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Accumulating evidence has revealed the dysbiosis of gut/fecal microbiota induced by
heat stress (HS) in mammals and poultry. However, the effects of HS on microbiota
communities in different intestinal segments of Cherry-Valley ducks (a widely used meat-
type breed) and their potential associations with growth performances, fat deposition,
intestinal morphology, and antioxidant capacity have not been well evaluated yet.
In this study, room temperature (RT) of 25◦C was considered as control, and RT at
32◦C for 8 h per day was set as the HS treatment. After 3 weeks, the intestinal
contents of jejunum, ileum, and cecum were harvested to investigate the microbiota
composition variations by 16S ribosomal RNA amplicon sequencing. And the weight
gain, adipose indices, intestinal morphology, and a certain number of serum biochemical
parameters were also measured and analyzed. The results showed the microbial
species at different levels differentially enriched in duck jejunum and cecum under
HS, while no significant data were observed in ileum. HS also caused the intestinal
morphological changes (villus height and the ratio of villus height to crypt depth) and
the reductions of growth speed (daily gain), levels of serum triglyceride (TG) and total
cholesterol, and antioxidant activity (higher malondialdehyde (MDA) content and lower
total antioxidant). The higher abdominal fat content and serum glucose level were also
observed in HS ducks. The Spearman correlation analysis indicated that in jejunum the
phyla Firmicutes and Proteobacteria were associated with average daily gain, feed/gain,
serum TG and MDA levels, and villus height/crypt depth (P < 0.05). The phylum
Firmicutes and genus Acinetobacter were significantly associated with fat deposition
and serum glucose level (P < 0.05). The genus Lactobacillus was positively associated
with serum total antioxidant (P < 0.05), while some other microbial species were
found negatively associated, including order Pseudomonadales, genera Acinetobacter,
and unidentified_Mitochondria. However, no significant correlations were observed in
cecum. These findings imply the potential roles of duck gut microbiota in the intestinal
injuries, fat deposition, and reductions of growth speed and antioxidant capacity caused
by HS, although the molecular mechanisms requires further investigation.
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INTRODUCTION

Heat stress (HS) is a great threat to livestock industries, especially
in the past decades due to the global warming and has induced
major economic loss (St-Pierre et al., 2003; Hansen et al., 2010;
Mack et al., 2013; Nawab et al., 2018). HS has a profound effect on
animal health and production performance (Humphrey, 2006).
HS causes multiple physiological disturbances, such as endocrine
disorders, immune dysregulation, electrolyte imbalance, and
so on (Teeter et al., 1985; Sohail et al., 2010). And also,
HS could lead to the abnormalities of energy metabolism,
fat deposition, and body oxidative status (Baziz et al., 1996;
Küchenmeister et al., 1999; Rhoads et al., 2009; Faylon et al., 2015;
He et al., 2018).

In recent years, gut microbiota, considered as a “microbial
organ,” has become a central research focus because it has a
symbiotic relationship with host health and plays an essential
role in the nutrient digestion and absorption, immune system
development, and host protection against pathogens (Leser
and Molbak, 2009; Vasai et al., 2014b; Whiteside et al.,
2015). Balanced intestinal microflora benefit host by excluding
pathogens, improving intestinal barrier integrity, maintaining
normal nutrient digestion and absorption, promoting other
commensals, and so on (Burkholder et al., 2008; Song et al.,
2013). However, it has been reported that HS negatively affects
intestinal mucosa and microbiota composition (Liu et al.,
2009; Kers et al., 2018). Damage to mucosal epithelium can
directly affect intestinal barrier function, nutrient absorption
and impair production performance (Elphick, 2005; Moeser
et al., 2007). With inefficient heat dissipation and lack of
sweat glands, poultry appears more susceptible to HS (Lara
and Rostagno, 2013). In chicken, some reports are available
about the influences of HS on gut microbiota in different
intestinal segments and the use of dietary supplementations
to improve intestinal morphology and microflora balance, like
oligosaccharide (Song et al., 2013; Ghasemian and Jahanian,
2016), N-acetylcysteine (Yi et al., 2016), Artemisia annua (Song
et al., 2017), and probiotics (Al-Fataftah and Abdelqader, 2014;
Song et al., 2014). The data about gut microbiota in different
duck breeds, including Peking, Muscovy, Sheldrake and Mule,
are mainly on the application of overfeeding or functional
dietary supplementation to promote production performances
(Jiang et al., 2014; Vasai et al., 2014a,b). Similar data
could also be found on zebrafish (Wang et al., 2019).
Whereas, the effects of HS on the gut microbiota composition
and its association with physiological changes have not
been well evaluated.

