2017; Stanic
et al., 2018; Figure 5). The glutamatergic FoxP2 neurons in
the PBlc and KF have descending projections to respiratory
areas such as the ventrolateral medulla including the pre-
Bötzinger complex and retroambiguus area, the hypoglossal
nucleus, the ventrolateral and commissural subdivisions of
NTS, and the intermedio-lateral cell column (IML) and
phrenic motor nucleus in the spinal cord (Geerling et al.,
2017). These projections, much of which are likely to come
from the PBFoxP2 neurons, may influence the respiratory
efforts during apneas (Figure 5). However, it remains to
be seen if selectively manipulating the PBFoxP2 neurons in
the PBlc and KF can augment ventilatory efforts during
hypercapnia. We are now investigating such a role of this
population of PBFoxP2 neurons in augmenting respiration in

response to hypercapnia and their possible interactions with
PBCGRP neurons.

Other brainstem cell groups, such as the serotonergic
dorsal raphe (Richerson et al., 2005; Buchanan and Richerson,
2010; Ray et al., 2011, 2013; Smith et al., 2012) have
also been shown to regulate hypercapnia induced arousals.
A recent study showed that serotonergic dorsal raphe regulates
waking up to CO2, and this is mediated through 5HT2A
receptors (Smith et al., 2018). However, mice deficient in
5HT neurons are responsive to the CO2 when injected with
a 5HT2A agonist (Buchanan et al., 2015), suggesting that
DR serotonergic neurons are modulatory and maybe acting
through a non-serotonergic area, e.g., PBelCGRP neurons (Kaur
et al., 2018). This possibility is also the subject of our
current investigations.

CONCLUSION

Effective pharmacotherapy for OSA will depend on identifying
the sites that can selectively regulate the brain response to
hypercapnia (Horner et al., 2017) and therefore be used as
druggable targets. Another line of investigation, with the goal
of providing more personalized therapeutic interventions for
patients with a low arousal threshold (Sands et al., 2018), seeks to
quantify and manipulate the “arousal threshold” in patients with
OSA. The knowledge of selective neuro-circuitries that comprise
functionally connected specific neurons, such as PBelCGRP

and PBFoxP2 neurons for regulation of cortical arousal and
respiratory efforts during apnea can help with such interventions.
Importantly, PBelCGRP neurons are not only activated by
hypercapnia, but are also responsive to various potentially

Frontiers in Neuroscience | www.frontiersin.org 7 April 2019 | Volume 13 | Article 401

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00401 April 25, 2019 Time: 16:44 # 8

Kaur and Saper Hypercapnia Arousal Circuitry

dangerous or aversive stimuli (Carter et al., 2013b,a, 2015; Han
et al., 2015; Campos et al., 2016, 2018; Saper, 2016; Palmiter,
2018). As such, it is plausible that different subpopulations of
PBelCGRP neurons encode and process different classes of aversive
stimuli (Bernard et al., 1994; Campos et al., 2018) resulting in
amplification of the hypercapnia-arousal response. Therefore, to
treat a low arousal threshold in sleep apnea, there is a need for
more precise understanding about the afferents that selectively
modulate the PBelCGRP neurons and therefore likely help tune
the hypercapnia-arousal response. Thus, a deeper understanding
of the PBelCGRP neurocircuitry and it’s connections to other
neuronal subpopulations in the PB (for e.g., PBFoxP2 neurons)
and each of their distinct projection targets, will help yield
valuable therapeutic targets, that can help prevent cortical arousal
during apneas while preserving the respiratory drive important
for restoring the airway patency. This will eventually help in
preventing OSA and its negative secondary health consequences.
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