In the present study, Cherry-Valley duck, a widely used
meat-type breed, was selected to investigate the influences
of HS on duck gut microbiota. After thermal treatment,
the 16S rDNA sequencing analysis was performed to
learn the variations of microflora compositions in different
intestinal segments (jejunum, ileum, and cecum), and probe
into their possible associations intestinal morphology, fat
deposition, and oxidation status. The results help better
understand the effects of HS on duck physiology and
the probably involved bacterial species, and it might

provide useful information for preventing or ameliorating
the deficits of duck production caused by prolonged
high-temperature environment.

MATERIALS AND METHODS

Animal Treatment and Sampling
A total of 30 Cherry-Valley ducks (male, 5-week-old, 1.5∼1.8 kg)
with the same genetic background were collected and randomly
divided into 2 groups, control (C), and treatment (T). Each
duck was housed in a separate cage. In the first week, the
room temperature (RT) was controlled at 25◦C for adaption.
Then for the next 3 weeks, the RT of group T was promoted
to 32◦C and kept for 8 h per day (10:00 am to 18:00 pm),
while no RT change was made to group C. Throughout the
whole experimental period, all birds were watered and fed
ad libitum. The diet ingredients and nutrient contents are listed
in Table 1. After fasting for 12 h, the birds were weighed
and the blood samples were harvested. Then 5 individuals
of each group were randomly selected and euthanatized by
jugular venesection. The intestinal contents of jejunum, ileum
and cecum carefully sampled, immediately frozen into liquid
nitrogen and lately stored at −70◦C. The abdominal fat
tissue was isolated and weighed. The content of abdominal
fat was calculated as its proportion of the eviscerated carcass
weight. Meanwhile, for each duck, a 2-cm section of each
intestinal segment and a piece of abdominal fat tissue were
separated and submersed in 10% neutral-buffered formalin for
24 h of fixation.

TABLE 1 | Ingredients and nutrient composition of the diet for the
experimental ducks.

Ingredients (%)

Corn 64.9

Wheat bran 6.35

Soybean meal 18

Cottonseed cake 4

Fish meal 2

Soy oil 1.5

Limestone 0.9

Calcium bicarbonate 1.1

Salt 0.25

Premix 1

Total 100

Nutrient contents

Metabolizable energy (MJ/kg) 12.19

Crude protein 17.16

Calcium 0.86

Phosphorus 0.48

Lysine 0.80

Methionine + cystine 0.65

Premix provided for each kg of complete diet: VA, 10000 IU; VD3, 1000 IU; VE, 20
IU; VK3, 2 mg; VB1, 2 mg; VB2, 5 mg; VB6, 2 mg; folic acid, 0.6 mg; nicotinic acid,
30 mg; pantothenic acid, 11 mg; biotin, 0.2 mg; Fe, 70 mg; Zn, 50 mg; Cu, 8 mg;
I, 0.4 mg; and Se, 0.2 mg.
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DNA Extraction and 16S rRNA
Amplicon Sequencing
Total genomic DNA of the sampled intestinal contents was
extracted using QIAamp DNA isolation kit (Qiagen, Hilden,
Germany). The concentration and integrity of bacterial DNA
were assessed with a Nanodrop (Thermo Fisher Scientific,
United States) and 1.5% agarose gel electrophoresis, respectively.
The diluted DNA (1.0 ng/µL) was used to amplify the V4
hypervariable regions the 16S rRNA gene amplicons with the
barcoded primers (515F, 5′-GTGCCAGCMGCCGCGGTAA-3′;
806R, 5′-GGACTACHVGGGTWTCTAAT-3′) and Phusion

R©

High-Fidelity PCR Master Mix with GC Buffer (New England
Biolabs). The PCR products were subjected to 2.0% agarose
gel electrophoresis, recovered, and purified using GeneJET
Gel Extraction Kit (Thermo Fisher Scientific, United States).
Sequencing libraries were generated using Ion Plus Fragment
Library Kit (Thermo Fisher Scientific, United States) according
to the manufacturer’s recommendations. Library quality was
assessed on the Qubit@ 2.0 Fluorometer (Thermo Fisher
Scientific, United States) and Agilent Bioanalyzer 2100 system.
Finally, the library was sequenced on Ion S5TM XL platform
(Thermo Fisher Scientific, United States).

Microbial Bioinformatic Analysis
The low-quality reads of the original data were filtered with
Cutadapt (V1.9.1) (Martin, 2011), and the data of each sample
was separated by barcode. Then the barcode and primer
sequences were cut off to obtain the Raw Reads, which further
went through alignment with Gold database1 (Haas et al., 2011)
using UCHIME Algorithm (Edgar et al., 2011) to remove the
chimeric sequences and turned out the Clean Reads. The Clean
Reads were then clustered as operational taxonomic units (OTUs)
by scripts of Uparse software (version 7.0.1001) with a 97%
similarity threshold.

The representative OTUs (high frequency) were screened
and annotated with SILVA SSUrRNA database using Mothur
(threshold 0.8∼1.0) (Wang et al., 2007; Quast et al., 2012).
Then MUSCLE software (version 3.8.31) was applied to perform
the multiple sequence alignment of the OTUs to generate
their phylogenetic relationship. And the OTU abundances
were normalized using a standard of sequence numbers
corresponding to the sample with the least sequences, based
on which the diversity analysis were performed. To estimate
of the microbial community of the samples, the within-
sample alpha-diversity was calculated according to the genera
profiles. Beta-diversity was estimated by calculating Unweighted-
Unifrac and Weighted-Unifrac distances, then visualized with
principal coordinate analysis (PCoA) and non-metric multi-
dimensional scaling (NMDS). Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis was performed
to predict the microbial functions. Linear discrimination analysis
coupled with effect size (LEfSe) was performed to identify
the bacterial taxa differentially represented between/among
groups at different taxonomy levels (Segata et al., 2011).

1http://drive5.com/uchime/uchime_download.html

The Spearman correlation analysis was applied to analyze
the associations of the differential microbial species with the
measured parameters.

Preparation and Analysis of Intestinal
and Adipose Tissue Sections
According reported methods (Murugesan et al., 2015; Varlamov
et al., 2017), after fixation and dehydration, samples of different
intestinal segments and abdominal tissue were embedded
(EG1150H, LEIC, Germany) in paraffin wax, sliced (rotary
microtome, RM2016, LEIC, Germany) and stained with
hematoxylin and eosin in preparation for examination by
microscope (S4E, LEIC, Germany), and image analyzer (Image-
ProPlus 6.0). For each intestinal sample, 5 villus were selected
for Villus height (VH), crypt depth (CD), mucosal thickness
determination. For each adipose section, at least 3 vision fields
were chosen and for each a certain range (containing 20–50
adipocytes) was circled out. Then the area and number of each
range was measured with the image analyzer to calculate the
average area and density of adipocytes.

Determination of Serum
Biochemical Parameters
The collected blood samples were firstly incubated at RT for
1∼2 h, centrifuged at 3,000 rpm, 4◦C for 15 min to obtain
serum, and then stored at −80◦C until analysis. The energy
metabolism and oxidative status related parameters of the
collected serum samples were determined, including levels of
glucose (GLU), triglyceride (TG), high density lipoprotein-
cholesterol (HDL-C), low density lipoprotein-cholesterol
(LDL-C), total cholesterol (T-CHO), malondialdehyde (MDA),
superoxide dismutase (SOD), and total antioxidant capacity
(T-AOC). All the determinations were performed on a
Multifunctional Microplate Reader (Infinite

R©

M200PRO,
TECAN, Switzerland) with related commercial reagent kits
(Jiancheng, Nanjing, China) according to the manufacturer’s
recommendations. Index measurements of each sample were
replicated 3 times.

Statistical Analysis
Body weight, serum biochemical parameters, intestinal and
adipose traits were presented as mean ± standard deviation
(SD). T-test was applied with SPSS software (Version 20.0) to
analyze the differences between group C and T. The results were
considered significantly different at P < 0.05.

RESULTS

Effects of HS on Body Weight
and Fat Deposition
Under HS for 3 weeks, the average daily gain of Cherry-Valley
ducks were measured significantly less than control (P = 0.0098),
with a higher Feed/Gain ratio (P = 0.0467) (Table 2). However,
the abdominal fat content significantly increased in T, compared
to C (P = 0.0396) (Figure 1A). And the morphology results of
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TABLE 2 | Effects of heat stress (HS) on growth performance of
Cherry-Valley ducks.

Items Control HS P values

Initial weights (kg) 1.643 ± 0.092 1.622 ± 0.076 0.8103

Final weights (kg) 4.203 ± 0.156 3.467 ± 0.174 0.0105

ADG (g) 91.43 ± 2.45 65.89 ± 5.25 0.0098

Feed/Gain 2.65 ± 0.12 3.01 ± 0.13 0.0467

Dada are expressed as mean ± SD. ADG, average daily gain; Feed/Gain, the ratio
of feed intake to body weight gain.

abdominal fat tissue also showed higher single adipocyte area
(P = 0.0321) and lower cell density (P = 0.0240) in thermal-
treated birds (Figures 1B,C).

Morphological Damages to
Different Intestinal Segments
When Exposed to HS
For both groups, the morphological changes of jejunum, ileum,
and cecum were presented in Table 3 and Figure 2. It showed
that VHs in jejunum and ileum were both shorter in T, compared
with C (P < 0.05). No significant differences of the CDs in all
the three intestinal segments were found (P > 0.05). Then the
VH/CD values were calculated higher in both jejunum and ileum
of C (P < 0.05).

Serum Biochemical Variation
After Heat Treatment
The levels of serum Glu, TG, HDL-C, LDL-C, T-CHO, MDA,
SOD, and T-AOC were determined and listed in Table 4.

TABLE 3 | Morphological changes of jejunum, ileum and cecum in ducks under
heat stress (HS).

Intestinal segments Control HS P values

Jejunum VH (mm) 0.699 ± 0.042 0.558 ± 0.067 0.0100

CD (mm) 0.128 ± 0.029 0.143 ± 0.014 0.3704

VH/CD 5.734 ± 1.235 3.935 ± 0.612 0.0411

Ileum VH (mm) 0.528 ± 0.024 0.348 ± 0.023 <0.0001

CD (mm) 0.087 ± 0.094 0.094 ± 0.017 0.5619

VH/CD 6.294 ± 1.280 3.895 ± 1.084 0.0217

Cecum CD (mm) 0.272 ± 0.030 0.252 ± 0.042 0.3776

Dada are expressed as mean ± SD. VH, villus height; CD, crypt depth.

It indicated that compared to group C, the level of Glu was
significantly higher (P = 0.0228), while the levels of TG, T-CHO,
MDA, and T-AOC were all found significantly lower (P < 0.05) in
group T. And no significant difference was detected on HDL-C,
LDL-C or SOD between C and T (P > 0.05).

Microbiota Compositions in the
Sampled Intestinal Segments
By 16S rRNA gene sequencing, the gut microbiota composition
at phylum level of C (Cj, Cj, and Cc) and T (Tj, Ti, and
Tc) was calculated (Figure 3A) and the dominant species were
analyzed and shown in ternary plot (Figures 3B,C). It indicated
that Firmicutes and Proteobacteria were major microbiota
communities in Cj (mean, 84.5%), Ci (mean, 96.6%), Tj
(mean, 84.7%), and Ti (mean, 91.3%). Firmicutes, Proteobacteria,
Fusobacteria, and Bacteroidetes altogether comprised 98.0 and
98.9% of microbiota in Cc and Tc, respectively. Top 10 microbiota

FIGURE 1 | Influences of heat stress (HS) on abdominal fat deposition in duck (n = 5 for each group). C and T stand for control and thermal treatment, respectively.
The abdominal fat content (A), average adipocyte area (B), and cell density (C) were calculated, and the statistical differences between C and T were analyzed
(∗P < 0.05). The adipose tissue sections (400×) of C (D) and T (E) were also presented here.
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FIGURE 2 | Tissue sections (100×) of intestinal mucosa in jejunum, ileum, and cecum in ducks with/without HS (n = 5 for each group). Cj, Ci, and Cc stand for the
jejunum, ileum, and cecum of control. Tj, Ti, and Tc stand for the jejunum, ileum, and cecum of the thermal treated group, respectively. This also applies to the
following figures.

relative abundances at levels of class, order, family, and genus
were also analyzed and presented in Supplementary Figure S1.
The shared and specific OTUs in the two groups (Supplementary
Figures S2A,B) and in the 3 segments with different treatments
(Supplementary Figures S2C–E) were also calculated. The result
of KEGG pathway analysis was listed in Figure 4.

Alpha and Beta Diversity of Gut
Microbiota Affected by Heat Stress
Two indexes that reflecting species richness and diversity
(Shannon and Simpson) decreased in Ci compared with Cc
(P < 0.01) (Figure 5), while no significant difference was found
between any other two segments in C or T. The Binary-Jaccard
based PCoA results showed that the cecal microbiota was
separated clearly from that in jejunum or ileum of both C

TABLE 4 | Effects of heat stress (HS) on serum indexes in cherry-valley duck.

Serum parameters Control HS P values

Glu (mM) 7.515 ± 0.310 8.461 ± 0.532 0.0228

TG (mM) 1.105 ± 0.276 0.717 ± 0.101 0.0458

HDL-C (mM) 6.291 ± 0.714 5.046 ± 0.692 0.0831

LDL-C (mM) 0.357 ± 0.072 0.273 ± 0.043 0.0943

T-CHO (mM) 5.497 ± 0.731 3.983 ± 0.458 0.0444

MDA (µM) 7.347 ± 0.503 9.067 ± 0.646 0.0062

SOD (U/mL) 20.068 ± 0.574 20.900 ± 0.708 0.1554

T-AOC (=mM FeSO4) 1.325 ± 0.261 0.777 ± 0.106 0.0153

Dada represent as mean ± SD. Levels of Glu, glucose; TG, triglyceride; HDL-
C, high density lipoprotein-cholesterol; LDL-C, low density lipoprotein-cholesterol;
T-CHO, total cholesterol; MDA, malondialdehyde; SOD, superoxide dismutase;
and T-AOC, total antioxidant in the groups of control and HS are shown here,
respectively. The T-AOC levels represent the equivalent antioxidant capacity
of FeSO4.

and T (Adonis analysis, P < 0.05), and for both the 2 groups,
the jejunum microbiota was well separated from that in
ileum (Adonis analysis, P < 0.05) except for one sample spot
(Figures 6A,B). To identify bacterial taxa that significantly
differentiated among jejunum, ileum and cecum, a metagenomic
biomarker discovery approach (LEfSe) was applied (LDA score
>4) and the results were listed in Figures 6C,D. Moreover,
The Binary-Jaccard based PCoA also showed that Cj displayed
a distinct microbiota community that clustered separately
from Tj (Adonis analysis, P < 0.05) (Figure 7A), while neither
Ci-Ti nor Cc-Tc were separated into different clusters (Adonis
analysis, P > 0.05) (Figures 7B,C). The NMDS analysis showed
similar results to PCoA (Supplementary Figure S3). By LEfSe
analysis, the differentially enriched microbiota (LDA score
>4) at different classification levels were found in jejunum
and cecum. Firmicutes (phylum), Bacilli (class), Lactobacillales
(order), Lactobacillaceae (family), and Lactobacillus (genus) were
more abundant in Cj. Proteobacteria (phylum), Pseudomonadales
(order), Moraxellaceae (family), Acinetobacter (genus), and an
unclassified member of Mitochondria (genus) were significantly
enriched in Tj (Figure 7D). The relative abundances of
Rickettsiales (order) and Mitochondria (family) markedly
increased in Tc, while Negativicutes (class), and Selenomonadales
(order) were more prevalent in Cc (Figure 7E). However,
no significant differences of microbiota abundance were detected
between Ci and Ti.

Correlation Between the Differential
Microbial Species and Measured
Parameters
The Spearman correlation analysis results were presented in
Figure 8. The results in jejunum showed that ADG and VH/CD
were associated with phyla Firmicutes (positive, P < 0.05)
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FIGURE 3 | Microbiota compositions in different intestinal segments of ducks with/without HS (n = 5 for each group). Top 10 bacterial phyla in jejunum, ileum and
cecum of the used Cherry-Valley ducks in this study (A). And the ternary analysis of the 3 intestinal positions in group C and T are shown in (B,C), respectively.

and Proteobacteria (negative, P < 0.05), and Feed/Gain
represented the opposite associations (P < 0.05). Abdominal
fat content and serum GLU level were positively associated
with genus Acinetobacter and negatively associated with phylum
Firmicutes (P < 0.05). TG and T-CHO levels represented the
opposite associations to GLU and abdominal fat content, and
also negatively associated with phylum Proteobacteria, order
Pseudomonadales, and family Moraxellacese (P < 0.05). Two
positive associations and five negative associations were observed
between serum MDA content and bacterial species (P < 0.05).
T-AOC was positively associated with genus Lactobacillus
(R = 0.47, P = 0.016), and negatively associated with order
Pseudomonadales (R = −0.71, P = 0.022), genera Acinetobacter
(R = −0.66, P = 0.039), and unidentified_Mitochondria
(R =−0.59, P = 0.035). Whereas, no significant associations were
found in cecum microbiota (P > 0.05).

DISCUSSION

To learn the gut microbiota community structure in Cherry-
Valley duck and evaluate the effects of HS on it, a 16S rRNA
sequencing analysis of the intestinal contents from jejunum,
ileum, and cecum was performed in the current study. It has
been reported that Firmicutes and Bacteroidetes were identified
as the dominant phyla in avian gut microbiota, suggesting their
importance in metabolism, and host physiology (Kohl, 2012).

Firmicutes was the major phylum in feces of Canada geese
(Lu et al., 2009) and Muscovy duck (Vasai et al., 2014a),
whereas phylum Bacteroidetes was less enriched in some avian
species (Lu et al., 2007). It is consistent with the present results
that Firmicutes was the most abundant phylum in all the 3
selected intestinal segments, jejunum (45.4%), ileum (88.7%),
and cecum (38.4%). In cecum, the second abundant phylum
was Bacteroidetes (30.6%). And together with Fusobacteria
(17.2%) and Proteobacteria (12.6%), the four phyla accounted
for over 98% of the cecal microbiota composition of Cherry-
Valley ducks under normal feeding conditions. However, instead
of Bacteroidetes, the second most enriched bacterial phylum
turned out to be Proteobacteria in both jejunum (39.0%), and
ileum (7.9%). At class level, Clostridia and bacteroidia (obligate
anaerobes) were reported to dominate in both ileum and cecum
of mule ducks (Vasai et al., 2014b). Similar data could be found in
this study (Supplementary Figure S1A) except little abundance
of bacteroidia (0.44%) in ileum. Gut microbiota is associated
with nutrient digestion/absorption and host protection, and these
differences might be due to different avian species/breeds or
intestinal positions.

In this study, experimental animals were exposed to high
ambient temperature (32◦C, 8 h per day) for 3 weeks to
investigate the effects of HS on gut microbiota in different
intestinal segments. Although with alteration of relative
abundances, the dominant bacterial phyla in ileum and cecum
were found just the same as in control. In jejunum, the major
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FIGURE 4 | The KEGG pathway enrichment analysis of the gut microbiota in ducks. The different colors represent the distance between the raw score and the mean
population of the standard deviation.

FIGURE 5 | Bacterial species richness and diversity in the 3 intestinal segments of group C and T. The Shannon index and Simpson index were used to assess the
species richness and diversity (∗∗P < 0.01).
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FIGURE 6 | Differential analysis of microbiota community among the 3 intestinal segments within group C and T. The principal coordinate analysis (PCoA) based on
Binary-Jaccard distance was applied to observe the separation of the samples from C (A) and T (B). The Linear discrimination analysis (LDA) coupled with effect size
(LEfSe) was used to identify the most differentially abundant taxa among the 3 intestinal segments within group C (C) and T (D). Only the results meeting an LDA
significant threshold of >4 were shown.

phylum came out to be Proteobacteria (72.7%) under HS,
followed by Firmicutes (12.0%), the second most common
phylum. This compositional reshape in microbial community
indicated that among the 3 intestinal segments, the most
significant impacts of HS on microbiota community probably
located in jejunum. HS was reported to increase intestinal
permeability, decrease intestinal blood circulation and further
cause damages to its integrity, which were believed to affect the
colonized microbial composition (Lambert, 2009; Song et al.,
2014). Some morphological changes, including VH, VH/CD
or intestinal sections, were observed in all the 3 intestinal
segments. However, based on LEfSe analysis, the differentially

enriched bacterial at different classification levels under HS
were observed in jejunum and cecum (Figures 7D,E), while
no significant differences were detected in ileum. It indicated
that there might be some other factors involved in the intestinal
microbiota changes under HS, e.g., different segments and
original microbial composition.

For example, the Firmicutes abundance significantly decreased
in jejunum when exposed to HS. Firmicutes is thought to
be correlated with host energy metabolism. The increase of
Firmicutes/Bacteroidetes ratio was considered to be a typical
characteristic of obesity-driven dysbiosis in humans and animals
(Mozes et al., 2008; Cotillard et al., 2013). Here, HS caused
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FIGURE 7 | Effects of HS on the microbiota compositions in the 3 intestinal segments. The Binary-Jaccard based PCoA analysis revealed the different effects of HS
on the samples from jejunum (A), ileum (B), and cecum (C). The LEfSe analysis identified the differentially abundant (LDA score >4) bacterial species induced by HS
in jejunum (D) and cecum (E), but not in ileum.

the significant decreases of duck growth performances and
serum T-CHO level. T-CHO level reflects the interaction of
lipid metabolism between liver and other tissues (Heyer and
Lebret, 2007). And the correlation analysis showed that the
abundance of jejunum Firmicutes was positively associated with
ADG (R = 0.648, P = 0.043) and serum T-CHO level (R = 0.539,
P = 0.034). It was consistent with previous studies. On the
other hand, the negative association of phylum Proteobacteria
abundance with ADG (R = −0.624, P = 0.029) was also found.
The order selenomonadales was reported as an acetate producer
(Vargas et al., 2017) which could induce secretion of ghrelin, a
“hunger hormone,” and promote food intake (Perry et al., 2016).

The abundance of selenomonadales in cecum was observed
significantly decreased under HS. But the correlation analysis
suggested that its association with ADG was not significant
(R = 0.602, P = 0.054). These findings still needed to be further
investigated. Moreover, it was found that the serum GLU level
in duck significantly increased under HS. Analogs findings have
been reported in Japanese quails (Ozbey and Ozcelik, 2004).
It was probably regulated by hormones to satisfy the larger body
energy demand to maintain a new physiological balance, e.g.,
nervous system, respiratory system and fat deposition.

Heat stress was demonstrated that could promote the
differentiation of adipose tissues in cattle (Rhoads et al., 2009),
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FIGURE 8 | The Spearman correlation analysis between the differential microbial species and measured parameters in jejunum (A) and cecum (B). ADG, average
daily gain; AF, abdominal fat; Glu, glucose; TG, triglyceride; T-CHO, total cholesterol; MDA, malondialdehyde; T-AOC, total antioxidant; VH, villus height; CD, crypt
depth. The red represents positive correlation and the blue represents negative correlation, respectively (∗P < 0.05, ∗∗P < 0.01).

swine (Kouba et al., 1999), and chicken (Baziz et al., 1996).
HS could increase membrane fluidity and expressions of
protective proteins (Hooper and Hooper, 2005; Jiang et al.,
2007; Deng et al., 2017; Zhang et al., 2018). It would further
improve the insulin resistance of adipose tissue and enhance
its GLU uptake to promote the TG synthesis and storage
(Yu et al., 2008; O’Brien et al., 2010; Hooper et al., 2014).
It was believed to be a temporary body defense mechanism
to HS. The data of the abdominal fat sections showed that
the adipocytes in group T appeared more differentiated than
in group C, which was consistent with previous studies.
The correlation analysis (Figure 8A) found the increased
abundance of genus Acinetobacter was positively associated
with the abdominal fat content (R = 0.729, P = 0.017) and
abdominal fat content and serum GLU level (R = 0.632,
P = 0.049), and negatively associated with the serum TG level
(R = −0.657, P = 0.039), respectively. Meanwhile, the reduced
abundance of phylum Firmicutes represented the opposite
associations to Acinetobacter. These data indicated that jejunum
microbiota might contribute to the fat deposition in duck for
defending again HS, although the mechanism still needed to be
further explored.

Heat stress usually induces oxidation alteration (Slawinska
et al., 2019), which is closely related to intestinal barrier integrity
(Song et al., 2011). And gut microbiota is believed to be closely
related with gut barrier (Yang et al., 2019; Paraskeuas and
Mountzouris, 2019). MDA is a product of lipid oxidation. And
the serum T-AOC index was measured using FeSO4 as standard
substance by catalyzing the reduction of Fe3+-TPTZ (tripyridyl-
triazine) to Fe2+-TPTZ. In the present study, the results of MDA
and T-AOC indicated the decreased antioxidative capacity in
duck induced by HS. The damaged intestinal mucosa, lower
VH, and VH/CD values were observed in ducks under HS.
The Spearman analysis showed that the MDA content and
VH/CD value were significantly associated with the abundances

of jejumun Firmicutes and Proteobacteria (Figure 8A). It also
showed that the abundance of Lactobacillus was positively
associated with the T-AOC (R = 0.47, P = 0.016). It was
consistent with previous reports. Lactobacillus, a member of
the class Bacilli (subordinate to Firmicutes phylum), has been
reported negatively affected by HS in broilers (Al-Fataftah and
Abdelqader, 2014; Zhang et al., 2017). Lactobacillus was proved
to be of antioxidant activity (Lin and Chang, 2000; Lee et al.,
2005b), and had the capacity of scavenging free radical and
reactive oxygen species (ROS) to alleviate damages induced
by oxidative stress (Lee et al., 2005a; Xin et al., 2014), which
could be caused by HS (Altan et al., 2003). It indicated that
the reduction of genus Lactobacillus probably weakened the
antioxidant activity of duck under HS. However, its interaction
with the other 3 bacterial species (negatively associated with
T-AOC) was still unclear. Lactobacillus was also known as
amylolytic bacteria and frequently increased when fed with high-
starch diets in pigs (Regmi et al., 2011). No significant association
was detected between Lactobacillus abundance and GLU content
in the present study. It was probably due to different kind of
stresses or animal species.

Lactobacillus consists of gram-positive and facultative
anaerobes that produce lactic acid, which can create low pH
environment and inhibit the growth of pathogen (Rodriguez-
Cabezas et al., 2010). With the damaged intestinal integrity, the
less abundance of Lactobacillus in jejunum of group T probably
enlarged the risk of pathogen amplification and invasion. For
example, order Pseudomonadales and family Moraxellaceae,
containing known zoonotic pathogens (George, 2005), were
detected significantly increased in jejunum under HS. With
respect to cecum, the microbiota compositional variation
also indicated some unfavorable influences of HS. The class
negativicutes was demonstrated negatively associated with
colonitis (Warner et al., 2016), which was observed significantly
decreased under HS. Moreover, the order Rickettsiales, which
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contains major species that pathogenic to animals and human
(Darby et al., 2007), was also found significantly increased in HS
cecum. These information indicated that more attention should
be paid to the prevention of pathogen invasion in HS ducks,
which has been reported in HS broilers (Alhenaky et al., 2017).

After all, there are still massive works required to be further
carried out on gut microbiota involved in HS ducks. For example,
the effects of the obtained associated microbial species should be
carefully and respectively, validated. Under HS, the interactions
between duck gut microbiota and body regulatory factors needed
to be further explored and discussed, e.g., inflammatory proteins,
ghrelin, peroxisome proliferators-activated receptor γ (PPARγ)
or mammalian target of rapamycin (mTOR).

CONCLUSION

The impacts of HS on gut microbiota community and their
possible relationships with the physiological changes in Cherry-
Valley ducks were investigated. The results showed that the
significant microbiota compositional differences occurred in
jejunum and cecum under HS, accompanied by the changes of
weight gain, fat content, intestinal morphology, and oxidative
indices. By Spearman correlation analysis, significant associations
were found between microbiota alteration and these parameters
in jejunum, but not in cecum. These data indicated that
HS induced intestinal injuries, abnormal fat deposition, and
reductions of growth performances and antioxidant capacity in
duck, which probably have potential relationships with the gut
microbiota dysbiosis.
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